
Support for GPUs with GPUDirect RDMA in
MVAPICH2

D.K. Panda

The Ohio State University

E-mail: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

SC’13 NVIDIA Booth

by

http://www.cse.ohio-state.edu/~potluri
http://www.cse.ohio-state.edu/~potluri
http://www.cse.ohio-state.edu/~potluri

• Overview of MVAPICH2-GPU Project

• GPUDirect RDMA with Mellanox IB adaptors

• Other Optimizations for GPU Communication

• Support for MPI + OpenACC

• CUDA and OpenACC extensions in OMB

2

Outline

SC'13 NVIDIA Booth presentation

Drivers of Modern HPC Cluster Architectures

• Multi-core processors are ubiquitous and InfiniBand is widely accepted

• MVAPICH2 has constantly evolved to provide superior performance
•

• Accelerators/Coprocessors are becoming common in high-end systems

• How does MVAPICH2 help development on these emerging architectures?

Accelerators / Coprocessors
high compute density, high performance/watt

>1 TFlop DP on a chip

High Performance Interconnects - InfiniBand
<1usec latency, >100Gbps Bandwidth

Tianhe – 2 (1) Titan (2) Stampede (6) Tianhe – 1A (10)

3

Multi-core Processors

SC'13 NVIDIA Booth presentation

• Many systems today have both GPUs and

high-speed networks such as InfiniBand

• Problem: Lack of a common memory

registration mechanism

– Each device has to pin the host memory it will

use

– Many operating systems do not allow

multiple devices to register the same

memory pages

• Previous solution:

– Use different buffer for each device and copy

data

SC'13 NVIDIA Booth presentation 4

InfiniBand + GPU systems (Past)

• Collaboration between Mellanox and

NVIDIA to converge on one memory

registration technique

• Both devices register a common

 host buffer

– GPU copies data to this buffer, and the network

adapter can directly read from this buffer (or

vice-versa)

• Note that GPU-Direct does not allow you to

bypass host memory

5

GPU-Direct

SC'13 NVIDIA Booth presentation

PCIe

GPU

CPU

NIC

Switch

At Sender:

 cudaMemcpy(s_hostbuf, s_devbuf, . . .);

 MPI_Send(s_hostbuf, size, . . .);

At Receiver:

 MPI_Recv(r_hostbuf, size, . . .);

 cudaMemcpy(r_devbuf, r_hostbuf, . . .);

• Data movement in applications with standard MPI and CUDA interfaces

High Productivity and Low Performance

6 SC'13 NVIDIA Booth presentation

MPI + CUDA

• Users can do the Pipelining at the application level using non-blocking

 MPI and CUDA interfaces

Low Productivity and High Performance

At Sender:

At Receiver:

 MPI_Recv(r_devbuf, size, …);

inside

MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)

• Optimizes data movement from GPU memory

High Performance and High Productivity

 MPI_Send(s_devbuf, size, …);

7 SC'13 NVIDIA Booth presentation

GPU-Aware MPI Library: MVAPICH2-GPU

Pipelined Data Movement in MVAPICH2

- 45% improvement compared

with a naïve (Memcpy+Send)

- 24% improvement compared

with an advanced user-level

implementation

(MemcpyAsync+Isend)
0

500

1000

1500

2000

2500

3000

32K 128K 512K 2M

Ti
m

e
 (

u
s)

Message Size (bytes)

Memcpy+Send

MemcpyAsync+Isend

MVAPICH2-GPU

8 SC'13 NVIDIA Booth presentation

B
etter

• Pipelines data movement from the GPU, overlaps

- device-to-host CUDA copies

- inter-process data movement (network transfers or shared memory

copies)

