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A human being is a part of a whole, called by us
“universe”, a part limited in time and space.
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Large-scale Time Series Data Arise in Many Disciplines
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Machine Learning from Large-scale Time Series
Observations

Developing scalable and effective solutions by leveraging recent progresses
across disciplines

• Temporal dependence discovery [KDD 2007, KDD 2009 (a,b), ISMB 2009, AAAI

2010, SDM 2012, ICML 2012, SDM 2013, KDD 2014, ICML 2015]

• Time series and spatial time series models [ICML 2010, CSB 2010, KDD 2013,

NIPS 2014, ICML 2015, ICML 2016, NIPS 2016]

• Time series anomaly detection [SDM 2011, ICDM 2012, KDD 2014]

• Time series representation learning [AMIA workshop 2014, KDD 2015, AMIA 2015,

AMIA 2016, ICLR 2017]

• Time series hashing [ICDM 2014]

• Time series clustering [ICML 2015]
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Celebration for Tenure
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What is NEXT?
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Time Series in Critical Care Unit (ICU)

Critical care is among the most important areas of medicine.

• >5 million patients admitted to US ICUs annually.1

• Cost: $81.7 billion in US in 2005: 13.4% hospital costs, ∼1% GDP.1

• Mortality rates up to 30%, depending on condition, care, age.1

• Long-term impact: physical impairment, pain, depression.

1Society of Critical Care Medicine website, Statistics page.
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Deep Learning for Smart ICU

Collaborators:

David Sontag Kyunghyun Cho
(MIT) (NYU)

Tasks:

• Mortality prediction

• Ventilator free days

• Disease code

Yan Liu (USC) Deep Health 8 / 34



Deep Learning for Better Care of Diabetes Patients
Wearable devices provide large scale time series data regarding human
activities, vital signs, environments, and real-time blood sugar levels.

Collaborators:

Tasks:

• Blood sugar hike prediction

• Intervention strategies
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Deep Learning for Cancer Research
Cancer Moonshot projects: Time series data:

Collaborator:

Tasks:

• Overall survival prediction for cancer patients
• Survival prediction after recurrence
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Deep Learning for Opioid Addiction and Adverse Effect
Analysis

Opioid use study on datasets from the Rochester Epidemiology Project
(REP)2 with more than 140k people

• To extract and understand risk factors and
indicators for adverse opioid and opioid-related
events

• To predict new opioid users and dependence
and recognize misuse on opioid analgesics

• To provide health care providers with better
suggestions on pain medication prescriptions

Collaborators:

2
http://rochesterproject.org/
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Deep Learning for Smart ICU - Dataset and Tasks

Children’s Hospital Los Angeles (CHLA)
398 patients stay > 3 days
Static features (age, weight, etc.): 27 variables
Temporal features (Blood gas, ventilator signals,injury markers, etc.): 21
variables
MIMIC III Dataset
19714 patients stay for 2 days
All temporal features (input fluids, output fluids, lab tests, prescription):
99 variables
PhysioNet Challenge Part of MIMIC II dataset

Task Prediction task (mortality, ventilator free days, and disease code),
computational phenotyping, anomaly detection
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Example of Health Care Data

Example 1:

Example 2:

How are health care data
different from the data from
existing applications of deep
learning?

• Privacy, privacy!

• Heterogeneity

• Lots lots of missing data

• Big small data

• Worst of all: doctors do not
believe anything they cannot
understand no matter how
cool and how deep they are!!

Yan Liu (USC) Deep Health 13 / 34



Road Map

• Heterogeneity
Deep computational phenotyping [SIGKDD 2015, AMIA 2015]

• Missing data
Gated recurrent neural networks for missing data [aXriv 2016]

• Big small data
Variational recurrent adversarial deep domain adaptation [ICLR 2017]

• Interpretation
Interpretable deep models for ICU outcome prediction [AMIA 2016]
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Deep learning model: DNN + GRU
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Experiment Results
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Related Work

Stacked Auto-encoder (SDA)
Computational phenotyping [Lasko et al.,
2013, Miotto et al., 2016]

Deep neural networks (DNNs)
Restricted Boltzmann machine (RBM)
Multi-layer perceptron (MLP)
Condition prediction [Dabek, Caban, 2015;
Hammerla et al., 2015]

Recurrent neural networks (RNNs)
Long short-term memory (LSTM) Gated
recurrent unit (GRU)
Diagnosis/event prediction [Lipton et al.,
2015; Choi et al., 2015]
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Motivation

Limited amount of data across age groups

• Studies have shown age is a factor for survival in a medical ICU
[Critical Care Med. 1983]

• Pediatricians catch phrase - Children are not little adults.
• However, medical care for children is based on adults [American

Journal of Respiratory and Critical Care Medicine, 2010]

Target Model Trained on Adult Model trained on Children

Children 0.56 0.70

• Training models for each age group not ideal
• Small target dataset
• Difficult to get labels

Question: How do we adapt models from Adults (source domain) to
Children (target domain)?
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Problem Formulation

Problem: unsupervised domain adaptation for multivariate time
series
Case study: acute hypoxemic respiratory failure

Our Solution:
Deep learning model with Adversarial training and Variational methods

Domain invariant representation while transferring temporal dependencies
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Variational Adversarial Deep Domain Adaptation
(VADDA) [ICLR 2017]

VRNN Objective Function
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Experiments
Case Study: Acute Hypoxemic Respiratory Failure

• Datasets
• Pediatric ICU: Child-AHRF

• 398 patients at Children’s Hospital Los Angeles (CHLA) Group 1:
children (0-19 yrs)

