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Observation (o), Reward (r)

Action (u)

Goal is to maximise total return per episode: V = ∑ t rt

Reinforcement Learning
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Deep Reinforcement Learning
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Multi-Agent Reinforcement Learning [MARL]
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Some “great challenges” of MARL

● Communication
● Non-stationarity
● Credit Assignment
● Reciprocity
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LOLA Motivation
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Prisoners Dilemma
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It’s everywhere..:Payout matrix:

Background
● Single shot game:

○ Defection is only Nash equilibrium
● Repeated game (with high gamma):

○ Folk theorem says many equilibria

Prisoner’s Dilemma
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Non-cooperative Deep RL:
● Generalization of tit-for-tat with deep RL [Lerer & Peysakhovich, 2017]
● Investigation of pro-social Learners in generalised stag hunt [Peysakhovich & Lerer, 2017]
● Emergence of cooperation and competition [Leibo et al, 2017]
● Centralized actor-critic for training [Lowe et al, 2017]

Opponent modeling: 
● fictitious play [Brown, 1951], 
● action prediction [Mealing & Shapiro, 2013]

Opponent learning:
● Policy prediction under one-step learning dynamics [Zhang & Lester, 2017]
● Unrolled GAN [Metz et al, 2016] differentiates through opponent’s update steps

Human-Machine Interaction:
● “Planning for Autonomous Cars that Leverage Effects on Human Action” [Sadigh et al, 2016] 

Related Work
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Naive Learning

Naive Naive
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Naive Learning with Gradients

Naive Naive
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Learning with Opponent Learning Awareness [LOLA]
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LOLA
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LOLA with Gradients

LOLA

= +
Naive
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LOLA learning rule:

Health warning: 
This requires access to true value function and derivatives

Optimize Return after one step of opponent learning:

LOLA Maths
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Can use Policy Gradients to estimate all gradients

LOLA term is still tractable and exact (in expectation):

LOLA Policy Gradient
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Prisoners Dilemma
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Iterated Prisoner's 
Dilemma

Exact

Policy 
Gradient

Naive LOLA Return
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Matching Pennies
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Iterated Matching 
Pennies
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Gradient

Naive LOLA Return
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Results
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Iterated Prisoner's’ Dilemma Iterated Matching Pennies

Round Robin Tournament
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?

LOLA with Opponent Modelling (LOLA-OM)
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LOLA with Recurrent Deep RL
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LOLA with Recurrent Deep RL
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LOLA with Recurrent Deep RL
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https://docs.google.com/file/d/0BxLFM6vRcZCrOFNvd0ViMllocHM/preview
https://docs.google.com/file/d/0BxLFM6vRcZCrdmRoSlZhUE14cFU/preview


Higher Order LOLA
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Higher Order LOLA results
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● Unknown update rules?
● Adversarial update rules? 
● Proofs

LOLA Open Challenges
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● State of the art Deep-MARL methods lead to defection
● LOLA leads to emergent reciprocity
● Cooperation arises out of selfish interest, considering learning of the opponent
● Works both in an exact setting and in Deep RL using policy gradients

LOLA Conclusion
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Any questions?

Thank you for listening!!



THE END


