

GPU POWERED SOLUTIONS IN THE SECOND KAGGLE DATA SCIENCE BOWL

SECOND ANNUAL DATA SCIENCE BOWL

Massive online data science contest Mon 14 Dec 2015 - Mon 14 Mar 2016 192 teams, 293 data scientists finished \$200,000 prize fund (top 3 teams)

Booz | Allen | Hamilton

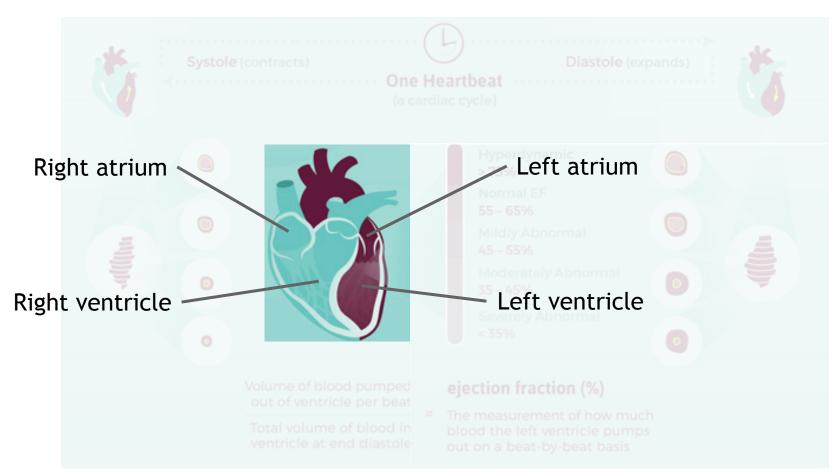
AGENDA

Competition overview The winning solution Presentation from competition organizers Other successful approaches

COMPETITION OVERVIEW "TRANSFORMING HOW WE DIAGNOSE HEART DISEASE"

COMPETITION ANATOMY

"The only unit of time that matters is heartbeats." - Paul Ford



"...left ventricular ejection fraction (LVEF) is probably one of the single most important numerical values determined on an adult patient with heart disease"

"...low LVEF predicts in the patients that survive a heart attack are much more likely to die in the course of the next year than patients with normal LVEF"

"There are also diseases that cause a heart to enlarge before the LVEF changes... Thus, measurement of both LV volumes and the LVEF provide complimentary information that helps in the diagnosis of many patients with heart disease."

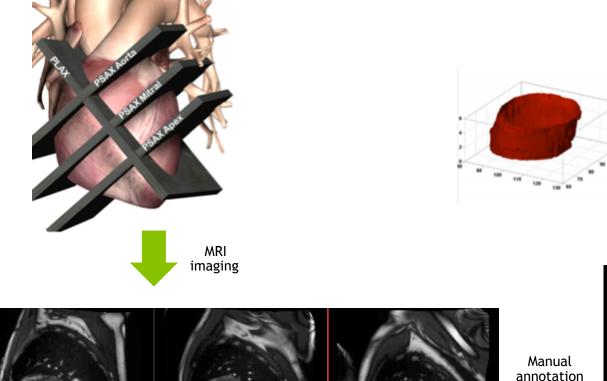
Source: https://www.kaggle.com/c/second-annual-data-science-bowl/forums/t/
 19839/a-medical-perspective-on-the-quality-of-the-left-ventricular-volume-and

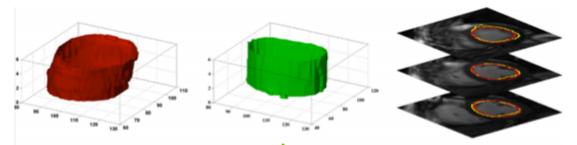
Andrew Arai, MD

Cardiologist, National Institutes of Health (NIH)

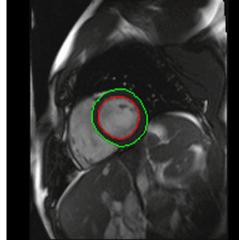
MEASURING EJECTION FRACTION

Magnetic Resonance Imaging (MRI) and expert annotation

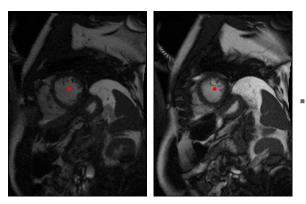




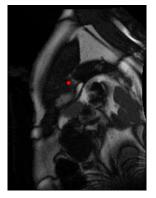
C.M.S. Nambakhsh et al./Medical Image Analysis 17 (2013) 1010-1024



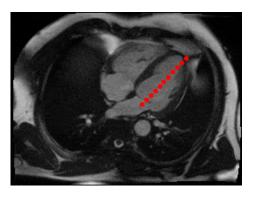
COMPETITION DATA



GPU



Short Axis (SAX) images: varying # and locations of slices per patient, 30 timesteps



Long Axis (LAX) images: not all patients

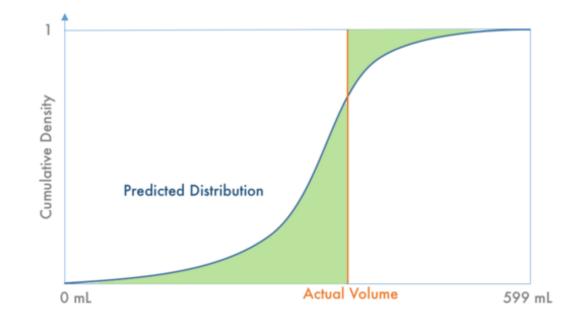
- DICOM file format:
 - 16-bit images
 - Metadata
 - Patient Age
 - Patient Sex
 - Pixel Spacing
 - Slice Location (not all patients)
 - Various imaging geometry
 parameters relative to patient
 - Various imaging parameters
- Two labels for whole patient study:
 - Systole volume
 - Diastole volume

