Learning with Opponent-Learning Awareness

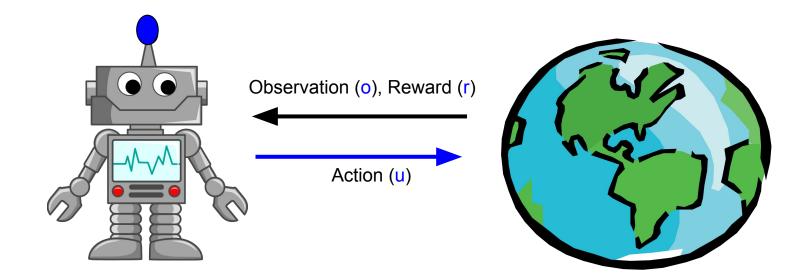
GTC 2018

Full paper at AAMAS 18

Jakob N. Foerster^{1,2,†}, Richard Y. Chen^{1,†}, Maruan Al-Shedivat⁴, Shimon Whiteson², Pieter Abbeel³, Igor Mordatch¹

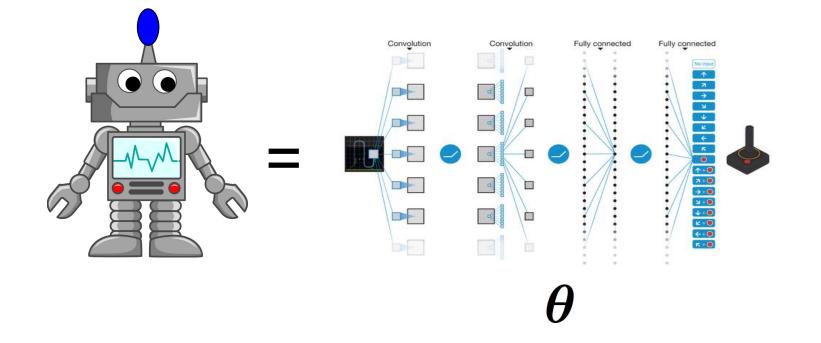
OpenAl¹, University of Oxford², UC Berkeley³, CMU⁴

Reinforcement Learning

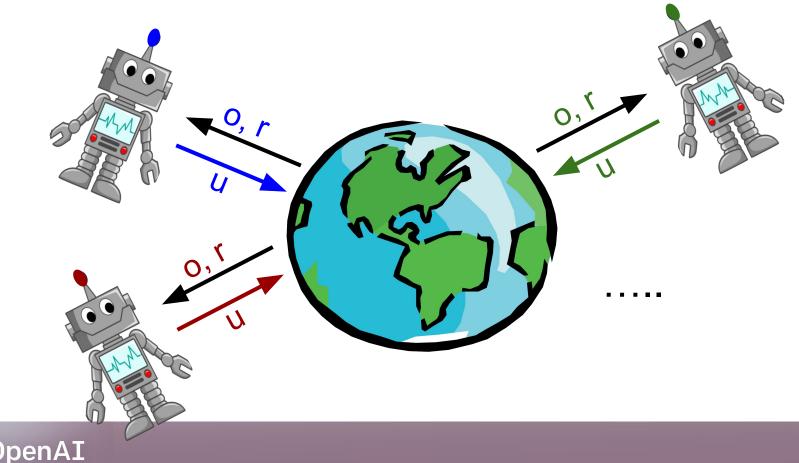


Goal is to maximise total return per episode: V = $\sum \gamma^t r_t$

Deep Reinforcement Learning



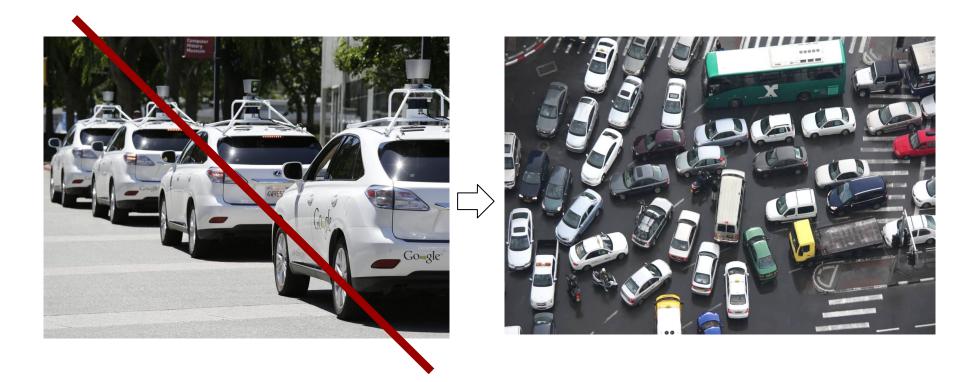
Multi-Agent Reinforcement Learning [MARL]



