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Steps for configuring a GPU cluster 

 

 Select compute node hardware 

 Configure your compute nodes 

 Set up your cluster for GPU jobs 

 Monitor and test your cluster 
 



NVML and nvidia-smi 

Primary management tools mentioned throughout this talk will be 

NVML and nvidia-smi 
 

NVML: NVIDIA Management Library 

 Query state and configure GPU 

 C, Perl, and Python API 

 

nvidia-smi: Command-line client for NVML 

 

GPU Deployment Kit: includes NVML headers, docs, and  
nvidia-healthmon 



Select compute node hardware 

 Choose the correct GPU 

 Select server hardware 

 Consider compatibility with networking hardware 



What GPU should I use? 

Tesla M-series is designed for servers 

 

 Passively Cooled 

 Higher Performance 

 Chassis/BMC Integration 

 Out-of-Band Monitoring 

 



PCIe Topology Matters 

Biggest factor right now  

in server selection is  

PCIe topology 

 

 Direct memory access  

between devices w/ P2P  

transfers 

 Unified addressing for system  

and GPUs 

 

 Works best when all devices are on same PCIe root or switch 
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For many GPUs, use PCIe switches 

• PCIe switches fully supported 

• Best P2P performance between devices on same switch 
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How many GPUs per server? 

 If apps use P2P heavily: 

— More GPUs per node are better 

— Choose servers with appropriate PCIe topology 

— Tune application to do transfers within PCIe complex 

 

 If apps don’t use P2P: 

— May be dominated by host <-> device data transfers 

— More servers with fewer GPUs/server 



For many devices, use PCIe switches 
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• PCIe switches fully supported for all operations 

• Best P2P performance between devices on same switch 

 

• P2P also supported with other devices such as NIC via 

GPUDirect RDMA 



GPUDirect RDMA on the network 

• PCIe P2P between NIC and GPU without touching host memory 

• Greatly improved performance 

• Currently supported on Cray (XK7 and XC-30) and Mellanox FDR 

Infiniband 

• Some MPI implementations support GPUDirect RDMA 

 



Configure your compute nodes 

 Configure system BIOS 

 Install and configure device drivers 

 Configure GPU devices 

 Set GPU power limits 



Configure system BIOS 

 Configure large PCIe address space 

— Many servers ship with 64-bit PCIe addressing turned off 

— Needs to be turned on for Tesla K40 or systems with many GPUs 

— Might be called “Enable 4G Decoding” or similar 

 

 Configure for cooling passive GPUs 

— Tesla M-series has passive cooling – relies on system fans 

— Communicates thermals to BMC to manage fan speed 

— Make sure BMC firmware is up to date, fans are configured correctly 

 

 Make sure remote console uses onboard VGA, not “offboard” NVIDIA GPU 



Disable the nouveau driver 

nouveau does not support CUDA and will conflict with NVIDIA driver 

 

Two steps to disable: 

1. Edit /etc/modprobe.d/disable-nouveau.conf: 

 blacklist nouveau 

 nouveau modeset=0 

 

2. Rebuild initial ramdisk: 

 RHEL: dracut --force 

 SUSE: mkinitrd 

 Deb: update-initramfs -u 



Install the NVIDIA driver 

Two ways to install the driver 

 Command-line installer 

— Bundled with CUDA toolkit – developer.nvidia.com/cuda 

— Stand-alone – www.nvidia.com/drivers 

 RPM/DEB 

— Provided by NVIDIA (major versions only) 

— Provided by Linux distros (other release schedule) 

 Not easy to switch between these methods 

http://www.nvidia.com/drivers


Initializing a GPU in runlevel 3 

Most clusters operate at runlevel 3 so you should initialize 

the GPU explicitly in an init script 

 At minimum: 

— Load kernel modules – nvidia + nvidia_uvm (in CUDA 6) 

— Create devices with mknod 

 

 Optional steps: 

— Configure compute mode 

— Set driver persistence 

— Set power limits 



Install GPUDirect RDMA network drivers 
(if available) 

 Mellanox OFED 2.1 (beta) has support for GPUDirect RDMA 

— Should also be supported on Cray systems for CLE <…> 

 

 HW required: Mellanox FDR HCAs, Tesla K10/K20/K20X/K40 

 SW required: NVIDIA driver 331.20 or better, CUDA 5.5 or 

better, GPUDirect plugin from Mellanox 

 