• MIMIC-III : Adult-AHRF
• 5527 patients Group 2: working-age adult (20 to 45 yrs); Group 3: old

working-age adult (46 to 65 yrs, Group 4: elderly (66 to 85 yrs); Group
5: old elderly (> 85 yrs)

• Data Temporal variables - 21 (Blood gas, ventilator signals, injury
markers, etc.) for 4 days

• Prediction tasks - Mortality label

• Comparison
• Non-domain adaptation: Logistic regression, Adaboost, Deep Neural

Networks
• Deep Domain adaptation: DANN (JMLR 2016), R-DANN, VFAE

(ICLR 2016)

Yan Liu (USC) Deep Health 22 / 34



Preliminary Results
AUC Comparison for AHRF Mortality Prediction task with and
without Domain Adaptation

Source-Target LR Adaboost DNN DANN VFAE R-DANN VRDDA
3- 2 0.555 0.562 0.569 0.572 0.615 0.603 0.654
4- 2 0.624 0.645 0.569 0.589 0.635 0.584 0.656
5- 2 0.527 0.554 0.551 0.540 0.588 0.611 0.616
2- 3 0.627 0.621 0.550 0.563 0.585 0.708 0.724
4- 3 0.681 0.636 0.542 0.527 0.722 0.821 0.770
5- 3 0.655 0.706 0.503 0.518 0.608 0.769 0.782
2- 4 0.585 0.591 0.530 0.560 0.582 0.716 0.777
3- 4 0.652 0.629 0.531 0.527 0.697 0.769 0.764
5- 4 0.689 0.699 0.538 0.532 0.614 0.728 0.738
2- 5 0.565 0.543 0.549 0.526 0.555 0.659 0.719
3- 5 0.576 0.587 0.510 0.526 0.533 0.630 0.721
4- 5 0.682 0.587 0.575 0.548 0.712 0.747 0.775

5- 1 0.502 0.573 0.557 0.563 0.618 0.563 0.639
4- 1 0.565 0.533 0.572 0.542 0.668 0.577 0.636
3- 1 0.500 0.500 0.542 0.535 0.570 0.591 0.631
2- 1 0.520 0.500 0.534 0.559 0.578 0.630 0.637

VADDA mostly outperforms all domain adaptation and non-domain adaptation
models

Yan Liu (USC) Deep Health 23 / 34



Domain-invariant representations

t-SNE projections for the latent representations for domain adaptation from Adult-AHRF to
Child-AHRF

VADDA has better distribution mixing than DANN
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Temporal dependencies Visualization

Memory cell state neuron activations of the R-DANN and VADDA

Activation patterns of VADDA are more consistent across time-steps than for
R-DANN
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Road Map

• Heterogeneity
Deep computational phenotyping [SIGKDD 2015, AMIA 2015]

• Missing data
Gated recurrent neural networks for missing data [aXriv 2016]

• Big small data
Variational recurrent adversarial deep domain adaptation [ICLR 2017]

• Interpretation
Interpretable deep models for ICU outcome prediction [AMIA 2016]
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Deep learning model: DNN + GRU
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Interpretable Model is Necessary

Interpretable predictive models are shown to result in faster adoptability
among clinical staff and better quality of patient care.

• Simple and commonly use models

• Easy to interpret, mediocre
performance

• Deep learning solutions

• Superior performance, hard to
explain

Can we learn interpretable models with robust prediction performance?
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Interpretable Mimic Learning Framework

• Main ideas:
• Borrow the ideas from knowledge distillation [Hinton, et al., 2015]

and mimic learning [Ba, Caruana, 2014].
• Use Gradient Boosting Trees (GBTs) to mimic deep learning

models.

• Training Pipeline:

• Benefits: Good performance, less overfitting, interpretations.
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Quantitative Evaluation

AUROC score of prediction on patients with acute hypoxemic respiratory failure.

AUROC score of 20 ICD-9 diagnosis category prediction tasks on MIMIC-III dataset.
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Model/Feature Interpretation

Partial dependency plot for mortality prediction on patients with acute
hypoxemic respiratory failure.

7.100 7.325 7.550
PH-D1

0.02

0.00

0.02

0.04

0.06

0.08 • pH value in blood should stay in a normal range
around 7.35-7.45.

• Our model predicts a higher mortality change
when the patient pH value below 7.325.

Most Useful Decision Trees for ventilator free days prediction.
OI-D1 <= 10.927

S = 100.0%

LIS-D0 <= 2.8333
S = 82.4%

True

DeltaPF-D2 <= -89.042
S = 17.6%

False

BE-D1 <= -5.9335
S = 64.8%

MAP-D1 <= 13.6886
S = 17.6%

% = 0.400
S = 6.0%

V = -0.1921

% = 0.762
S = 58.8%
V = 0.204

% = 0.846
S = 3.5%

V = 0.2104

% = 0.393
S = 14.2%

V = -0.3013

PaO2-D0 <= 50.5
S = 4.4%

LeakPer <= 0.1669
S = 13.2%

% = 0.125
S = 2.5%

V = -0.3634

% = 0.583
S = 1.9%

V = -0.0715

% = 0.200
S = 12.6%

V = -0.4922

% = 0.000
S = 0.6%

V = -0.1118

Useful features:

• Lung injury score

• Oxygenation index

• PF ratio change
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AI for Health Care - in Hollywood Movie
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AI for Health Care - in Practical World
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Thank You!
Questions and Comments?
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