
TOOLS AND TIPS FOR MANAGING

A GPU CLUSTER

Adam DeConinck

HPC Systems Engineer, NVIDIA

Steps for configuring a GPU cluster

 Select compute node hardware

 Configure your compute nodes

 Set up your cluster for GPU jobs

 Monitor and test your cluster

NVML and nvidia-smi

Primary management tools mentioned throughout this talk will be

NVML and nvidia-smi

NVML: NVIDIA Management Library

 Query state and configure GPU

 C, Perl, and Python API

nvidia-smi: Command-line client for NVML

GPU Deployment Kit: includes NVML headers, docs, and
nvidia-healthmon

Select compute node hardware

 Choose the correct GPU

 Select server hardware

 Consider compatibility with networking hardware

What GPU should I use?

Tesla M-series is designed for servers

 Passively Cooled

 Higher Performance

 Chassis/BMC Integration

 Out-of-Band Monitoring

PCIe Topology Matters

Biggest factor right now

in server selection is

PCIe topology

 Direct memory access

between devices w/ P2P

transfers

 Unified addressing for system

and GPUs

 Works best when all devices are on same PCIe root or switch

System

Memory

CPU GPU0

GPU0

Memory

GPU1

GPU1

Memory

0x0000

0xFFFF

PCI-e

P2P communication supported

between GPUs on the same IOH

x16
x16

PCI-e

P2P communication supported

between GPUs on the same IOH

x16

x16

P2P on dual-socket servers

CPU0

CPU1

Incompatible with PCI-e P2P specification

GPU0 GPU1

GPU2 GPU3

For many GPUs, use PCIe switches

• PCIe switches fully supported

• Best P2P performance between devices on same switch

CPU0

PCI-e

x16 x16 x16 x16

x16
x16

GPU0 GPU1 GPU2

Switch

0
Switch

1

GPU3

How many GPUs per server?

 If apps use P2P heavily:

— More GPUs per node are better

— Choose servers with appropriate PCIe topology

— Tune application to do transfers within PCIe complex

 If apps don’t use P2P:

— May be dominated by host <-> device data transfers

— More servers with fewer GPUs/server

For many devices, use PCIe switches

CPU0

PCI-e

x16 x16 x16 x16

x16
x16

GPU0 GPU1 GPU2

Switch

0
Switch

1

Other

Device

• PCIe switches fully supported for all operations

• Best P2P performance between devices on same switch

• P2P also supported with other devices such as NIC via

GPUDirect RDMA

GPUDirect RDMA on the network

• PCIe P2P between NIC and GPU without touching host memory

• Greatly improved performance

• Currently supported on Cray (XK7 and XC-30) and Mellanox FDR

Infiniband

• Some MPI implementations support GPUDirect RDMA

Configure your compute nodes

 Configure system BIOS

 Install and configure device drivers

 Configure GPU devices

 Set GPU power limits

Configure system BIOS

 Configure large PCIe address space

— Many servers ship with 64-bit PCIe addressing turned off

— Needs to be turned on for Tesla K40 or systems with many GPUs

— Might be called “Enable 4G Decoding” or similar

 Configure for cooling passive GPUs

— Tesla M-series has passive cooling – relies on system fans

— Communicates thermals to BMC to manage fan speed

— Make sure BMC firmware is up to date, fans are configured correctly

 Make sure remote console uses onboard VGA, not “offboard” NVIDIA GPU

Disable the nouveau driver

nouveau does not support CUDA and will conflict with NVIDIA driver

Two steps to disable:

1. Edit /etc/modprobe.d/disable-nouveau.conf:

 blacklist nouveau

 nouveau modeset=0

2. Rebuild initial ramdisk:

 RHEL: dracut --force

 SUSE: mkinitrd

 Deb: update-initramfs -u

Install the NVIDIA driver

Two ways to install the driver

 Command-line installer

— Bundled with CUDA toolkit – developer.nvidia.com/cuda

— Stand-alone – www.nvidia.com/drivers

 RPM/DEB

— Provided by NVIDIA (major versions only)

— Provided by Linux distros (other release schedule)

 Not easy to switch between these methods

http://www.nvidia.com/drivers

Initializing a GPU in runlevel 3

Most clusters operate at runlevel 3 so you should initialize

the GPU explicitly in an init script

 At minimum:

— Load kernel modules – nvidia + nvidia_uvm (in CUDA 6)

— Create devices with mknod

 Optional steps:

— Configure compute mode

— Set driver persistence

— Set power limits

Install GPUDirect RDMA network drivers
(if available)