OBJECTIVE FUNCTION

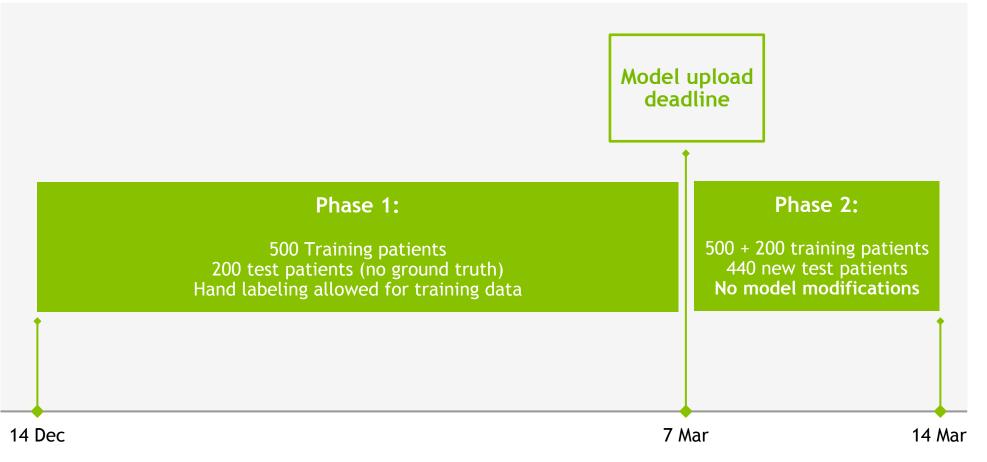
GPU TECHNOLOGY CONFERENCE

Continuous Ranked Probability Score

$$C = \frac{1}{600N} \sum_{m=1}^{N} \sum_{n=0}^{599} (P(y \le n) - H(n - V_m))^2$$