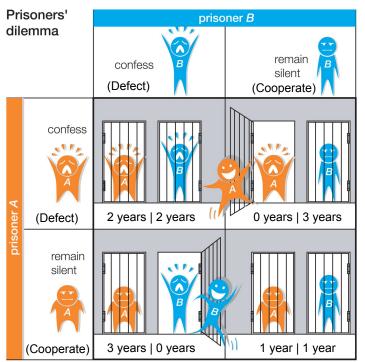
Some "great challenges" of MARL

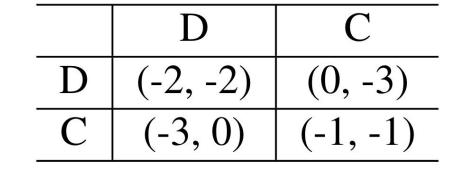
- Communication
- Non-stationarity
- Credit Assignment
- Reciprocity

LOLA Motivation



Prisoners Dilemma





© 2010 Encyclopædia Britannica, Inc.

Prisoner's Dilemma

Payout matrix:

	D	С	
D	(-2, -2)	(0, -3)	
С	(-3, 0)	(-1, -1)	

Background

- Single shot game:
 - Defection is only Nash equilibrium
- Repeated game (with high gamma):
 - Folk theorem says many equilibria

It's everywhere ..:

- 4 Real-life examples
 - 4.1 In environmental studies
 - 4.2 In animals
 - 4.3 In psychology
 - 4.4 In economics
 - 4.5 In sport
 - 4.6 Multiplayer dilemmas
 - 4.7 In international politics

Related Work

Non-cooperative Deep RL:

- Generalization of tit-for-tat with deep RL [Lerer & Peysakhovich, 2017]
- Investigation of pro-social Learners in generalised stag hunt [Peysakhovich & Lerer, 2017]
- Emergence of cooperation and competition [Leibo et al, 2017]
- Centralized actor-critic for training [Lowe et al, 2017]

Opponent modeling:

- fictitious play [Brown, 1951],
- action prediction [Mealing & Shapiro, 2013]

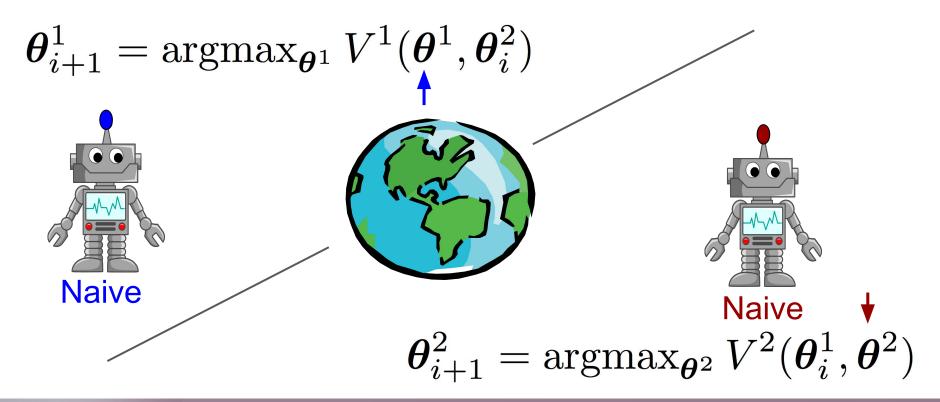
Opponent learning:

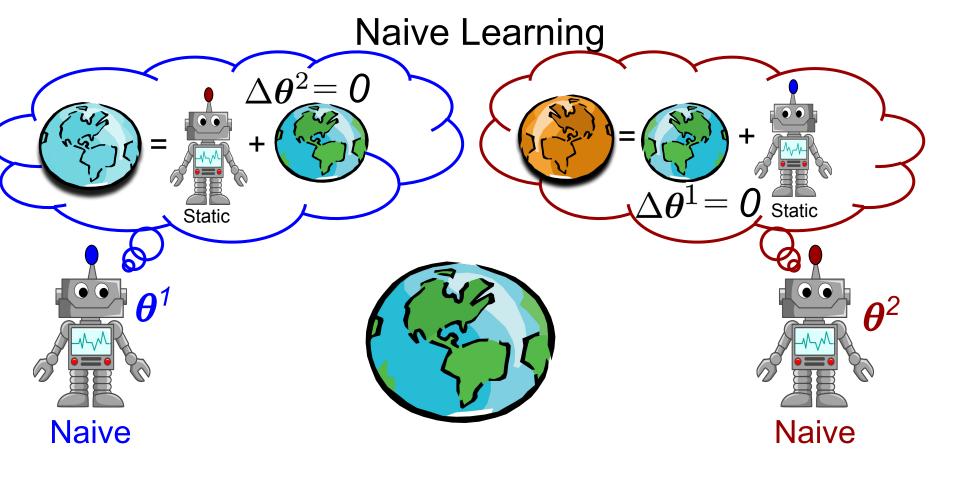
- Policy prediction under one-step learning dynamics [Zhang & Lester, 2017]
- Unrolled GAN [Metz et al, 2016] differentiates through opponent's update steps

Human-Machine Interaction:

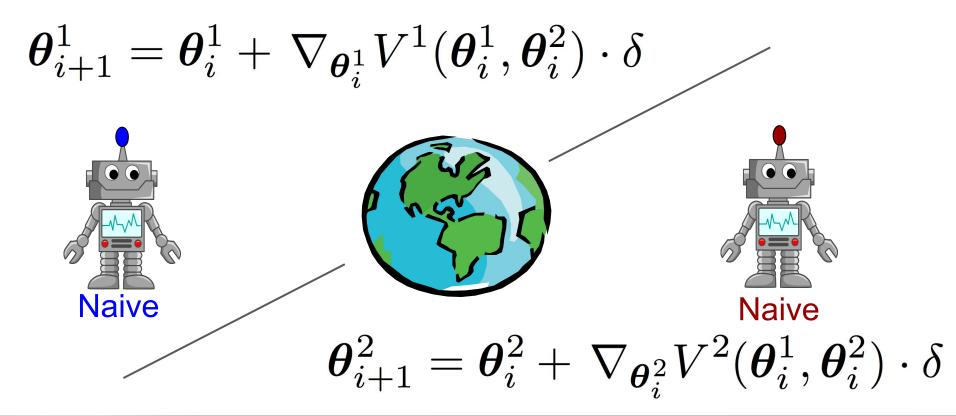
• "Planning for Autonomous Cars that Leverage Effects on Human Action" [Sadigh et al, 2016]

