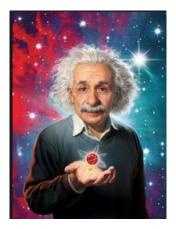
Deep Learning Models for Time Series Data Analysis with Applications to Health Care

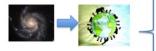
Yan Liu

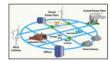
Computer Science Department University of Southern California Email: yanliu@usc.edu

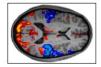


A human being is a part of a whole, called by us "universe", a part limited in time and space.

Large-scale Time Series Data Arise in Many Disciplines







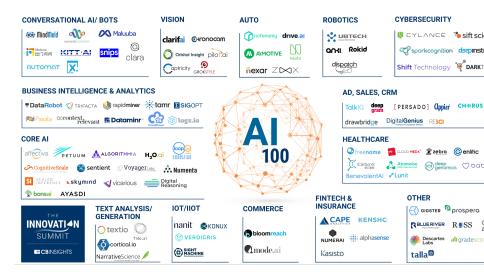
Machine Learning from Large-scale Time Series Observations

Developing scalable and effective solutions by leveraging recent progresses across disciplines

- Temporal dependence discovery [KDD 2007, KDD 2009 (a,b), ISMB 2009, AAAI 2010, SDM 2012, ICML 2012, SDM 2013, KDD 2014, ICML 2015]
- Time series and spatial time series models [ICML 2010, CSB 2010, KDD 2013, NIPS 2014, ICML 2015, ICML 2016, NIPS 2016]
- Time series anomaly detection [SDM 2011, ICDM 2012, KDD 2014]
- Time series representation learning [AMIA workshop 2014, KDD 2015, AMIA 2015, AMIA 2016, ICLR 2017]
- Time series hashing [ICDM 2014]
- Time series clustering [ICML 2015]

Celebration for Tenure

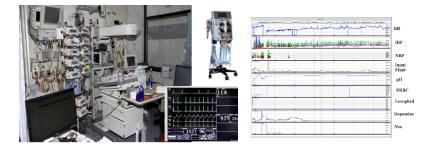
What is NEXT?



Time Series in Critical Care Unit (ICU)

Critical care is among the most important areas of medicine.

- \bullet >5 million patients admitted to US ICUs annually.¹
- Cost: \$81.7 billion in US in 2005: 13.4% hospital costs, $\sim 1\%$ GDP.¹
- Mortality rates up to 30%, depending on condition, care, age.¹
- Long-term impact: physical impairment, pain, depression.



¹Society of Critical Care Medicine website, Statistics page.

Yan Liu	

Deep Learning for Smart ICU

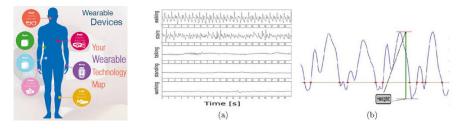
David Sontag (MIT) Kyunghyun Cho (NYU)

Tasks:

- Mortality prediction
- Ventilator free days
- Disease code

Deep Learning for Better Care of Diabetes Patients

Wearable devices provide large scale time series data regarding human activities, vital signs, environments, and real-time blood sugar levels.



Collaborators:

Keck School of Medicine of USC

Tasks:

- Blood sugar hike prediction
- Intervention strategies

Deep Learning for Cancer Research Cancer Moonshot projects: Time series data:

NVIDIA Teams with National Cancer Institute, U.S. Department of Energy to Create AI Platform for Accelerating Cancer Research Mode, Womber 14, 2016

'CANDLE' AI Software to Deliver a Decade of Cancer Advances in Just Five Years

NVIDIA today announced that it is teaming up with the National Cancer Institute, the U.S. Department of Energy (DOE) and several national laboratories on an initiative to accelerate cancer research.

The indicities — income as the Cancer Mooreholt, amounced by President Barcak Okama during Ho 2016 State of the Union Address, and led by Yuce President Joseph Bilen — aims to deltrer a decade of advances in cancer prevention, diagnosis and treatment in just They years. The research efforts include a focus on building an Af Immersek alleld CANDL (Cancer Distributed Learning Turriomment), which will provide a common discovery Jadiom that brings the power of all to the fight against concer.