COMPETITION TIMELINE



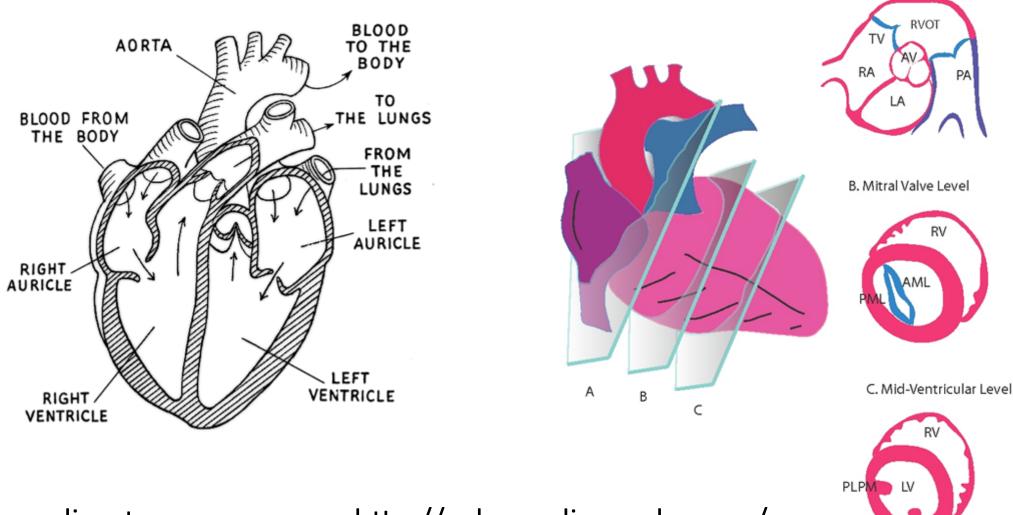
THE WINNING SOLUTION

TEAM: TENCIA & WOSHIALEX

Heart Left Ventricle Volumes from MRI images

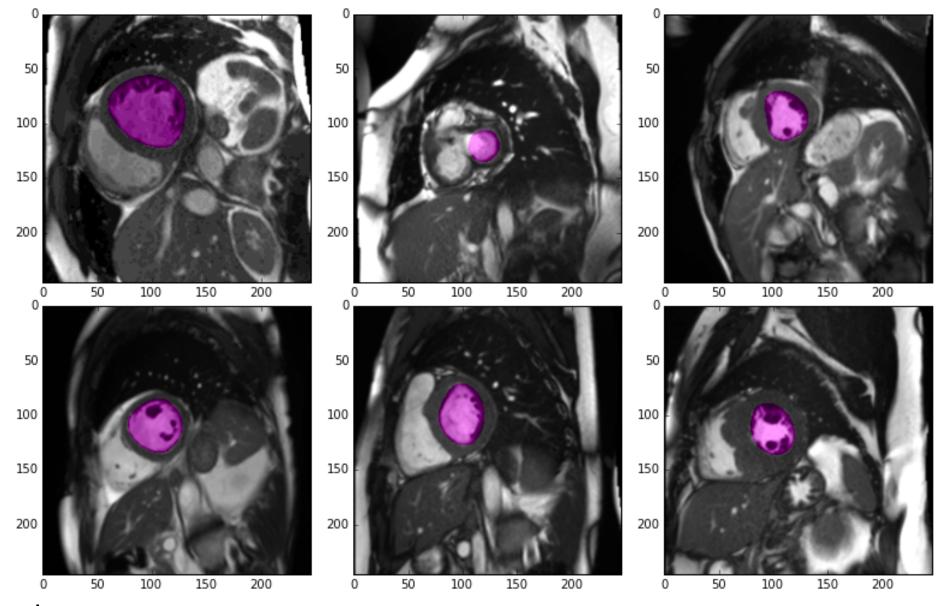
Tencia Lee & Qi Liu April 2016

A. Aortic, Tricupid and Pulmonic Valve Level



wpclipart.com

http://echocardiographer.org/

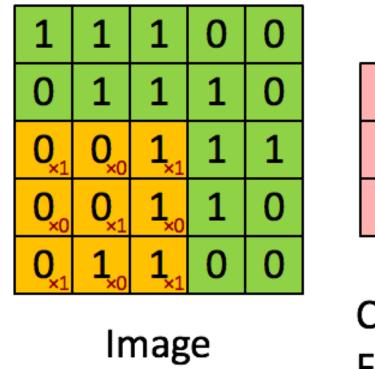


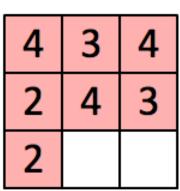
kaggle.com

The challenges

- Dirty data: mislabeled images, badly organized directories
- Only 700 images in segmentation training set
- 150,000 images to be segmented (500 training patients, ~300 each), coming from a completely different set of MRIs
- Some were dark, partly obscured, had odd artifacts along the edges, or significantly different from the segmentation set
- Ground truths are human-segmented and can be wrong