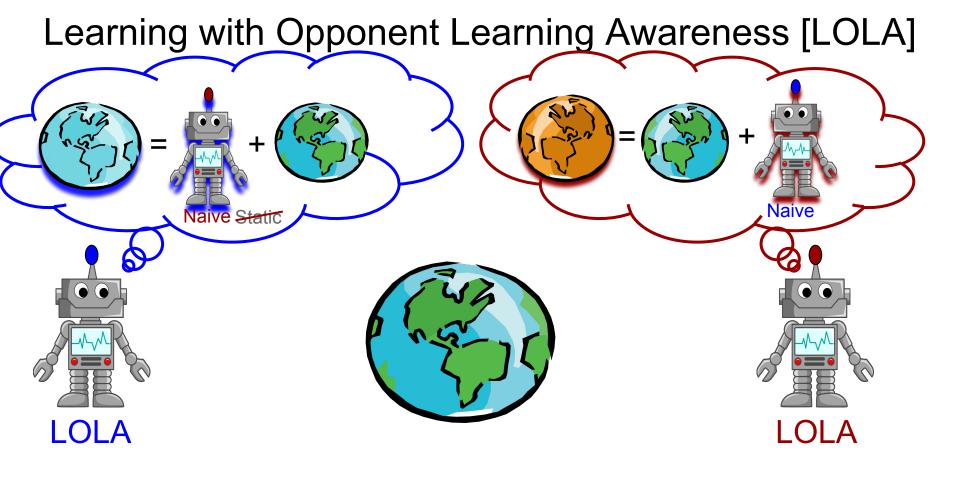
Naive Learning





Naive Learning with Gradients





LOLA with Gradients $\Delta \boldsymbol{\theta}^2 = \nabla_{\boldsymbol{\theta}_i^2} V^2(\boldsymbol{\theta}_i^1, \boldsymbol{\theta}_i^2)$ Naive С $\boldsymbol{\theta}_{i+1}^1 = \boldsymbol{\theta}_i^1 + \nabla_{\boldsymbol{\theta}_i^1} V^1(\boldsymbol{\theta}^1, \boldsymbol{\theta}^2 + \Delta \boldsymbol{\theta}^2) \cdot \delta$ $V^1(\boldsymbol{\theta}^1, \boldsymbol{\theta}^2 + \Delta \boldsymbol{\theta}^2) \approx$ $V^1(\boldsymbol{\theta}^1, \boldsymbol{\theta}^2) + (\Delta \boldsymbol{\theta}^2)^T \nabla_{\boldsymbol{\theta}^2} V^1(\boldsymbol{\theta}^1, \boldsymbol{\theta}^2)$ LOLA

LOLA Maths

Optimize Return after one step of opponent learning: $V^{1}(\boldsymbol{\theta}^{1}, \boldsymbol{\theta}^{2} + \Delta \boldsymbol{\theta}^{2}) \approx V^{1}(\boldsymbol{\theta}^{1}, \boldsymbol{\theta}^{2}) + (\Delta \boldsymbol{\theta}^{2})^{T} \nabla_{\boldsymbol{\theta}^{2}} V^{1}(\boldsymbol{\theta}^{1}, \boldsymbol{\theta}^{2})$ $\Delta \boldsymbol{\theta}^2 = \nabla_{\boldsymbol{\theta}^2} V^2(\boldsymbol{\theta}^1, \boldsymbol{\theta}^2) \cdot \boldsymbol{\eta}$ LOLA learning rule: $f_{\text{lol}a}^1(\theta^1, \theta^2) = \nabla_{\theta^1} V^1(\theta^1, \theta^2)$ + $\left(\nabla_{\theta^2} V^1(\theta^1, \theta^2)\right)^T \nabla_{\theta^1} \nabla_{\theta^2} V^2(\theta^1, \theta^2) \cdot \delta\eta$

> Health warning: This requires access to true value function and derivatives

> > 14/30

LOLA Policy Gradient

Can use Policy Gradients to estimate all gradients

$$\begin{split} \boldsymbol{f}_{\text{lola, pg}}^{1} &= \nabla_{\boldsymbol{\theta}^{1}} \mathbb{E} R_{0}^{1}(\tau) \cdot \delta + \\ \left(\nabla_{\boldsymbol{\theta}^{2}} \mathbb{E} R_{0}^{1}(\tau) \right)^{T} \nabla_{\boldsymbol{\theta}^{1}} \nabla_{\boldsymbol{\theta}^{2}} \mathbb{E} R_{0}^{2}(\tau) \cdot \delta \eta. \end{split}$$

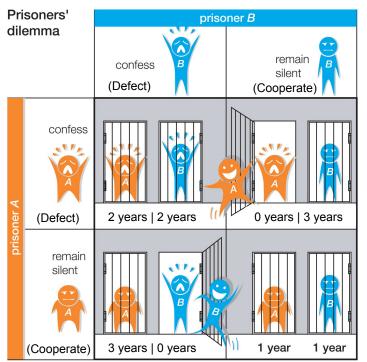
LOLA term is still tractable and exact (in expectation):

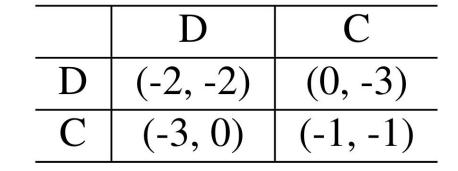
$$\nabla_{\theta^1} \nabla_{\theta^2} \mathbb{E} R_0^2(\tau)$$

$$= \mathbb{E} \left[R_0^2(\tau) \nabla_{\theta^1} \log \pi^1(\tau) (\nabla_{\theta^2} \log \pi^2(\tau))^T \right]$$

$$= \mathbb{E} \left[\sum_{t=0}^T \gamma^t r_t^2 \cdot \left(\sum_{l=0}^t \nabla_{\theta^1} \log \pi^1(u_l^1 | s_l) \right) \left(\sum_{l=0}^t \nabla_{\theta^2} \log \pi^2(u_l^2 | s_l) \right)^T \right]$$