 Enables an additional kernel driver, nv_peer_mem 



Configure driver persistence 

By default, driver unloads when GPU is idle 

 Driver must re-load when job starts, slowing startup 

 If ECC is on, memory is cleared between jobs 

 

Persistence daemon keeps driver loaded when GPUs idle: 

# /usr/bin/nvidia-persistenced --persistence-mode \ 
[--user <username>] 

 

 Faster job startup time 

 Slightly lower idle power 



Configure ECC 

 Tesla and Quadro GPUs support ECC memory 

— Correctable errors are logged but not scrubbed 

— Uncorrectable errors cause error at user and system level 

— GPU rejects new work after uncorrectable error, until reboot 

 

 ECC can be turned off – makes more GPU memory 

available at cost of error correction/detection 

— Configured using NVML or nvidia-smi 

# nvidia-smi -e 0 

— Requires reboot to take effect 



Set GPU power limits 

 Power consumption limits can be set with NVML/nvidia-smi 

 Set on a per-GPU basis 

 Useful in power-constrained environments 

 

nvidia-smi –pl <power in watts> 

 

 Settings don’t persist across reboots – set this in your init 

script 

 Requires driver persistence 



Set up your cluster for GPU jobs 

 Enable GPU integration in resource manager and MPI 

 Set up GPU process accounting to measure usage 

 Configure GPU Boost clocks (or allow users to do so) 

 Managing job topology on GPU compute nodes 



Resource manager integration 

Most popular resource managers have some NVIDIA integration features 

available: SLURM, Torque, PBS Pro, Univa Grid Engine, LSF 

 

 GPU status monitoring:  

— Report current config, load sensor for utilization 

 Managing process topology:  

— GPUs as consumables, assignment using CUDA_VISIBLE_DEVICES 

— Set GPU configuration on a per-job basis 

 Health checks: 

— Run nvidia-healthmon or integrate with monitoring system 

 

NVIDIA integration usually configured at compile time (open source) or as a 

plugin 



GPU process accounting 

 Provides per-process accounting of GPU 

usage using Linux PID 

 

 Accessible via NVML or nvidia-smi (in 

comma-separated format) 

 

 Requires driver be continuously loaded (i.e. 

persistence mode) 

 

 No RM integration yet, use site scripts i.e. 

prologue/epilogue 

 

Enable accounting mode: 
$ sudo nvidia-smi –am 1 

 

Human-readable accounting output: 
$ nvidia-smi –q –d ACCOUNTING 
 

Output comma-separated fields: 
$ nvidia-smi --query-accounted-
apps=gpu_name,gpu_util –
format=csv 
 

Clear current accounting logs: 
$ sudo nvidia-smi -caa 



MPI integration with CUDA 

Most recent versions of most MPI libraries support sending/receiving 

directly from CUDA device memory  

 

 OpenMPI 1.7+, mvapich2 1.8+, Platform MPI, Cray MPT 

 Typically needs to be enabled for the MPI at compile time 

 Depending on version and system topology, may also support 

GPUDirect RDMA 

 Non-CUDA apps can use the same MPI without problems (but might 

link libcuda.so even if not needed) 

 

Enable this in MPI modules provided for users 

 



GPU Boost (user-defined clocks) 
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GPU Boost (user-defined clocks) 

 Configure with nvidia-smi: 

 nvidia-smi –q –d SUPPORTED_CLOCKS 

 nvidia-smi –ac <MEM clock, Graphics clock> 

 nvidia-smi –q –d CLOCK   shows current mode 

 nvidia-smi –rac    resets all clocks 

 nvidia-smi –acp 0   allows non-root to change clocks 

 

 Changing clocks doesn’t affect power cap; configure separately 

 Requires driver persistence 

 Currently supported on K20, K20X and K40 



Managing CUDA contexts with compute mode 

Compute mode: determines how GPUs manage multiple CUDA contexts 

 0/DEFAULT: Accept simultaneous contexts.  

 1/EXCLUSIVE_THREAD: Single context allowed, from a single thread.  

 2/PROHIBITED: No CUDA contexts allowed. 

 3/EXCLUSIVE_PROCESS: Single context allowed, multiple threads OK.  

Most common setting in clusters. 

 

 Changing this setting requires root access, but it sometimes makes 

sense to make this user-configurable. 