Convolution operation on image

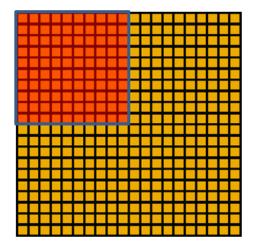


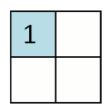


Convolved Feature

http://ufldl.stanford.edu/tutorial/

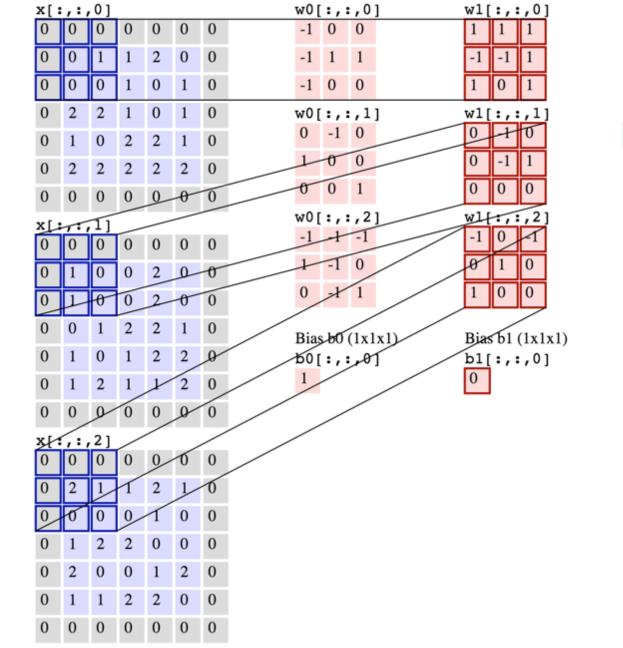
Pooling operation on convolved features



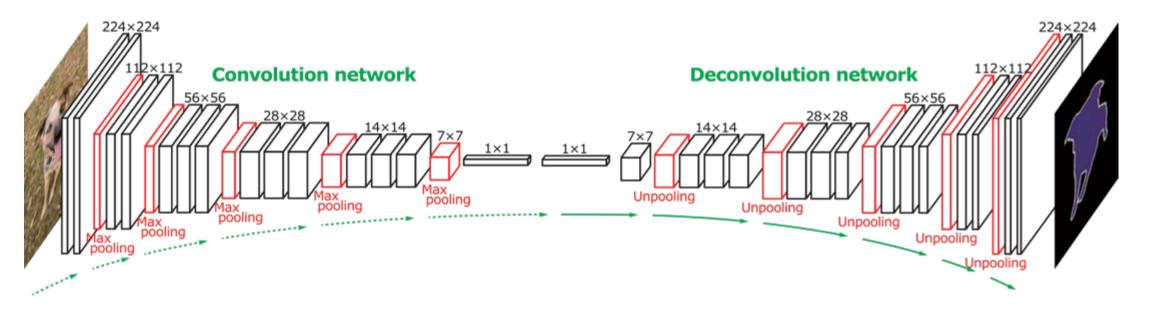


Convolved Pooled feature feature

http://ufldl.stanford.edu/tutorial/



cs231n.github.io



http://cvlab.postech.ac.kr/

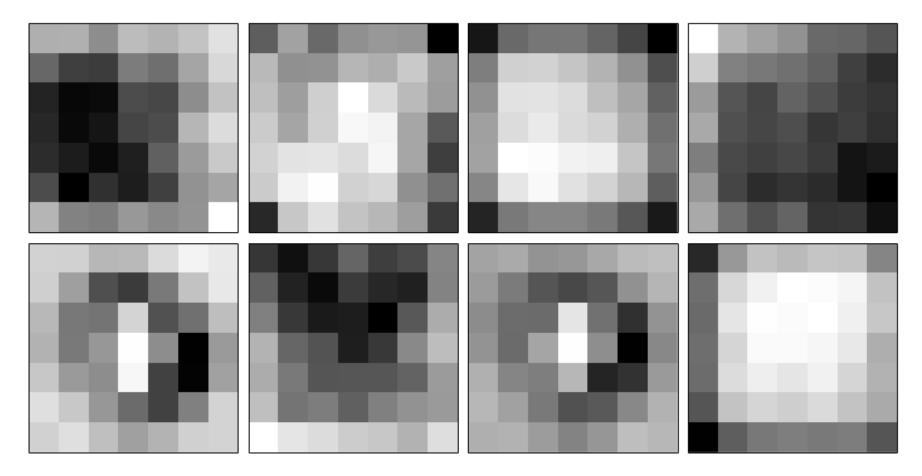
Layer Op / Type	# Filters / Pool / Upscale Factor	Filter Size	Padding	Output Shape
Input				(b, 1, 246, 246)
Conv + BN + ReLU	8	7	valid	(b, 8, 240, 240)
Conv + BN + ReLU	16	3	valid	(b, 16, 238, 238)
MaxPool	2			(b, 16, 119, 119)
Conv + BN + ReLU	32	3	valid	(b, 32, 117, 117)
MaxPool	2			(b, 32, 58, 58)
Conv + BN + ReLU	64	3	valid	(b, 64, 56, 56)
MaxPool	2			(b, 64, 28, 28)
Conv + BN + ReLU	64	3	valid	(b, 64, 26, 26)
Conv + BN + ReLU	64	3	full	(b, 64, 28, 28)
Upscale	2			(b, 64, 56, 56)
Conv + BN + ReLU	64	3	full	(b, 64, 58, 58)
Upscale	2			(b, 64, 116, 116)
Conv + BN + ReLU	32	7	full	(b, 32, 122, 122)
Upscale	2			(b, 32, 244, 244)
Conv + BN + ReLU	16	3	full	(b, 16, 246, 246)
Conv + BN + ReLU	8	7	valid	(b, 8, 240, 240)
Conv + sigmoid	1	7	full	(b, 1, 246, 246)

Sørensen-Dice Coefficient

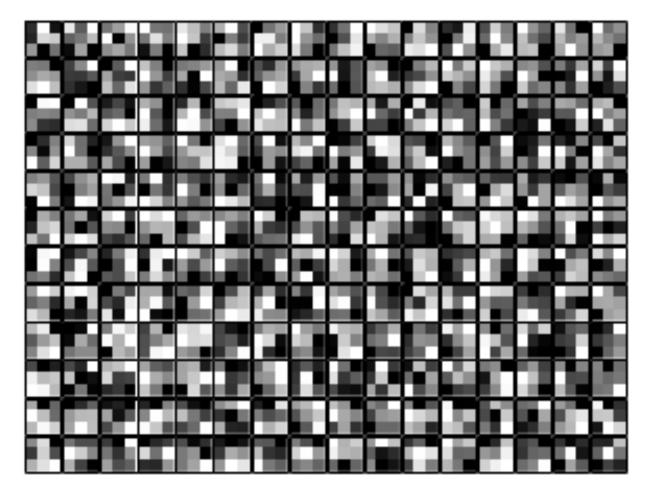
$$Loss = -\frac{s + 2\sum_{i,j} pred_{ij} \cdot target_{ij}}{s + \sum_{i,j} (pred_{ij} + target_{ij})}$$

- classes are very unbalanced
- 97% of pixels in input are not part of ventricle
- more robust than binary cross-entropy

