Support for GPUs with GPUDirect RDMA in
MVAPICH2

SC’13 NVIDIA Booth

by

D.K. Panda
The Ohio State University
E-mail: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

http://www.cse.ohio-state.edu/~potluri
http://www.cse.ohio-state.edu/~potluri
http://www.cse.ohio-state.edu/~potluri

Outline

Overview of MVAPICH2-GPU Project
GPUDirect RDMA with Mellanox IB adaptors
Other Optimizations for GPU Communication
Support for MPI + OpenACC

CUDA and OpenACC extensions in OMB

SC'13 NVIDIA Booth presentation

Drivers of Modern HPC Cluster Architectures

th
R

Accelerators / Coprocessors
high compute density, high performance/watt
>1 TFlop DP on a chip

_ High Performance Interconnects - InfiniBand
Multi-core Processors <1lusec latency, >100Gbps Bandwidth

e Multi-core processors are ubiquitous and InfiniBand is widely accepted

e MVAPICH2 has constantly evolved to provide superior performance

e Accelerators/Coprocessors are becoming common in high-end systems

e How does MVAPICH2 help development on these emerging architectures?

Stampede (6) Tianhe - 1A (10)

Tianhe - 2 (1)

SC'13 NVIDIA Booth presentation 3

InfiniBand + GPU systems (Past)

e Many systems today have both GPUs and
high-speed networks such as InfiniBand

e Problem: Lack of a common memory
registration mechanism

— Each device has to pin the host memory it will
use

— Many operating systems do not allow
multiple devices to register the same
memory pages

e Previous solution:

InfiniBand
— Use different buffer for each device and cgr;?/' "

data

SC'13 NVIDIA Booth presentation 4

GPU-Direct

e Collaboration between Mellanox and
NVIDIA to converge on one memory
registration technique

e Both devices register a common

host buffer

InfiniBand

— GPU copies data to this buffer, and the network

adapter can directly read from this buffer (or
vice-versa)

e Note that GPU-Direct does not allow you to
bypass host memory

SC'13 NVIDIA Booth presentation 5

MPI + CUDA

* Data movement in applications with standard MPIl and CUDA interfaces

At Sender:

MPI1_Send(s_hostbuf, size, . . .);

At Receiver:
MPI_Recv(r_hostbuf, size, .. .);

cudaMemcpy(s_hostbuf, s_devbuf, .. .);

cudaMemcpy(r_devbuf, r_hostbuf, . . .);

High Productivity and Low Performance

RIS L
i

e Users can do the Pipelining at the application level using non-blocking

MPI and CUDA interfaces

Low Productivity and High Performance

SC'13 NVIDIA Booth presentation

GPU-Aware MPI Library: MVAPICH2-GPU

e Standard MPI interfaces used for unified data movement
e Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)

e Optimizes data movement from GPU memory

At Sender: ,
MPI_Send(s_devbuf, size, ...); inside |
MVAPIICHZI I
At Receiver: |
MPI_Recv(r_devbuf, size, ...);

High Performance and High Productivity

SC'13 NVIDIA Booth presentation

e
Pipelined Data Movement in MVAPICH2

e Pipelines data movement from the GPU, overlaps

- device-to-host CUDA copies
- inter-process data movement (network transfers or shared memory
copies)

- host-to-device CUDA copies

3000 :

=#=NMemcpy+Send - 45% improvement compared

2500 : .

=s=MemcpyAsync+lsend with a naive (Memcpy+Send)
— 2000 2=MVAPICH2-GPU
(7]
S 7
£ ~ - 24% improvement compared
= @ ,

- with an advanced user-level
implementation

v (MemcpyAsync+isend)

32K 128K 512K 2M
Message Size (bytes)

Internode osu_latency large

SC'13 NVIDIA Booth presentation

Outline

GPUDirect RDMA with Mellanox IB adaptors
Other Optimizations for GPU Communication
Support for MPI + OpenACC