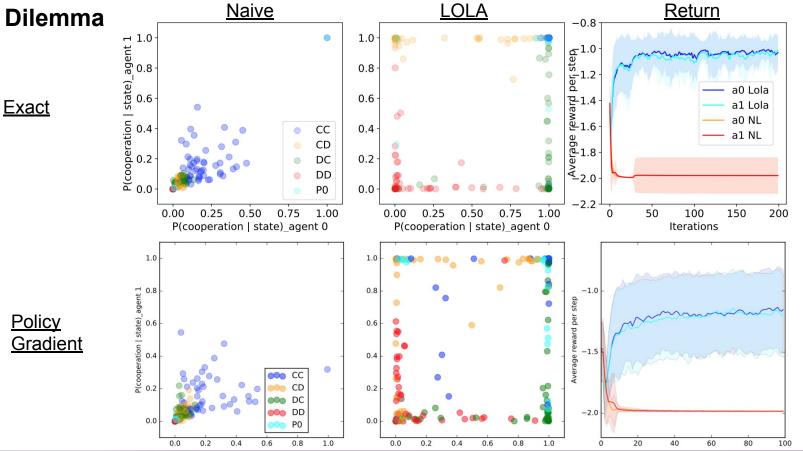
Prisoners Dilemma





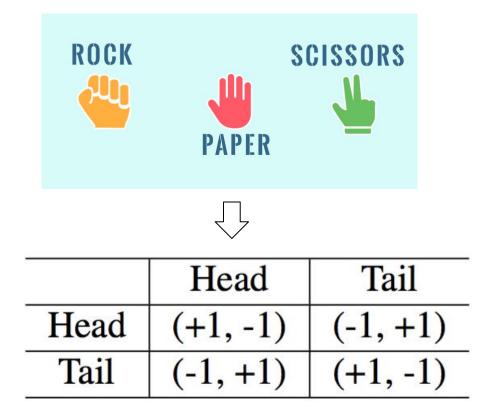
© 2010 Encyclopædia Britannica, Inc.