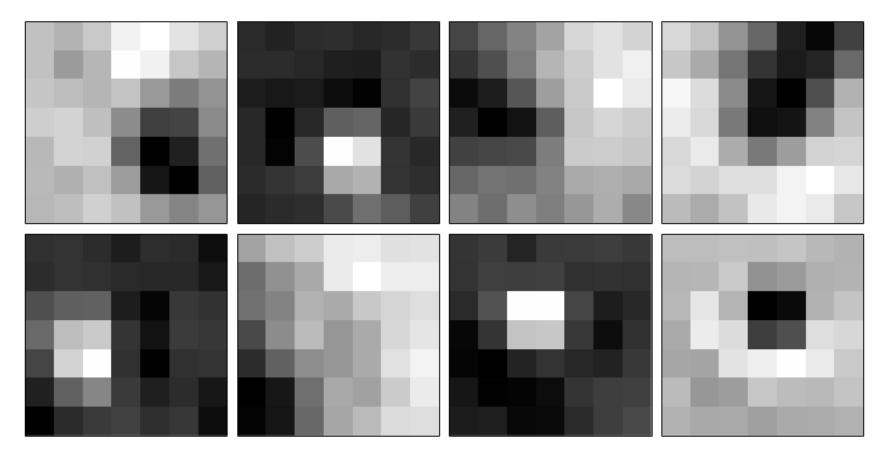
Top Layer Filter Weights

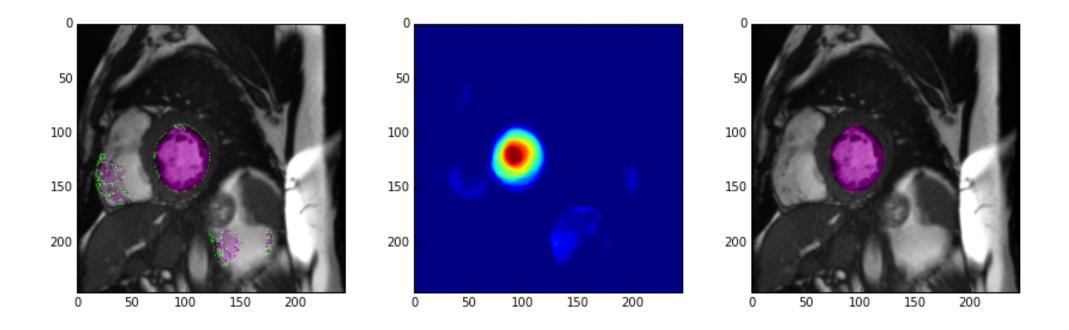


Middle Layer Filter Weights

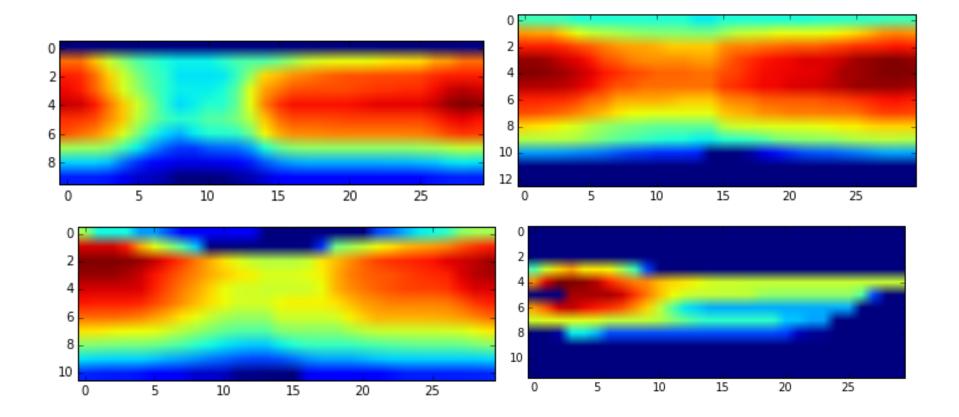


Bottom Layer Filter Weights





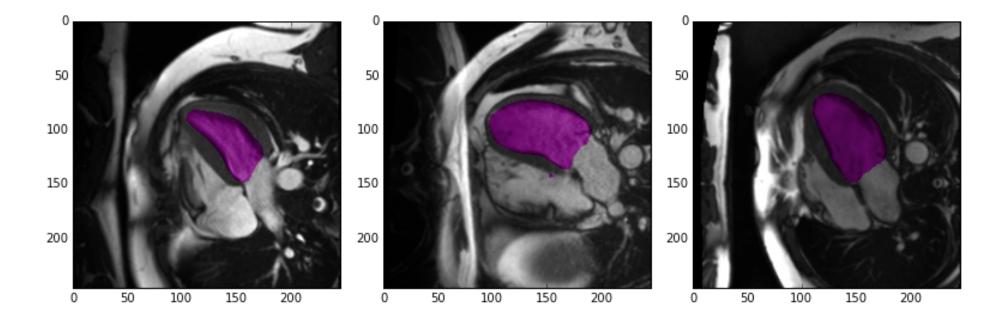
Heat maps - area, height x time

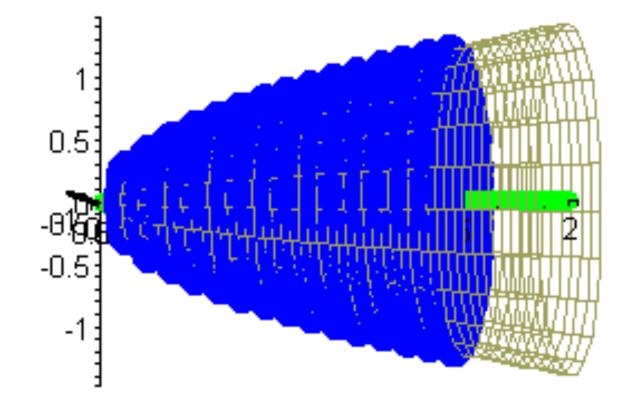


Other Models

- One-slice: segmentation net -> single slice area -> volume
- Age-sex prior: age and gender -> volume
- Four-chamber view:
 - hand-labeled 736 four-chamber view DICOMs
 - trained segmentation net to find cross-sectional area
 - calculated volume by rotating area around main axis

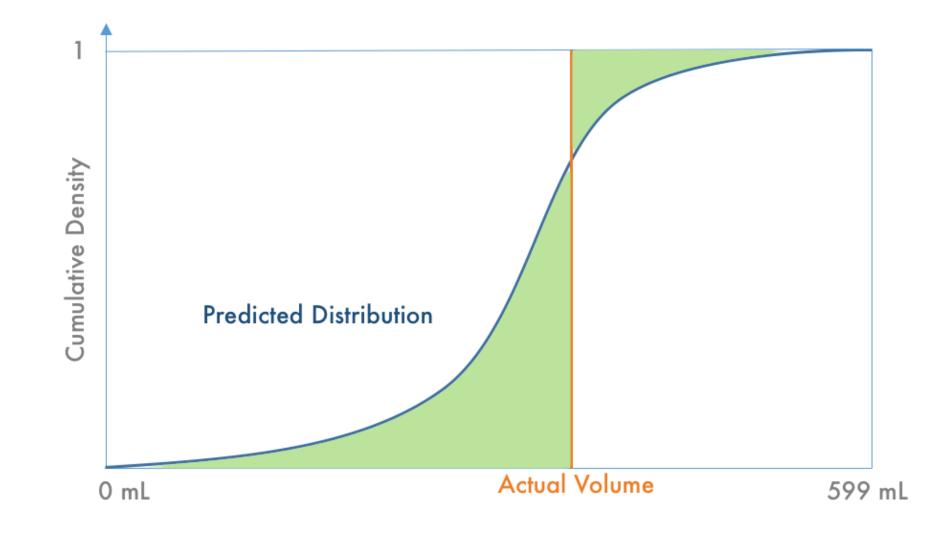
Four-chamber view model





Linear ensembling

- Very simple method for combining many CNN models as well as other models
- Optimized linear weights on each model to minimize CRPS score
- Filtered CNN models by whether all times have a certain # of nonzero areas
- When CNN fails, use 4-chamber + one-slice.
- When 4-chamber + one-slice fails, use age-sex model.