CUDA and OpenACC extensions in OMB

SC'13 NVIDIA Booth presentation

GPU-Direct RDMA (GDR) with CUDA

e Network adapter can directly
read/write data from/to GPU

device memory

e Avoids copies through the host

e Fastest possible communication
between GPU and IB HCA

InfiniBand
e Allows for better asynchronous

communication

e OFED with GDR support is under
development by Mellanox and
NVIDIA

10

BOVFPNOH ife B Goblu p ivkmattag @013

GPU-Direct RDMA (GDR) with CUDA

SNB E5-2670 /
e OFED with support for GPUDirect RDMA is IVB E5-2680V2
under work by NVIDIA and Mellanox

e OSU has an initial design of MVAPICH2 using
GPUDirect RDMA

— Hybrid design using GPU-Direct RDMA
e GPUDirect RDMA and Host-based pipelining

Adapter

¢ Alleviates P2P bandwidth bottlenecks on
SandyBridge and IvyBridge

o _ o SNB E5-2670
— Support for communication using multi-rail .
P2P write: 5.2 GB/s
— Support for Mellanox Connect-IB and ConnectX P2P read: <1.0 GB/s
VPI adapters IVB E5-2680V2

P2P write: 6.4 GB/s

— Support for RoCE with Mellanox ConnectX VPI
P2P read: 3.5 GB/s

adapters

SC'13 NVIDIA Booth presentation 11

e
Performance of MVAPICH2 with GPU-Direct-RDMA: Latency

GPU-GPU Internode MPI Latency

Small Message Latency Large Message Latency
25 800
-e-1-Rail -@-1-Rail
——2-Rail 700 -+ =&—=2-Rail
20 ——1-Rail-GDR —+—1-Rail-GDR o
—=-2-Rail-GDR 600 -—=m=2-Rail-GDR %
7y - 500
R 3
>
g 67 % : 400
- 10)
S ® 300
v - 200
> 5.49
.49 usec 00
0 T T T T T T T T T T T T 0 1 T T T T T T T T T
1 4 16 64 256 1K 4K 8K 32K 128K 512K 2M
Message Size (bytes) Message Size (bytes)

Based on MVAPICH2-2.0b
Intel lvy Bridge (E5-2680 v2) node with 20 cores
NVIDIA Telsa K40c GPU, Mellanox Connect-I1B Dual-FDR HCA
CUDA 5.5, Mellanox OFED 2.0 with GPU-Direct-RDMA Patch

SC'13 NVIDIA Booth presentation 12

Performance of MVAPICH2 with GPU-Direct-RDMA: Bandwidth

GPU-GPU Internode MPI Uni-Directional Bandwidth

Small Message Bandwidth
2000 12000
-@-1-Rail
1800 ——2-Ralil
1600 —a—1-Rail-GDR N 10000
—1400 -~ 2-Rail-GDR l .
< l gsooo
S 1200 l S
£ 1000 £ 6000
S F 5
3 500 sl ||| 2
8 600 5 4000
o) J o)
400 / 2000
200
0 - 0
1 4 16 64 256 1K 4K
Message Size (bytes)

Large Message Bandwidth

-®-1-Rail
——2-Rail 9.8 GBy
—a—1-Rail-GDR
—-2-Rail-GDR
8K 32K 128K 512K 2M

Message Size (bytes)

SC'13 NVIDIA Booth presentation

Based on MVAPICH2-2.0b

Intel Ivy Bridge (E5-2680 v2) node with 20 cores
NVIDIA Telsa K40c GPU, Mellanox Connect-IB Dual-FDR HCA
CUDA 5.5, Mellanox OFED 2.0 with GPU-Direct-RDMA Patch

13

Performance of MVAPICH2 with GPU-Direct-RDMA: Bi-Bandwidth

GPU-GPU Internode MPI Bi-directional Bandwidth

Small Message Bi-Bandwidth Large Message Bi-Bandwidth
2000 25000
-@-1-Rail -@-1-Rail
1800 —2-Rail r ——2-Rail 19 GBI/
1600 —4=1-Rail-GDR A 20000 —4=1-Rail-GDR !
—&-2-Rail-GDR I —&-2-Rail-GDR
& 1400 0 191%
ey N
Q I Q P
S 1200 15000
N l L
5 1000 5
3 3
S 300 3% || S10000
@ @
.~ 600 L
0 / &0
400 5000
200
O T T T 0 T T T T T T T T T
1 4 16 64 256 1K 4K 8K 32K 128K 512K 2M
Message Size (bytes) Message Size (bytes)

Based on MVAPICH2-2.0b
Intel Ivy Bridge (E5-2680 v2) node with 20 cores
NVIDIA Telsa K40c GPU, Mellanox Connect-IB Dual-FDR HCA
CUDA 5.5, Mellanox OFED 2.0 with GPU-Direct-RDMA Patch

SC'13 NVIDIA Booth presentation 14

How can | get started with GDR Experimentation?