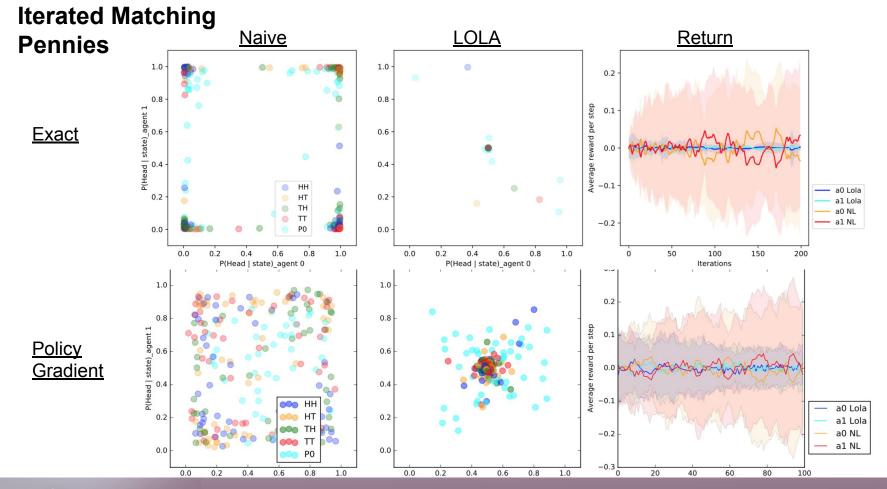
Iterated Prisoner's



OpenAI

Matching Pennies



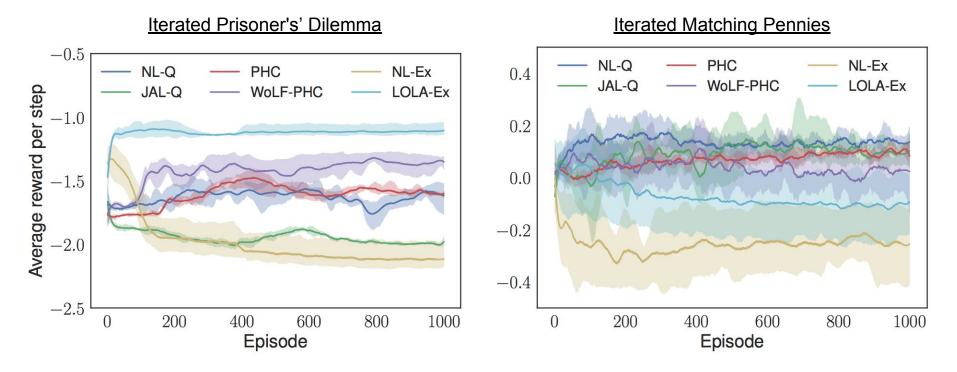


OpenAI

Results

	IPD		IMP	
	%TFT	R(std)	%Nash	R(std)
NL-Ex.	20.8	-1.98(0.14)	0.0	0(0.37)
LOLA-Ex.	81.0	-1.06(0.19)	98.8	0(0.02)
NL-PG	20.0	-1.98(0.00)	13.2	0(0.19)
LOLA-PG	66.4	-1.17(0.34)	93.2	0(0.06)

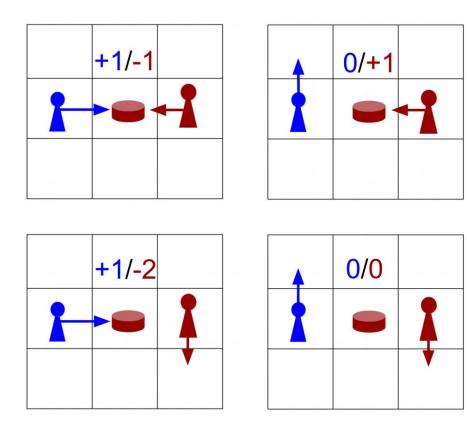
Round Robin Tournament



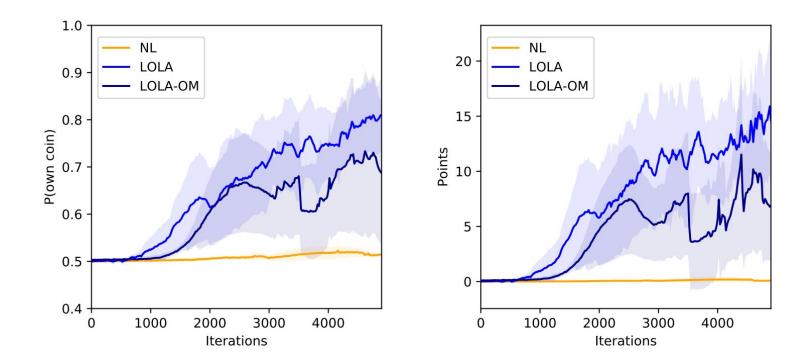
LOLA with Opponent Modelling (LOLA-OM)

$$egin{aligned} & heta^2 & \Longrightarrow & \hat{ heta}^2 \ \hat{ heta}^2 = rgmax_{ heta^2} \sum_t \log \pi^2_{ heta^2}(u_t^2|s_t) \end{aligned}$$

LOLA with Recurrent Deep RL



LOLA with Recurrent Deep RL



LOLA with Recurrent Deep RL

Higher Order LOLA

LOLA Naive

┿

2nd Order

LOLA

⑤ OpenAI

╈

LOLA

2nd Order

LOLA

Higher Order LOLA results

	NL	1st order	2nd Order
NL	(-1.99, -1.99)	(-1.54, -1.28)	-
1st	(-1.28, -1.54)	(-1.04, -1.04)	(-1.14, -1.17)

LOLA Open Challenges

- Unknown update rules?
- Adversarial update rules?
- Proofs

LOLA Conclusion

- State of the art Deep-MARL methods lead to defection
- LOLA leads to emergent reciprocity
- Cooperation arises out of selfish interest, considering learning of the opponent
- Works both in an exact setting and in Deep RL using policy gradients

Acknowledgements