 Mellanox OFED 2.1 (beta) has support for GPUDirect RDMA

— Should also be supported on Cray systems for CLE <…>

 HW required: Mellanox FDR HCAs, Tesla K10/K20/K20X/K40

 SW required: NVIDIA driver 331.20 or better, CUDA 5.5 or

better, GPUDirect plugin from Mellanox

 Enables an additional kernel driver, nv_peer_mem

Configure driver persistence

By default, driver unloads when GPU is idle

 Driver must re-load when job starts, slowing startup

 If ECC is on, memory is cleared between jobs

Persistence daemon keeps driver loaded when GPUs idle:

/usr/bin/nvidia-persistenced --persistence-mode \
[--user <username>]

 Faster job startup time

 Slightly lower idle power

Configure ECC

 Tesla and Quadro GPUs support ECC memory

— Correctable errors are logged but not scrubbed

— Uncorrectable errors cause error at user and system level

— GPU rejects new work after uncorrectable error, until reboot

 ECC can be turned off – makes more GPU memory

available at cost of error correction/detection

— Configured using NVML or nvidia-smi

nvidia-smi -e 0

— Requires reboot to take effect

Set GPU power limits

 Power consumption limits can be set with NVML/nvidia-smi

 Set on a per-GPU basis

 Useful in power-constrained environments

nvidia-smi –pl <power in watts>

 Settings don’t persist across reboots – set this in your init

script

 Requires driver persistence

Set up your cluster for GPU jobs

 Enable GPU integration in resource manager and MPI

 Set up GPU process accounting to measure usage

 Configure GPU Boost clocks (or allow users to do so)

 Managing job topology on GPU compute nodes

Resource manager integration

Most popular resource managers have some NVIDIA integration features

available: SLURM, Torque, PBS Pro, Univa Grid Engine, LSF

 GPU status monitoring:

— Report current config, load sensor for utilization

 Managing process topology:

— GPUs as consumables, assignment using CUDA_VISIBLE_DEVICES

— Set GPU configuration on a per-job basis

 Health checks:

— Run nvidia-healthmon or integrate with monitoring system

NVIDIA integration usually configured at compile time (open source) or as a

plugin

GPU process accounting

 Provides per-process accounting of GPU

usage using Linux PID

 Accessible via NVML or nvidia-smi (in

comma-separated format)

 Requires driver be continuously loaded (i.e.

persistence mode)

 No RM integration yet, use site scripts i.e.

prologue/epilogue

Enable accounting mode:
$ sudo nvidia-smi –am 1

Human-readable accounting output:
$ nvidia-smi –q –d ACCOUNTING

Output comma-separated fields:
$ nvidia-smi --query-accounted-
apps=gpu_name,gpu_util –
format=csv

Clear current accounting logs:
$ sudo nvidia-smi -caa

MPI integration with CUDA

Most recent versions of most MPI libraries support sending/receiving

directly from CUDA device memory

 OpenMPI 1.7+, mvapich2 1.8+, Platform MPI, Cray MPT

 Typically needs to be enabled for the MPI at compile time

 Depending on version and system topology, may also support

GPUDirect RDMA

 Non-CUDA apps can use the same MPI without problems (but might

link libcuda.so even if not needed)

Enable this in MPI modules provided for users

GPU Boost (user-defined clocks)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

AMBER SPFP-TRPCage LAMMPS-EAM NAMD 2.9-APOA1

Tesla K40 (base) Tesla K40 with GPU Boost

Use Power Headroom to Run at Higher Clocks

25%
Faster

20%
Faster

14%
Faster

17%
Faster

13%
Faster

11%
Faster

GPU Boost (user-defined clocks)

 Configure with nvidia-smi:

 nvidia-smi –q –d SUPPORTED_CLOCKS

 nvidia-smi –ac <MEM clock, Graphics clock>

 nvidia-smi –q –d CLOCK shows current mode

 nvidia-smi –rac resets all clocks

 nvidia-smi –acp 0 allows non-root to change clocks

 Changing clocks doesn’t affect power cap; configure separately

 Requires driver persistence

 Currently supported on K20, K20X and K40

Managing CUDA contexts with compute mode

Compute mode: determines how GPUs manage multiple CUDA contexts

 0/DEFAULT: Accept simultaneous contexts.

 1/EXCLUSIVE_THREAD: Single context allowed, from a single thread.

 2/PROHIBITED: No CUDA contexts allowed.

 3/EXCLUSIVE_PROCESS: Single context allowed, multiple threads OK.

Most common setting in clusters.

 Changing this setting requires root access, but it sometimes makes

sense to make this user-configurable.