CANDLE will be the first AI framework designed to change the way we understand cancer, providing data scientists around the world with a powerful tool against this disease.

Collaborator:

Clinical Data

Cancer cell microscopy data

Features extracted from cancer cell images

					riter, test, t				
		(Fignal			13/56				
		Climal			9,763.85				
		(C)Canal			13,743.3				
					2,634,72				
		CTC			29172				

Tasks:

- Overall survival prediction for cancer patients
- Survival prediction after recurrence

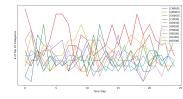
Yan Liu (USC)

Deep Health

Deep Learning for Opioid Addiction and Adverse Effect Analysis

Opioid use study on datasets from the Rochester Epidemiology Project $({\sf REP})^2$ with more than 140k people

- To extract and understand risk factors and indicators for adverse opioid and opioid-related events
- To predict new opioid users and dependence and recognize misuse on opioid analgesics
- To provide health care providers with better suggestions on pain medication prescriptions



²http://rochesterproject.org/

Deep Learning for Smart ICU - Dataset and Tasks

Children's Hospital Los Angeles (CHLA)

398 patients stay > 3 days Static features (age, weight, etc.): 27 variables Temporal features (Blood gas, ventilator signals,injury markers, etc.): 21 variables

MIMIC III Dataset

19714 patients stay for 2 days

All temporal features (input fluids, output fluids, lab tests, prescription): 99 variables

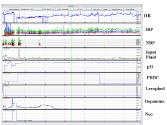
PhysioNet Challenge Part of MIMIC II dataset

Task Prediction task (mortality, ventilator free days, and disease code), computational phenotyping, anomaly detection

Example of Health Care Data

	Example 1:																									
				44	-	**			A5 A7 1					12	84	80	*		×		85			84	64	
	D -	1841-	FICE -	IMPL	1 PP	- PEEPS	1.95	E M	Winds Canton I Co	8 0 0 0	661	162.5	I BEALT	061	(652 -	[(85)]	160021	NO2-	FKW2 -	HOUSE	HOUL	bcom-	100.01	MAP2 -	MAP2 -	194
		2/4 444					202	295	12 9000 4 03777																	
					28		222	262																		
	25		6 60000		28		32	32	2,85274,8	1 17 7215										18.83						20
	- 54		0 11000				400	435	2 T29 W 8 6343N	1.5.8235																
		195.559					35	×	2 8.62577.	1.352954				1.99425				4 9929						115423		
		253 399					122	132	126578 141575	0.383652				8.395394			0.0456				\$ 29, 3506					
							36	30	4.0525 1.07004	1.540545																
							77																			
10	61		€ 60000		26		422	100	4 806097 -4 04287	0.9.63022												28.8592				91
10		355 999			18		180	110	9-8210M 8-06262	1 3 26530												22.3016				
11	478	25		18	38		130	130	9 79/02/10	0.62.0689																
		155 599			22		58	-66	2.663338 8.121212	0.4 09999																
		857499					290	125	2.15 4.009.00									0.0049							M CARL	
		171.438					68	a	£ 042-00 £ 640455	0.4 60000							0.54999					27.45%				
							8	55	4.255792 8.64306																	
		172,492					260	290	6 075621 8 900648	0.575710																
			£ 400000		26		299	290	5 800471 B	1.9.67541						9.46339										
	81	62		20	32	12	323	129	3 19712 8 61822	1 32 2980							O ROUGH				26.9904					
	20	58		75	32		479	450	K 07112 4 06444	1 25 8620																
	27	10			32		314	363	2 255825 8 115588	1 747964																
	250	155749			34		155	154	\$2,04000 8,645484	0.15,8555							04430									
							522	350	4 96/83 8.66	1.1974(2)																
		\$4,5000					54	- 29	2.50000 8.004742	0.147667								0.09948								
		462631			28	10	110	200	6 13028 8.615	1 15 3225																
	601	65		28	32	54	74	74	100000	1 39 3630							074269								76 1207.	
31	105		¢ 20000		28		190	110	2.687197.8	1 4.7110							ONTUT				23.675			10-826 T		90.
		14 1997		22	38	15	11	78	3 33332 8 64064	1 23 9118											22 4141					72.
	472	57		27	41	29	87	87	5.55278.8	1 47 3684																

Example 2:



How are health care data different from the data from existing applications of deep learning?

