
Richard Bramley, 5/11/2017

FUNCTIONAL SAFETY AND THE 
GPU



2

AGENDA

How good is good enough

What is functional safety

Functional safety and the GPU

Safety support in Nvidia GPU

Conclusions



3

HOW GOOD IS GOOD ENOUGH ?
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N. Saxena4

ACCIDENT STATISTICS– US1

Description 2013 Statistics 2015 Statistics

Fatal Crashes 30,057 35,092

Non-Fatal Crashes 5,657,000 6,263,834

Number of Registered Vehicles 269,294,000 281,312,446

Licensed Drivers 212,160,000 218,084,465

Vehicle Miles Travelled 2,988,000,000,000 3,095,373,000,000

Fatal Crash Rate in FITs 2,3 250 – 500 283 - 566

Non-Fatal Crash Rate in FITs 2,3 46K – 92K 51K – 102K

What is an appropriate target ?

Google Non-Fatal Crash FIT Rate = 150K

1Source: Traffic Safety Facts 2013/2015, NHTSA document reference DOT HS 812384
2 Derived from NHTSA data on driver related fatal crashes
3Assumes an average speed of 50MPH
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TARGET FAILURE RATES

Description Statistics

Acceptable risk (no further improvement required) 1:1,000,0001

US population (2015) >321,000,000

Traffic deaths 35,092

“Acceptable” deaths as per guidelines 321

Required improvement x100

1 Derived following data from UK health and safety executive publications

Wide variety of targets in industry 
Target risk reduction of 2x to 100x compared to human driver
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SAFETY AND AUTONOMOUS VEHICLES

Safety during intended operation
Safety of the intended function 

(SOTIF ISO/PAS 21448 in 
development)

Safety in presence of a fault
Functional Safety ISO-26262

Algorithms Software Hardware
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FUNCTIONAL SAFETY BASICS
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DEFINITION PER STANDARDS

“Absence of unreasonable risk due to hazards caused by malfunctioning behavior of 
electrical/electronic systems” – ISO 26262-1:2011; 1.51

“Part of overall safety relating to the equipment under control and the equipment 
under control, control system that depends on the correct functioning of the 
electrical/electronic/programmable electronic safety-related systems and other 
risk reduction measures” – IEC 61508-4:2010; 3.1.12
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CLASSIC EXAMPLE

• Consider a motor winding which 
may overheat and cause a hazard.

• Reliability engineering approach 
might design the winding to be 
more resilient to over-temperature 
conditions

• Functional safety engineering 
approach might add a temp sensor 
to detect the over-temperature 
condition and switch off the motor 

IEC 61508-0:2005; 3.1

https://upload.wikimedia.org/wikipedia/commons/0/0f/Stator_Winding_of_a_BLDC_Motor.jpg
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ACHIEVING FUNCTIONAL SAFETY

Systematic and random faults must be considered

Systematic faults mitigated by:

Following compliant process at all stages of development

Monitoring of the complete product lifecycle 

Random faults are mitigated by:

Failure mode analysis to understand the fault behavior of the system

Application of diagnostic measures to detect the failure modes

Transition to the safe state on failure mode detection
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FAIL SAFE

Undetected  Failures

Good 

State

Safe 

State

Detected Failures

m – mission , b- backup, (x), m or b is in repair mode.

Failed

State
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FAIL OPERATIONAL

Undetected  Failures

Good 

State

Failed

State

m – mission , b- backup, (x), m or b is in repair mode.

For full autonomy the initial “safe state” can be a transition to the backup system 

Backup

Detected Failures

Repair

Final 

safe 

state

Detected Failures

Undetected  Failures
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FAULT CLASSIFICATIONS
ISO 26262-10; B.1

All Faults λ

Non-Safety 
Related 

Element λNSR

Safe λS

Safety Related 
Element λSR

Safe λS

Single Point λSPF

Residual λRF

Multi-Point 
Latent λMPF, L

Multi-Point 
Detected λMPF, D

Multi-Point 
Perceived λMPF, P
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SINGLE POINT FAULT METRIC (SPFM)

Shows the percentage of overall single 
point faults which are:

Safety related AND

Safe OR dangerous but detected

λs - safe fault failure rate, can also be expressed as a % (Fsafe) the ration of overall 
possible faults which are safe.
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LATENT FAULT METRIC (LFM)

Shows the percentage of overall multiple 
point faults which are:

Safety related AND

Safe OR dangerous but detected OR 
dangerous but perceived

Customarily limited to scenarios 
considering 2 point independent faults

Primary consideration is fault in mission 
logic combined with fault in safety 
mechanism
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ARCHITECTURAL METRIC TARGETS

ASIL A ASIL B ASIL C ASIL D

SPFM N/A >=90% >=97% >=99%

LFM N/A >=60% >=80% >=90%

All targets are recommendations.  Developers can set their own 
targets based on appropriate argumentation.
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PROBABILISTIC METRICS
Probabilistic Metric for (Random) Hardware Failure (PMHF)

Examines the residual probability of 
violation of safety goal after application 
of diagnostics, in a given time of 
operation.