- host-to-device CUDA copies

Internode osu_latency large

• Overview of MVAPICH2-GPU Project

• GPUDirect RDMA with Mellanox IB adaptors

• Other Optimizations for GPU Communication

• Support for MPI + OpenACC

• CUDA and OpenACC extensions in OMB

9

Outline

SC'13 NVIDIA Booth presentation

• Network adapter can directly

read/write data from/to GPU

device memory

• Avoids copies through the host

• Fastest possible communication

between GPU and IB HCA

• Allows for better asynchronous

communication

• OFED with GDR support is under

development by Mellanox and

NVIDIA

GPU-Direct RDMA (GDR) with CUDA

InfiniBand

GPU

GPU
Memory

CPU

Chip
set

System

Memory

10 MVAPICH User Group Meeting 2013 SC'13 NVIDIA Booth presentation

• OFED with support for GPUDirect RDMA is

under work by NVIDIA and Mellanox

• OSU has an initial design of MVAPICH2 using

GPUDirect RDMA

– Hybrid design using GPU-Direct RDMA

• GPUDirect RDMA and Host-based pipelining

• Alleviates P2P bandwidth bottlenecks on

SandyBridge and IvyBridge

– Support for communication using multi-rail

– Support for Mellanox Connect-IB and ConnectX

VPI adapters

– Support for RoCE with Mellanox ConnectX VPI

adapters

SC'13 NVIDIA Booth presentation 11

GPU-Direct RDMA (GDR) with CUDA

IB
Adapter

System
Memory

GPU
Memory

GPU

CPU

Chipset

P2P write: 5.2 GB/s

P2P read: < 1.0 GB/s

SNB E5-2670

P2P write: 6.4 GB/s

P2P read: 3.5 GB/s

IVB E5-2680V2

SNB E5-2670 /

IVB E5-2680V2

12

Performance of MVAPICH2 with GPU-Direct-RDMA: Latency
GPU-GPU Internode MPI Latency

SC'13 NVIDIA Booth presentation

0

100

200

300

400

500

600

700

800

8K 32K 128K 512K 2M

1-Rail

2-Rail

1-Rail-GDR

2-Rail-GDR

Large Message Latency

Message Size (bytes)

La
te

n
cy

 (
u

s)

Based on MVAPICH2-2.0b
Intel Ivy Bridge (E5-2680 v2) node with 20 cores

NVIDIA Telsa K40c GPU, Mellanox Connect-IB Dual-FDR HCA
CUDA 5.5, Mellanox OFED 2.0 with GPU-Direct-RDMA Patch

10 %

0

5

10

15

20

25

1 4 16 64 256 1K 4K

1-Rail

2-Rail

1-Rail-GDR

2-Rail-GDR

Small Message Latency

Message Size (bytes)

La
te

n
cy

 (
u

s)

67 %

5.49 usec

13

Performance of MVAPICH2 with GPU-Direct-RDMA: Bandwidth
GPU-GPU Internode MPI Uni-Directional Bandwidth

SC'13 NVIDIA Booth presentation

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 4 16 64 256 1K 4K

1-Rail

2-Rail

1-Rail-GDR

2-Rail-GDR

Small Message Bandwidth

Message Size (bytes)

B
an

d
w

id
th

 (
M

B
/s

)

0

2000

4000

6000

8000

10000

12000

8K 32K 128K 512K 2M

1-Rail

2-Rail

1-Rail-GDR

2-Rail-GDR

Large Message Bandwidth

Message Size (bytes)

B
an

d
w

id
th

 (
M

B
/s

)

Based on MVAPICH2-2.0b
Intel Ivy Bridge (E5-2680 v2) node with 20 cores

NVIDIA Telsa K40c GPU, Mellanox Connect-IB Dual-FDR HCA
CUDA 5.5, Mellanox OFED 2.0 with GPU-Direct-RDMA Patch

5x

9.8 GB/s

14

Performance of MVAPICH2 with GPU-Direct-RDMA: Bi-Bandwidth

Based on MVAPICH2-2.0b
Intel Ivy Bridge (E5-2680 v2) node with 20 cores

NVIDIA Telsa K40c GPU, Mellanox Connect-IB Dual-FDR HCA
CUDA 5.5, Mellanox OFED 2.0 with GPU-Direct-RDMA Patch