kaggle.com

Tools used

- Python
- Deep Learning: Theano, Lasagne
- Data handling: Fuel, HD5py
- Image processing: OpenCV, Scikit-image

2ND AND 3RD PLACE APPROACHES

2ND PLACE: TEAM KUNSTHART Data Science Lab at Ghent University, Belgium

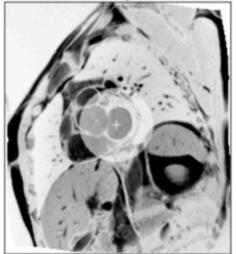
PhD students: Ira Korshunova, Jeroen Burms and Jonas Degrave Professor Joni Dambre

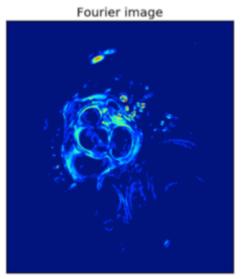
3 members of Team "Deep Sea", winners of the First Data Science Bowl

2ND PLACE: TEAM KUNSTHART

Stage 1: ROI extraction

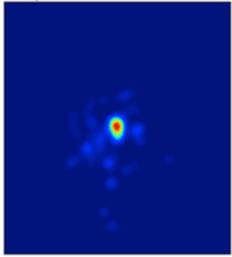
One slice image with ROI





Hough circles for slice

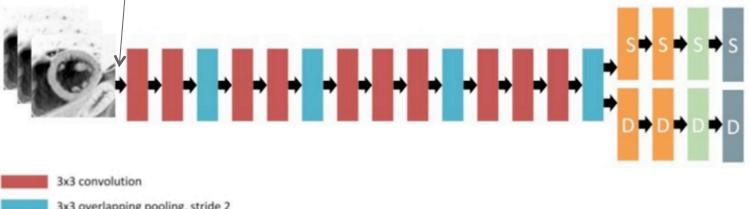
Likelyhood surface accross all slices

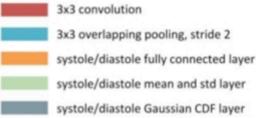


2ND PLACE: TEAM KUNSTHART

Stage 2: Single Slice Convolutional Neural Networks

Train and test time augmentation

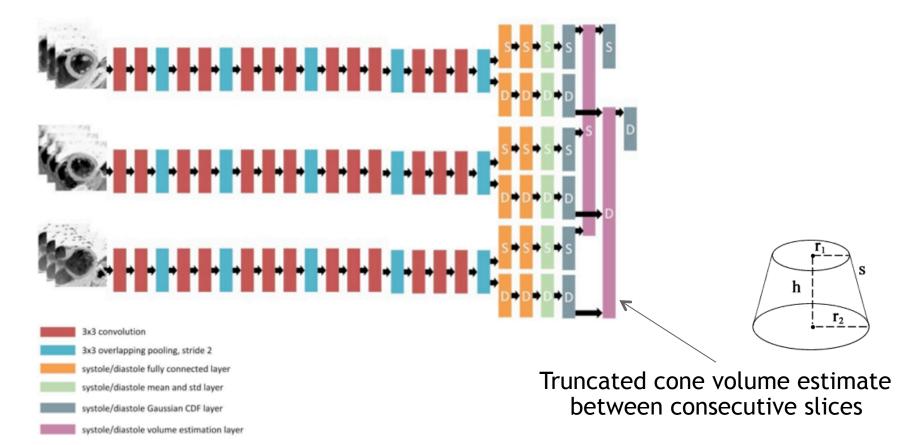




Multiple models trained for single SAX slices and 2-Ch and 4-Ch stacks

2ND PLACE: TEAM KUNSTHART

Stage 3: Patient Convolutional Neural Networks



2ND PLACE: TEAM KUNSTHART

Stage 4: Model ensembles

~250 total models trained

Error was dominated by small number of outliers

Setup framework so that each individual model could be selectively applied to each patient based on heuristics

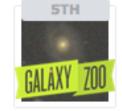
Implemented two different ensembling strategies: ~75% patients received a 'personalized' ensemble