- Privacy, privacy!
- Heterogeneity
- Lots lots of missing data
- Big small data
- Worst of all: doctors do not believe anything they cannot understand no matter how cool and how deep they are!!

Road Map

• Heterogeneity

Deep computational phenotyping [SIGKDD 2015, AMIA 2015]

• Missing data

Gated recurrent neural networks for missing data [aXriv 2016]

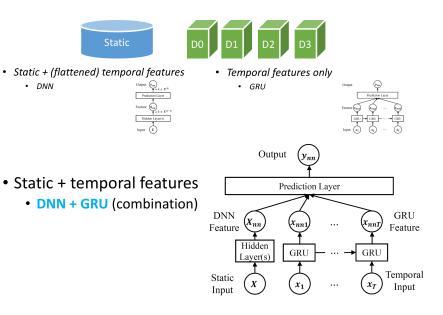
• Big small data

Variational recurrent adversarial deep domain adaptation [ICLR 2017]

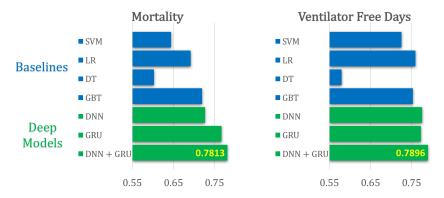
• Interpretation

Interpretable deep models for ICU outcome prediction [AMIA 2016]

Deep learning model: DNN + GRU



Experiment Results



SVM: support vector machine;LR: logistic regression;DT: decision tree;GBT: gradient boosting tree.Results are based on 5-fold cross-validation.

Related Work

Stacked Auto-encoder (SDA)

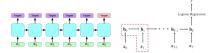
Computational phenotyping [Lasko et al., 2013, Miotto et al., 2016]

Deep neural networks (DNNs)

Restricted Boltzmann machine (RBM) Multi-layer perceptron (MLP) Condition prediction [Dabek, Caban, 2015; Hammerla et al., 2015]

Recurrent neural networks (RNNs)

Long short-term memory (LSTM) Gated recurrent unit (GRU) Diagnosis/event prediction [Lipton et al., 2015; Choi et al., 2015]



Road Map

• Heterogeneity

Deep computational phenotyping [SIGKDD 2015, AMIA 2015]

• Missing data

Gated recurrent neural networks for missing data [aXriv 2016]

• Big small data

Variational recurrent adversarial deep domain adaptation [ICLR 2017]

• Interpretation

Interpretable deep models for ICU outcome prediction [AMIA 2016]

Motivation

Limited amount of data across age groups

- Studies have shown age is a factor for survival in a medical ICU [Critical Care Med. 1983]
- Pediatricians catch phrase Children are not little adults.
 - However, medical care for children is based on adults [American Journal of Respiratory and Critical Care Medicine, 2010]

Target	Model Trained on Adult	Model trained on Children
Children	0.56	0.70

- Training models for each age group not ideal
 - Small target dataset
 - Difficult to get labels

Question: How do we adapt models from Adults (source domain) to Children (target domain)?