N processes on 1 GPU: MPS 

 Multi-Process Server allows multiple processes to 

share a single CUDA context 

 

 Improved performance where multiple processes 

share GPU (vs multiple open contexts) 

 

 Easier porting of MPI apps: can continue to use one 

rank per CPU, but all ranks can access the GPU 

 

Server process: nvidia-cuda-mps-server 

Control daemon: nvidia-cuda-mps-control 
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PCIe-aware process affinity 

To get good performance, CPU processes should be 

scheduled on cores “local” to the GPUs they use 

 

No good “out of box” tools for this yet!  

 hwloc can be help identify CPU <-> GPU locality 

 Can use PCIe dev ID with NVML to get CUDA rank 

 Set process affinity with MPI or numactl 

 

Possible admin actions: 

 Documentation: node toplogy & how to set affinity 

 Wrapper scripts using numactl to set 

“recommended” affinity 
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Multiple user jobs on a multi-GPU node 

CUDA_VISIBLE_DEVICES environment variable controls which GPUs are visible 

to a process 

 

Comma-separated list of devices 

export CUDA_VISIBLE_DEVICES=“0,2” 
 

Tooling and resource manager support exists but limited 

 Example: configure SLURM with CPU<->GPU mappings 

 SLURM will use cgroups and CUDA_VISIBLE_DEVICES to assign resources  

 Limited ability to manage process affinity this way 

 

 Where possible, assign all a job’s resources on same PCIe root complex 



Monitor and test your cluster 

 Use nvidia-healthmon to do GPU health checks on each job 

 

 Use a cluster monitoring system to watch GPU behavior 

 

 Stress test the cluster 



Automatic health checks: nvidia-healthmon 

 Runs a set of fast sanity checks against each GPU in system 

— Basic sanity checks 

— PCIe link config and bandwith between host and peers 

— GPU temperature 

 

 All checks are configurable – set them up based on your system’s expected 

values 

 

 Use cluster health checker to run this for every job 

— Single command to run all checks 

— Returns 0 if successful, non-zero if a test fails 

— Does not require root to run 

 



Use a monitoring system with NVML support 

Examples: Ganglia, Nagios, Bright 

Cluster Manager, Platform HPC 

 

Or write your own plugins using NVML 



Good things to monitor 

 GPU Temperature 

— Check for hot spots 

— Monitor w/ NVML or OOB via system BMC 

 

 GPU Power Usage 

— Higher than expected power usage => possible HW issues 

 

 Current clock speeds 

— Lower than expected => power capping or HW problems 

— Check “Clocks Throttle Reasons” in nvidia-smi 

 

 ECC error counts 

 

 

 



Good things to monitor 

 Xid errors in syslog 

— May indicate HW error or programming error 

— Common non-HW causes: out-of-bounds memory access 

(13), illegal access (31), bad termination of program (45) 

 

 Turn on PCIe parity checking with EDAC 

modprobe edac_core 

echo 1 > /sys/devices/system/edac/pci/check_pci_parity 

— Monitor value of /sys/devices/<pci-

address>/broken_parity_status 

 

 



Stress-test your cluster 

 Best workload for testing is the user application 

 Alternatively use CUDA Samples or benchmarks (like HPL) 

 Stress entire system, not just GPUs 

 

 Do repeated runs in succession to stress the system 

 Things to watch for: 

— Inconsistent perf between nodes: config errors on some nodes 

— Inconsistent perf between runs: cooling issues, check GPU Temps 

— Slow GPUs / PCIe transfers: misconfigured SBIOS, seating issues 

 

 Get “pilot” users with stressful workloads, monitor during their runs 

 Use successful test data for stricter bounds on monitoring and healthmon 



Always use serial number to identify bad boards 

Multiple possible ways to enumerate GPUs: 

 PCIe 

 NVML 

 CUDA runtime 

These may not be consistent with each other or between boots! 

 

Serial number will always map to the physical board and is printed on 

the board. 

 

UUID will always map to the individual GPU.  

(I.e., 2 UUIDs and 1 SN if a board has 2 GPUs.) 



Key take-aways 

 Topology matters! 

— For both HW selection and job configuration 

— You should provide tools which expose this to your users 

 

 Use NVML-enabled tools for GPU cofiguration and 

monitoring (or write your own!) 

 

 Lots of hooks exist for cluster integration and 

management, and third-party tools 

 



Where to find more information 

 docs.nvidia.com 

 developer.nvidia.com/cluster-management 

 Documentation in GPU Deployment Kit 

 man pages for the tools (nvidia-smi, nvidia-healthmon, etc) 

 

 Other talks in the “Clusters and GPU Management” tag here at 

GTC 



QUESTIONS? 

@ajdecon 

#GTC14 