http://irakorshunova.github.io/2016/03/15/heart.html

Owner DWS Systemen, The Hague Area, Netherlands

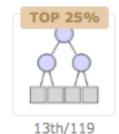
GPU TECHNOLOGY CONFERENCE

4th/661



5th/326

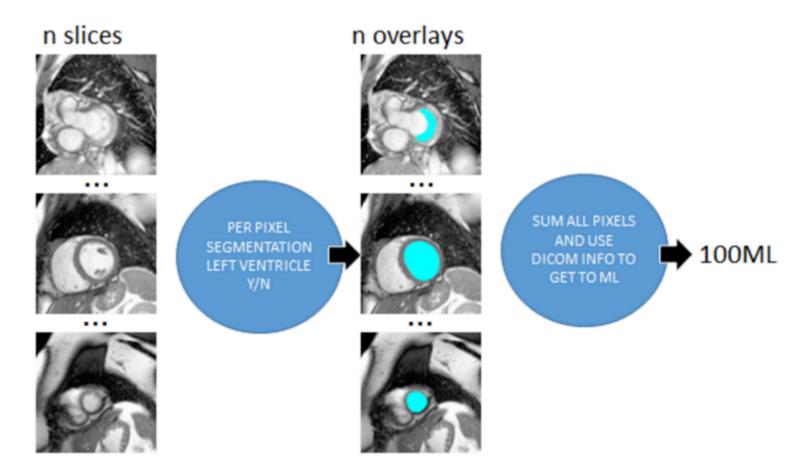
TOP 10%



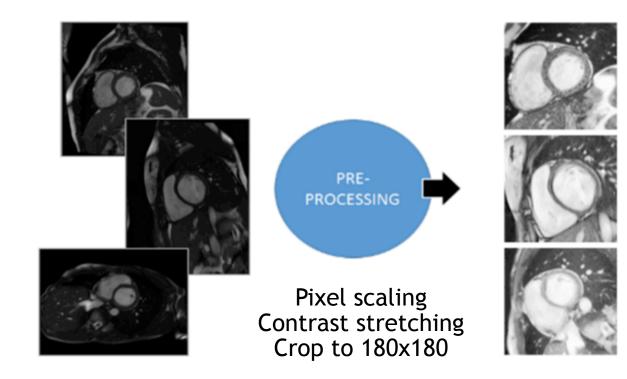
57th/215

5/6/16 39 📀 **DVIDIA**

Idealized solution

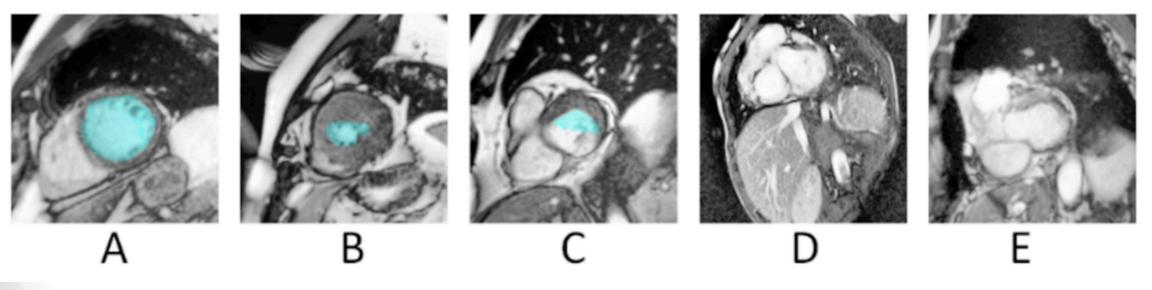


Stage 1: Pre-processing



GPU TECHNOLOGY CONFERENCE

Stage 2: Manual labeling



Stage 3: U-net segmentation architecture

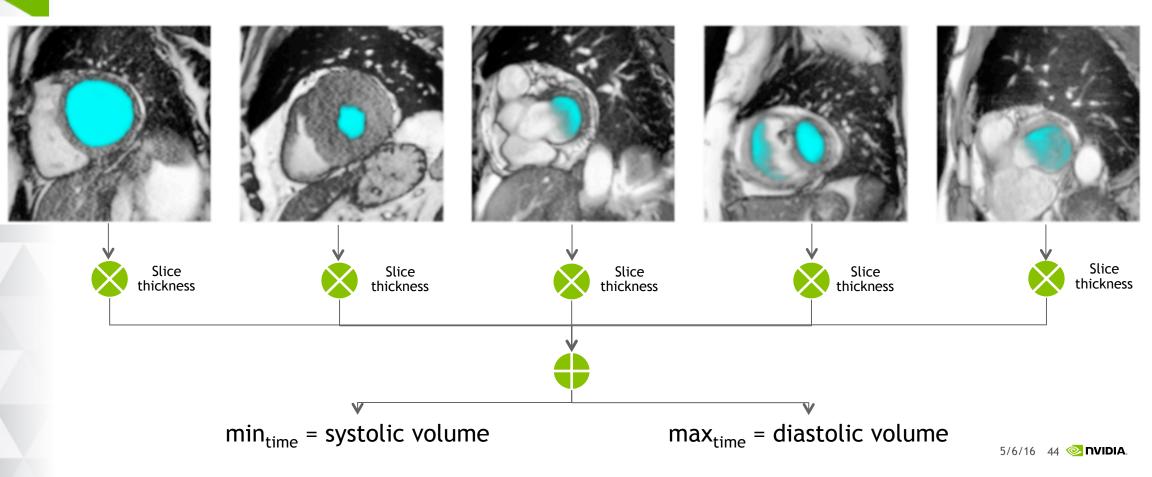


Ronneberger, Fischer, Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, arXiv:1505.04597

GPU TECHNOLOGY CONFERENCE

5/6/16 43 🐼 **NVIDIA**

Stage 4: Integrating segmentations to volume estimates



Stage 5: Model calibration

Used gradient boosting regressor: raw volume estimates, segmented image features and metadata features

Regressed on the error in volume estimate rather than the volume

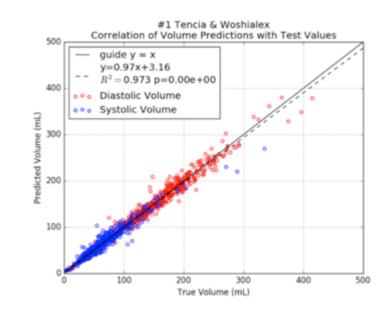
Used k-fold training to avoid overfitting