GPU-GPU Internode MPI Bi-directional Bandwidth

SC'13 NVIDIA Booth presentation

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 4 16 64 256 1K 4K

1-Rail

2-Rail

1-Rail-GDR

2-Rail-GDR

Small Message Bi-Bandwidth

Message Size (bytes)

B
i-

B
an

d
w

id
th

 (
M

B
/s

)

0

5000

10000

15000

20000

25000

8K 32K 128K 512K 2M

1-Rail

2-Rail

1-Rail-GDR

2-Rail-GDR

Large Message Bi-Bandwidth

Message Size (bytes)

B
i-

B
an

d
w

id
th

 (
M

B
/s

)

4.3x

19 %

19 GB/s

How can I get started with GDR Experimentation?

• Two modules are needed

– Alpha version of OFED kernel and libraries with GPUDirect RDMA (GDR)

support from Mellanox

– Alpha version of MVAPICH2-GDR from OSU (currently a separate distribution)

• Send a note to hpc@mellanox.com

• You will get alpha versions of GDR driver and MVAPICH2-GDR

(based on MVAPICH2 2.0a release)

• You can get started with this version

• MVAPICH2 team is working on multiple enhancements (collectives,

datatypes, one-sided) to exploit the advantages of GDR

• As GDR driver matures, successive versions of MVAPICH2-GDR with

enhancements will be made available to the community

15 SC'13 NVIDIA Booth presentation

mailto:hpc@mellanox.com

• Overview of MVAPICH2-GPU Project

• GPUDirect RDMA with Mellanox IB adaptors

• Other Optimizations for GPU Communication

• Support for MPI + OpenACC

• CUDA and OpenACC extensions in OMB

16

Outline

SC'13 NVIDIA Booth presentation

Multi-GPU Configurations

17

CPU

GPU 1 GPU 0

Memory

I/O Hub

Process 0 Process 1 • Multi-GPU node architectures are
becoming common

• Until CUDA 3.2

– Communication between processes
staged through the host

– Shared Memory (pipelined)

– Network Loopback [asynchronous)

• CUDA 4.0 and later

– Inter-Process Communication (IPC)

– Host bypass

– Handled by a DMA Engine

– Low latency and Asynchronous

– Requires creation, exchange and
mapping of memory handles - overhead

HCA

SC'13 NVIDIA Booth presentation

0

500

1000

1500

2000

4K 16K 64K 256K 1M 4M

La
te

n
cy

 (
u

se
c)

Message Size (Bytes)

0

10

20

30

40

50

1 4 16 64 256 1K

La
te

n
cy

 (
u

se
c)

Message Size (Bytes)

SHARED-MEM CUDA IPC

18

Designs in MVAPICH2 and Performance

70%

46%

SC'13 NVIDIA Booth presentation

• MVAPICH2 takes advantage of CUDA

IPC for MPI communication between

GPUs

• Hides the complexity and overheads of

handle creation, exchange and mapping

• Available in standard releases from

MVAPICH2 1.8

Intranode osu_latency large

Intranode osu_latency small

0

1000

2000

3000

4000

5000

6000

1 16 256 4K 64K 1M

B
an

d
w

id
th

 (
M

B
p

s)

Message Size (Bytes)

78%

Intranode osu_bw

19

Collectives Optimizations in MVAPICH2: Overview

SC'13 NVIDIA Booth presentation

• Optimizes data movement at the collective level for small

messages

• Pipelines data movement in each send/recv operation for

large messages

• Several collectives have been optimized

- Bcast, Gather, Scatter, Allgather, Alltoall, Scatterv, Gatherv,

Allgatherv, Alltoallv

• Collective level optimizations are completely transparent to

the user

• Pipelining can be tuned using point-to-point parameters

MPI Datatype Support in MVAPICH2

20

• Multi-dimensional data

– Row based organization

– Contiguous on one dimension

– Non-contiguous on other

dimensions

• Halo data exchange

– Duplicate the boundary

– Exchange the boundary in each

iteration

Halo data exchange

SC'13 NVIDIA Booth presentation

• Non-contiguous Data Exchange

MPI Datatype Support in MVAPICH2

• Datatypes support in MPI

– Operate on customized datatypes to improve productivity

– Enable MPI library to optimize non-contiguous data

SC'13 NVIDIA Booth presentation 21

At Sender:
 MPI_Type_vector (n_blocks, n_elements, stride, old_type, &new_type);