Problem Formulation

Problem: unsupervised domain adaptation for multivariate time series

Case study: acute hypoxemic respiratory failure

Our Solution:

Deep learning model with Adversarial training and Variational methods

Domain invariant representation while transferring temporal dependencies

Variational Adversarial Deep Domain Adaptation (VADDA) [ICLR 2017]

VRNN Objective Function

 $\mathcal{L}_{r}(x_{t}^{i};\theta_{\varepsilon},\theta_{g}) = E_{q_{\theta_{\varepsilon}}(z_{\leq T^{i}}^{i}|x_{\leq T^{i}}^{i})} \sum_{t=1}^{T^{i}} (-D(q_{\theta_{\varepsilon}}(z_{t}^{i}|x_{\leq t}^{i}, z_{\leq t}^{i}))|p(z_{t}^{i}|x_{< t}^{i}, z_{< t}^{i})) + \log p_{\theta_{g}}(x_{t}^{i}|z_{\leq t}^{i}, x_{< t}^{i}))$

Source Classification Loss with regularizer

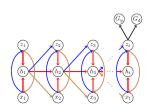
$$\min_{\theta_e, \theta_g, \theta_y} \frac{1}{n} \sum_{i=1}^n \frac{1}{T^i} \mathcal{L}_r(\mathbf{x}^i; \theta_e, \theta_g) + \frac{1}{n} \sum_{i=1}^n \mathcal{L}_y(\mathbf{x}^i; \theta_y, \theta_e) + \lambda \mathcal{R}(\theta_e)$$

Domain Regularizer

$$\mathcal{R}(\theta_e) = \max_{\theta_d} \left[-\frac{1}{n} \sum_{i=1}^n \mathcal{L}_d(\mathbf{x}^i; \theta_d, \theta_e) - \frac{1}{n'} \sum_{i=n+1}^N \mathcal{L}_d(\mathbf{x}^i; \theta_d, \theta_e) \right]$$

Overall Objective Function

$$E(\theta_e, \theta_g, \theta_y, \theta_d) = \frac{1}{N} \sum_{i=1}^N \frac{1}{T^i} \mathcal{L}_r(\mathbf{x}^i; \theta_e, \theta_g) + \frac{1}{n} \sum_{i=1}^n \mathcal{L}_y(\mathbf{x}^i; \theta_y) - \lambda(\frac{1}{n} \sum_{i=1}^n \mathcal{L}_d(\mathbf{x}^i; \theta_d) + \frac{1}{n'} \sum_{i=n+1}^N \mathcal{L}_d(\mathbf{x}^i; \theta_d)))$$



Experiments

Case Study: Acute Hypoxemic Respiratory Failure

- Datasets
 - Pediatric ICU: Child-AHRF
 - 398 patients at Children's Hospital Los Angeles (CHLA) Group 1: children (0-19 yrs)
 - MIMIC-III : Adult-AHRF
 - 5527 patients Group 2: working-age adult (20 to 45 yrs); Group 3: old working-age adult (46 to 65 yrs, Group 4: elderly (66 to 85 yrs); Group 5: old elderly (> 85 yrs)
- Data Temporal variables 21 (Blood gas, ventilator signals, injury markers, etc.) for 4 days
- Prediction tasks Mortality label
- Comparison
 - Non-domain adaptation: Logistic regression, Adaboost, Deep Neural Networks
 - Deep Domain adaptation: DANN (JMLR 2016), R-DANN, VFAE (ICLR 2016)

Preliminary Results

AUC Comparison for AHRF Mortality Prediction task with and without Domain Adaptation

Source-Target	LR	Adaboost	DNN	DANN	VFAE	R-DANN	VRDDA
3-2	0.555	0.562	0.569	0.572	0.615	0.603	0.654
4-2	0.624	0.645	0.569	0.589	0.635	0.584	0.656
5-2	0.527	0.554	0.551	0.540	0.588	0.611	0.616
2-3	0.627	0.621	0.550	0.563	0.585	0.708	0.724
4-3	0.681	0.636	0.542	0.527	0.722	0.821	0.770
5-3	0.655	0.706	0.503	0.518	0.608	0.769	0.782
2-4	0.585	0.591	0.530	0.560	0.582	0.716	0.777
3-4	0.652	0.629	0.531	0.527	0.697	0.769	0.764
5-4	0.689	0.699	0.538	0.532	0.614	0.728	0.738
2-5	0.565	0.543	0.549	0.526	0.555	0.659	0.719
3-5	0.576	0.587	0.510	0.526	0.533	0.630	0.721
4-5	0.682	0.587	0.575	0.548	0.712	0.747	0.775
5-1	0.502	0.573	0.557	0.563	0.618	0.563	0.639
4-1	0.565	0.533	0.572	0.542	0.668	0.577	0.636
3-1	0.500	0.500	0.542	0.535	0.570	0.591	0.631
2-1	0.520	0.500	0.534	0.559	0.578	0.630	0.637