Two modules are needed

— Alpha version of OFED kernel and libraries with GPUDirect RDMA (GDR)
support from Mellanox

— Alpha version of MVAPICH2-GDR from OSU (currently a separate distribution)
e Send a note to hpc@mellanox.com

e You will get alpha versions of GDR driver and MVAPICH2-GDR
(based on MVAPICH2 2.0a release)

e You can get started with this version

e MVAPICH2 team is working on multiple enhancements (collectives,
datatypes, one-sided) to exploit the advantages of GDR

e As GDR driver matures, successive versions of MVAPICH2-GDR with

enhancements will be made available to the community

SC'13 NVIDIA Booth presentation 15

mailto:hpc@mellanox.com

Outline

e Other Optimizations for GPU Communication
e Support for MPIl + OpenACC
e CUDA and OpenACC extensions in OMB

SC'13 NVIDIA Booth presentation 16

Multi-GPU Configurations

P o= mmm Emm

Process 0 \Il Process 1

[Menjory }

e Multi-GPU node architectures are
becoming common

e Until CUDA 3.2

— Communication between processes
staged through the host

— Shared Memory (pipelined)
— Network Loopback [asynchronous)

e CUDA 4.0 and later
— Inter-Process Communication (IPC)

N

— Host bypass
— Handled by a DMA Engine
— Low latency and Asynchronous

— Requires creation, exchange and

(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| mapping of memory handles - overhead

\ ! HcA

-_—e—— e - -_— e s s e

SC'13 NVIDIA Booth presentation 17

Designs in MVAPICH2 and Performance

e MVAPICH2 takes advantage of CUDA =¢-SHARED-MEM -m=CUDA |PC
— 50
IPC for MPI communication between 9
2 40 Ottt t———
GPUs = 30
_ _ e 70%
o Hides the complexity and overheads of | & 20
. . = 10 -

handle creation, exchange and mapping .
e Available in standard releases from 1 4 16 64 256 1K

MVAPICH?2 1.8 Message Size (Bytes)

Intranode osu_latency small

2000 _ 6000
S 1500 & 5000
3 fl""% S 4000 f’ tm%
> £ 3000
5 $ 2000
5 2 1000

[5°)
I m 0 1T T 1T 1T T
4K 16K 64K . 256K 1M 4M 1 16 256 4K 64K 1M
Intranode osu_latency large Intranode osu_bw

SC'13 NVIDIA Booth presentation

Collectives Optimizations in MVAPICH2: Overview

e Optimizes data movement at the collective level for small
messages

e Pipelines data movement in each send/recv operation for
large messages

e Several collectives have been optimized

- Bcast, Gather, Scatter, Allgather, Alltoall, Scatterv, Gathery,
Allgatherv, Alltoallv

e Collective level optimizations are completely transparent to
the user

e Pipelining can be tuned using point-to-point parameters

SC'13 NVIDIA Booth presentation 19

R —————
MPI Datatype Support in MVAPICH2

* Non-contiguous Data Exchange

Halo data exchange

e Multi-dimensional data

— Row based organization

— Contiguous on one dimension

— Non-contiguous on other
dimensions

e Halo data exchange

— Duplicate the boundary

— Exchange the boundary in each
iteration

SC'13 NVIDIA Booth presentation 20

MPI Datatype Support in MVAPICH2

e Datatypes support in MPI

— Operate on customized datatypes to improve productivity

— Enable MPI library to optimize non-contiguous data

At Sender:
MPI_Type_vector (n_blocks, n_elements, stride, old_type, &new_type);
MPI_Type_commit(&new_type);

MPI_Send(s_buf, size, new_type, dest, tag, MPI_COMM_WORLD);

e |nside MVAPICH2

Use datatype specific CUDA Kernels to pack data in chunks

Optimized vector datatypes Kernel based pack/unpack in MVAPICH2 2.0b
Efficiently move data between nodes using RDMA

Transparent to the user

H. Wang, S. Potluri, D. Bureddy, C. Rosales and D. K. Panda, GPU-aware MPI on RDMA-Enabled Clusters: Design, Implementation
and Evaluation, IEEE Transactions on Parallel and Distributed Systems, Accepted for Publication.