Some pushback in market due to 
inconsistency between methods used by 
different vendors.

ISO 26262-10:2011; 8.3.3

NOTE:  Multiple versions of equation possible depending on 
conditional probability of failures.  Simplest form shown
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PMHF TARGETS

ASIL A ASIL B ASIL C ASIL D

PMHF N/A 100 FIT 100 FIT 10 FIT

All targets are recommendations.  Developers can set their own 
targets based on appropriate argumentation.
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RELEVANCE TO GPU
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TRADITIONAL CV

EXAMPLES OF SAFETY CRITICAL OPERATION 
ON GPU

Normalize gamma and color

Compute gradients

Weighted voting

Contrast and normalize

Collect HOGS

Traditional Classification: (pattern 
and template matching)

MACHINE LEARNING*

CNN (Convolutional Neural network)

MLP (Multi-layer perceptron)

SVM (Support vector machine)

*Focus is inferencing, training handled analogously to validation and calibration of a traditional safety related algorithm. 
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GPU MEASUREMENT METHODOLOGIES

Silicon-based fault Injection

Design 

Simulation

Fault

Injection

Beamtesting

C-models/

RAM Liveness

Much of the measurement is done on representative kernels as
the final applications are not available at design time

Architectural 

Safeness,

Diagnostic

Coverage

(SPFM,LFM),

SRAM 

“Liveness”

Representative
Workloads

Further
Safety Analysis
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MEASURING SAFE FAULTS IN RAMS
“LIVENESS”

RAMs are sensitive to particle radiation (4x larger failure rate per bit than flops)

RAM contents may not be sensitive to faults (pixels)

RAM contents may be very sensitive to faults (instructions)

An important indicator is RAM Liveness
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TESTING REPRESENTATIVE KERNELS

Parameter measurement is very sensitive to kernel definition

Traditional CV has a wide diversity of operations

Difficult to define representative kernels

Machine learning has a smaller set of repeated operations

Enabling a more complete definition of kernels for measurements

More accurate and reliable measurements
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SAFETY SUPPORT IN NVIDIA GPUS
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SYSTEMATIC DEVELOPMENT OF GPU
HARDWARE

Selected GPU cores targeted for 
automotive usage are developed with 
a process for ISO 26262 compliance
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LAYERED SAFETY MECHANISMS

HW plausibility checks enabling multiple 
execution checks throughout the GPU,

Protection of large safety related memories,

Dependent failure mitigation; mainly caches and 
shared structures,

Parity/ECC protection of key 

structures

HW machine checks

Redundant execution
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FLEXIBLE REDUNDANCY MODEL

GPU Context

Channel 0

Channel 1

Channel N

Work 
Distribution

SM0

SM1

SM2

SM3

Memory
Access

GPU

Flexible Execution model
Built-in HW and SW diagnostics

Machine Checks

Parity /ECC

Common cause 

failure 

mitigation



30

FLEXIBLE REDUNDANCY MODEL

GPU Context

Channel 0

Channel 1

Channel N

Work 
Distribution

SM0

SM1

SM2

SM3

Memory
Access

GPU

Flexible Execution model
Built-in HW and SW diagnostics

Machine Checks

Parity /ECC

Common cause 

failure 

mitigation



31

SYSTEMATIC CONSIDERATIONS

Software in the runtime is under 
development for ISO 26262 
compliance

Software used in development 
(training) considered as off-line 
tools per ISO 26262

Software and tools

TensorRT
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GPU FAULT MITIGATION
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CONCLUSIONS

Nvidia is developing selected GPUs for compliance to ISO 26262

Nvidia has multiple unique capabilities to analyze safety-related performance of 
GPUs

Analysis to date indicates DNNs have a high degree of internal redundancy that 
results in high ratio of safe faults

Selected GPUs are being built with additional hardware and software diagnostic 
mechanisms

Nvidia is developing software and tools needed to support safety related 
development