This calibration almost accounted for the difference between 3rd and 4th place

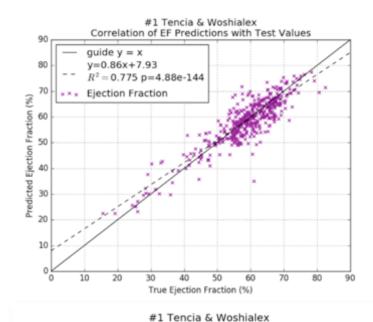
			Diastole (ml)		Systole (ml)	
Fold no	Train n	Validate n	Raw mae	Cal mea	Raw mae (Cal mea
fold0	558	140	9.76	8.81	8.42	7.11
fold1	558	140	10.72	10.33	8.02	7.07
fold2	558	140	10.40	9.07	9.25	7.40
fold3	558	140	10.87	9.47	8.96	8.00
fold4	560	138	8.94	8.44	7.63	6.25
average			10.14	9.22	8.46	7.17

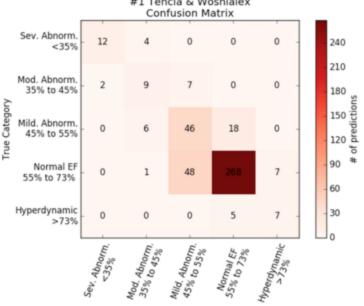
http://juliandewit.github.io/kaggle-ndsb/

MEDICAL SIGNIFICANCE



RMS Error						
	Diastolic	12.02 mL				
Tencia Woshialex	Systolic	10.19 mL				
	E Fraction(%)	4.88 %				
	Diastolic	13.65 mL				
kunsthart	Systolic	10.43 mL				
	E Fraction(%)	6.99 %				
	Diastolic	13.63 mL				
JuliandeWit	Systolic	10.32 mL				
	E Fraction(%)	5.04 %				





https://www.kaggle.com/c/second-annual-data-science-bowl/forums/t/19840/winning-and-leading-teams-submission-analysis https://www.kaggle.com/c/second-annual-data-science-bowl/forums/t/19839/a-medical-perspective-on-the-guality-of-the-left-ventricular-volume-and

BOOZE-ALLEN-HAMILTON & NVIDIA TEAM

BAH-NVIDIA TEAM

Jared Sylvester Booz Allen Hamilton

Samantha Tracht Booz Allen Hamilton

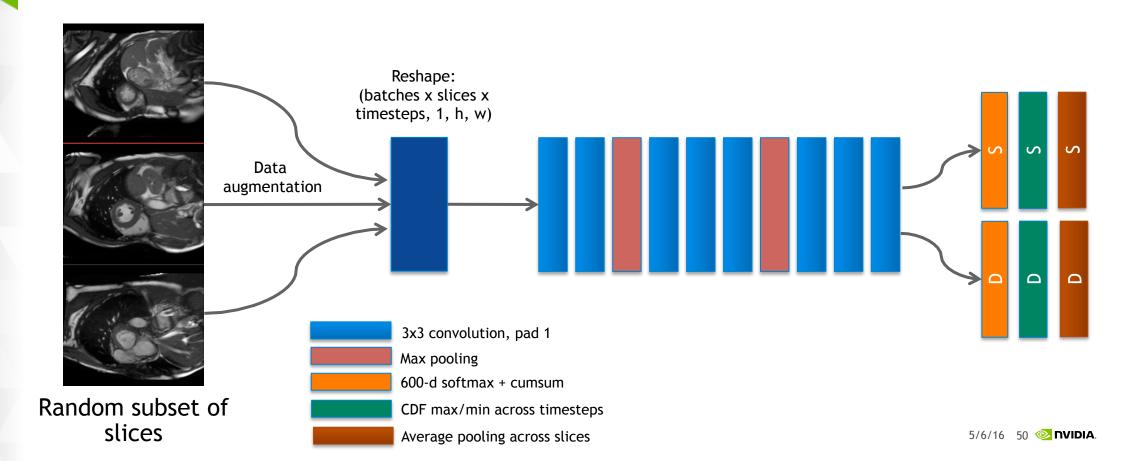
Peter VanMaasdam Booz Allen Hamilton

Jon Barker

Maxim Milakov NVIDIA

BAH-NVIDIA TEAM

Approach 1: Patient convolutional neural network



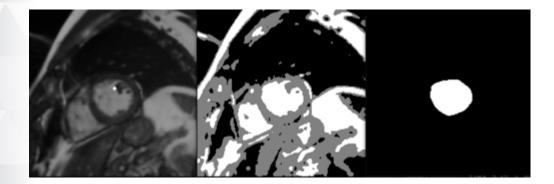
BAH-NVIDIA TEAM

Approach 2: Convnet localization and image segmentation



Single image

GPU TECHNOLOGY CONFERENCE



SUMMARY

Data science based - "no assumptions" - approach demonstrated medically significant approaches that could save valuable cardiologist time

GPU TECHNOLOGY CONFERENCE

Solutions converged on varied convolutional neural network based approaches

Outlier cases are incredibly important and average accuracy is not necessarily a sufficient metric in medical applications

Ensembles of diverse models are key to handling difficult edge cases

Distributed GPU training can enable rapid model iteration and ensemble training

THANK YOU

JOIN THE CONVERSATION #GTC16 ♥ f Im

JOIN THE NVIDIA DEVELOPER PROGRAM AT developer.nvidia.com/join