SC'13 NVIDIA Booth presentation

21

e
Application Level Evaluation (LBMGPU-3D)

3D LBM-CUDA

g 400 5.6%

16 32
Number of GPUs

* LBM-CUDA (Courtesy: Carlos Rosale, TACC)
- Lattice Boltzmann Method for multiphase flows with large density ratios
- 3D LBM-CUDA: one process/GPU per node, 512x512x512 data grid, up to 64 nodes

* Oakley cluster at OSC: two hex-core Intel Westmere processors, two NVIDIA Tesla
M2070, one Mellanox IB QDR MT26428 adapter and 48 GB of main memory

SC'13 NVIDIA Booth presentation 22

Outline

e QOverview of MVAPICH2-GPU Project

e GPUDirect RDMA with Mellanox IB adaptors
e (Other Optimizations for GPU Communication
e Support for MPIl + OpenACC

e CUDA and OpenACC extensions in OMB

SC'13 NVIDIA Booth presentation 23

OpenACC

OpenACC is gaining popularity
Several sessions during GTC
A set of compiler directives (#pragma)
Offload specific loops or parallelizable sections in code onto accelerators
H#pragma acc region
{

for(i = 0; i < size; i++) {

Ali] = B[i] + C[i];

}

}

Routines to allocate/free memory on accelerators
buffer = acc_malloc(MYBUFSIZE);
acc_free(buffer);

Supported for C, C++ and Fortran
Huge list of modifiers — copy, copyout, private, independent, etc..

SC'13 NVIDIA Booth presentation 24

Using MVAPICH2 with OpenACC 1.0

acc_malloc to allocate device memory
— No changes to MPI calls
— MVAPICH2 detects the device pointer and optimizes data movement
— Delivers the same performance as with CUDA

A = acc_malloc(sizeof(int) * N);

#pragma acc parallel loop deviceptr(A) ...
//compute for loop

MPI_Send (A, N, MPI_INT, 0, 1, MPI_COMM_WORLD);

acc_free(A);

SC'13 NVIDIA Booth presentation

25

Using MVAPICH2 with OpenACC 2.0

acc_deviceptr to get device pointer (in OpenACC 2.0)

— Enables MPlI communication from memory allocated by compiler when it is available in
OpenACC 2.0 implementations

— MVAPICH2 will detect the device pointer and optimize communication
— Delivers the same performance as with CUDA

A = malloc(sizeof(int) * N);

#pragma acc data copyin(A) ...

{

#pragma acc parallel loop . ..
//compute for loop

MPI_Send(acc_deviceptr(A), N, MPI_INT, O, 1, MPI_COMM_WORLD);

SC'13 NVIDIA Booth presentation

26

Outline

e Overview of MVAPICH2-GPU Project

e GPUDirect RDMA with Mellanox IB adaptors
e (Other Optimizations for GPU Communication
e Support for MPIl + OpenACC

e CUDA and OpenACC extensions in OMB

SC'13 NVIDIA Booth presentation 27

CUDA and OpenAcCC Extensions in OMB

e OSU Micro-benchmarks are widely used to compare
performance of different MPI stacks and networks

e Enhancements to measure performance of MPl communication
from GPU memory

— Point-to-point: Latency, Bandwidth and Bi-directional Bandwidth

— Collectives: support all collectives.

e Support for CUDA and OpenACC

e Flexible selection of data movement between CPU(H) and
GPU(D): D->D, D->H and H->D

e Available from http://mvapich.cse.ohio-state.edu/benchmarks

e Available in an integrated manner with MVAPICH2 stack

SC'13 NVIDIA Booth presentation 28

http://mvapich.cse.ohio-state.edu/benchmarks
http://mvapich.cse.ohio-state.edu/benchmarks
http://mvapich.cse.ohio-state.edu/benchmarks

Summary

MVAPICH2 evolving to efficiently support MPI communication on
heterogeneous clusters with NVIDIA GPU

Simplifying task of porting MPI applications to these new architectures
Optimizing data movement while hiding system complexity from the user

Users have to still be aware of system configurations and the knobs
MVAPICH2 have to offer

User feedback critical as the implementations mature

SC'13 NVIDIA Booth presentation 29

Web Pointers

NOWLAB Web Page
http://nowlab.cse.ohio-state.edu

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu

MVAPICH

M

SC'13 NVIDIA Booth presentation 30

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/