N processes on 1 GPU: MPS

 Multi-Process Server allows multiple processes to

share a single CUDA context

 Improved performance where multiple processes

share GPU (vs multiple open contexts)

 Easier porting of MPI apps: can continue to use one

rank per CPU, but all ranks can access the GPU

Server process: nvidia-cuda-mps-server

Control daemon: nvidia-cuda-mps-control

GPU0

MPS

0 1 2 3

Persistent

context

Application ranks

PCIe-aware process affinity

To get good performance, CPU processes should be

scheduled on cores “local” to the GPUs they use

No good “out of box” tools for this yet!

 hwloc can be help identify CPU <-> GPU locality

 Can use PCIe dev ID with NVML to get CUDA rank

 Set process affinity with MPI or numactl

Possible admin actions:

 Documentation: node toplogy & how to set affinity

 Wrapper scripts using numactl to set

“recommended” affinity

PCI-e
x16

x16

PCI-e
x16

x16 CPU0

CPU1

GPU
0

GPU
1

GPU
2

GPU
3

Multiple user jobs on a multi-GPU node

CUDA_VISIBLE_DEVICES environment variable controls which GPUs are visible

to a process

Comma-separated list of devices

export CUDA_VISIBLE_DEVICES=“0,2”

Tooling and resource manager support exists but limited

 Example: configure SLURM with CPU<->GPU mappings

 SLURM will use cgroups and CUDA_VISIBLE_DEVICES to assign resources

 Limited ability to manage process affinity this way

 Where possible, assign all a job’s resources on same PCIe root complex

Monitor and test your cluster

 Use nvidia-healthmon to do GPU health checks on each job

 Use a cluster monitoring system to watch GPU behavior

 Stress test the cluster

Automatic health checks: nvidia-healthmon

 Runs a set of fast sanity checks against each GPU in system

— Basic sanity checks

— PCIe link config and bandwith between host and peers

— GPU temperature

 All checks are configurable – set them up based on your system’s expected

values

 Use cluster health checker to run this for every job

— Single command to run all checks

— Returns 0 if successful, non-zero if a test fails

— Does not require root to run

Use a monitoring system with NVML support

Examples: Ganglia, Nagios, Bright

Cluster Manager, Platform HPC

Or write your own plugins using NVML

Good things to monitor

 GPU Temperature

— Check for hot spots

— Monitor w/ NVML or OOB via system BMC

 GPU Power Usage

— Higher than expected power usage => possible HW issues

 Current clock speeds

— Lower than expected => power capping or HW problems

— Check “Clocks Throttle Reasons” in nvidia-smi

 ECC error counts

Good things to monitor

 Xid errors in syslog

— May indicate HW error or programming error

— Common non-HW causes: out-of-bounds memory access

(13), illegal access (31), bad termination of program (45)

 Turn on PCIe parity checking with EDAC

modprobe edac_core

echo 1 > /sys/devices/system/edac/pci/check_pci_parity

— Monitor value of /sys/devices/<pci-

address>/broken_parity_status

Stress-test your cluster

 Best workload for testing is the user application

 Alternatively use CUDA Samples or benchmarks (like HPL)

 Stress entire system, not just GPUs

 Do repeated runs in succession to stress the system

 Things to watch for:

— Inconsistent perf between nodes: config errors on some nodes

— Inconsistent perf between runs: cooling issues, check GPU Temps

— Slow GPUs / PCIe transfers: misconfigured SBIOS, seating issues

 Get “pilot” users with stressful workloads, monitor during their runs

 Use successful test data for stricter bounds on monitoring and healthmon

Always use serial number to identify bad boards

Multiple possible ways to enumerate GPUs:

 PCIe

 NVML

 CUDA runtime

These may not be consistent with each other or between boots!

Serial number will always map to the physical board and is printed on

the board.

UUID will always map to the individual GPU.

(I.e., 2 UUIDs and 1 SN if a board has 2 GPUs.)

Key take-aways

 Topology matters!

— For both HW selection and job configuration

— You should provide tools which expose this to your users

 Use NVML-enabled tools for GPU cofiguration and

monitoring (or write your own!)

 Lots of hooks exist for cluster integration and

management, and third-party tools

Where to find more information

 docs.nvidia.com

 developer.nvidia.com/cluster-management

 Documentation in GPU Deployment Kit

 man pages for the tools (nvidia-smi, nvidia-healthmon, etc)

 Other talks in the “Clusters and GPU Management” tag here at

GTC

QUESTIONS?

@ajdecon

#GTC14