VADDA mostly outperforms all domain adaptation and non-domain adaptation models

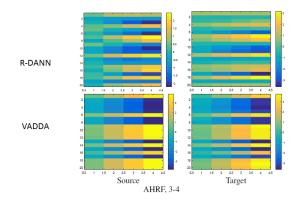
Yan Liu (USC)

Domain-invariant representations

t-SNE projections for the latent representations for domain adaptation from Adult-AHRF to Child-AHRF

VADDA has better distribution mixing than DANN

Temporal dependencies Visualization



Memory cell state neuron activations of the R-DANN and VADDA

Activation patterns of VADDA are more consistent across time-steps than for $$\operatorname{R}\xspace{-}\operatorname{PANN}$$

Yan Liu	(USC)	
---------	-------	--

Road Map

• Heterogeneity

Deep computational phenotyping [SIGKDD 2015, AMIA 2015]

• Missing data

Gated recurrent neural networks for missing data [aXriv 2016]

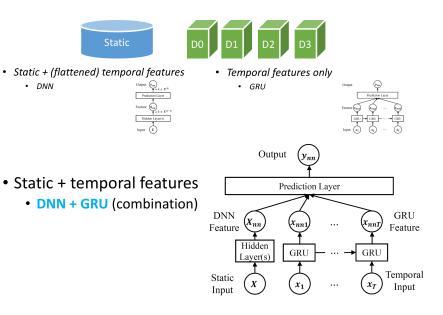
• Big small data

Variational recurrent adversarial deep domain adaptation [ICLR 2017]

• Interpretation

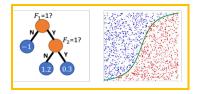
Interpretable deep models for ICU outcome prediction [AMIA 2016]

Deep learning model: DNN + GRU

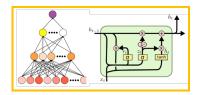


Interpretable Model is Necessary

Interpretable predictive models are shown to result in faster adoptability among clinical staff and better quality of patient care.



- Simple and commonly use models
- Easy to interpret, mediocre performance

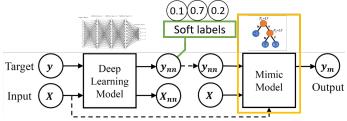


- Deep learning solutions
- Superior performance, hard to explain

Can we learn interpretable models with robust prediction performance?

Interpretable Mimic Learning Framework

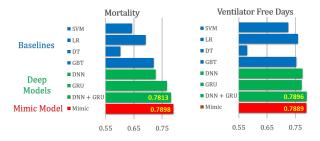
- Main ideas:
 - Borrow the ideas from knowledge distillation [Hinton, et al., 2015] and mimic learning [Ba, Caruana, 2014].
 - Use Gradient Boosting Trees (GBTs) to mimic deep learning models.
- Training Pipeline:



• Benefits: Good performance, less overfitting, interpretations.

Quantitative Evaluation

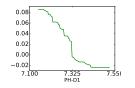
AUROC score of prediction on patients with acute hypoxemic respiratory failure.



AUROC score of 20 ICD-9 diagnosis category prediction tasks on MIMIC-III dataset.

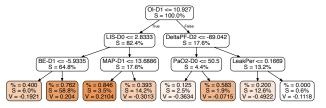
Model/Feature Interpretation

Partial dependency plot for mortality prediction on patients with acute hypoxemic respiratory failure.



- pH value in blood should stay in a normal range around 7.35-7.45.
- Our model predicts a higher mortality change when the patient pH value below 7.325.

Most Useful Decision Trees for ventilator free days prediction.



Useful features:

- Lung injury score
- Oxygenation index
- PF ratio change

AI for Health Care - in Hollywood Movie

Al for Health Care - in Practical World

Thank You! Questions and Comments?