 MPI_Type_commit(&new_type);

 …

 MPI_Send(s_buf, size, new_type, dest, tag, MPI_COMM_WORLD);

 • Inside MVAPICH2
- Use datatype specific CUDA Kernels to pack data in chunks

- Optimized vector datatypes Kernel based pack/unpack in MVAPICH2 2.0b

- Efficiently move data between nodes using RDMA

- Transparent to the user

H. Wang, S. Potluri, D. Bureddy, C. Rosales and D. K. Panda, GPU-aware MPI on RDMA-Enabled Clusters: Design, Implementation
and Evaluation, IEEE Transactions on Parallel and Distributed Systems, Accepted for Publication.

22

Application Level Evaluation (LBMGPU-3D)

• LBM-CUDA (Courtesy: Carlos Rosale, TACC)
- Lattice Boltzmann Method for multiphase flows with large density ratios
- 3D LBM-CUDA: one process/GPU per node, 512x512x512 data grid, up to 64 nodes

• Oakley cluster at OSC: two hex-core Intel Westmere processors, two NVIDIA Tesla
M2070, one Mellanox IB QDR MT26428 adapter and 48 GB of main memory

0

50

100

150

200

250

300

350

400

8 16 32 64

To
ta

l E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

Number of GPUs

MPI MPI-GPU
5.6%

8.2%

13.5%
15.5%

3D LBM-CUDA

SC'13 NVIDIA Booth presentation

• Overview of MVAPICH2-GPU Project

• GPUDirect RDMA with Mellanox IB adaptors

• Other Optimizations for GPU Communication

• Support for MPI + OpenACC

• CUDA and OpenACC extensions in OMB

23

Outline

SC'13 NVIDIA Booth presentation

• OpenACC is gaining popularity

• Several sessions during GTC

• A set of compiler directives (#pragma)

• Offload specific loops or parallelizable sections in code onto accelerators
#pragma acc region
{

 for(i = 0; i < size; i++) {

 A[i] = B[i] + C[i];

 }
 }

• Routines to allocate/free memory on accelerators
buffer = acc_malloc(MYBUFSIZE);
acc_free(buffer);

• Supported for C, C++ and Fortran

• Huge list of modifiers – copy, copyout, private, independent, etc..

OpenACC

24
SC'13 NVIDIA Booth presentation

• acc_malloc to allocate device memory
– No changes to MPI calls

– MVAPICH2 detects the device pointer and optimizes data movement

– Delivers the same performance as with CUDA

Using MVAPICH2 with OpenACC 1.0

25

A = acc_malloc(sizeof(int) * N);

…...

#pragma acc parallel loop deviceptr(A) . . .

//compute for loop

MPI_Send (A, N, MPI_INT, 0, 1, MPI_COMM_WORLD);

……

acc_free(A);

SC'13 NVIDIA Booth presentation

• acc_deviceptr to get device pointer (in OpenACC 2.0)
– Enables MPI communication from memory allocated by compiler when it is available in

OpenACC 2.0 implementations

– MVAPICH2 will detect the device pointer and optimize communication

– Delivers the same performance as with CUDA

Using MVAPICH2 with OpenACC 2.0

26
SC'13 NVIDIA Booth presentation

A = malloc(sizeof(int) * N);

…...

#pragma acc data copyin(A) . . .

{

#pragma acc parallel loop . . .

//compute for loop

MPI_Send(acc_deviceptr(A), N, MPI_INT, 0, 1, MPI_COMM_WORLD);

}

……

free(A);

• Overview of MVAPICH2-GPU Project

• GPUDirect RDMA with Mellanox IB adaptors

• Other Optimizations for GPU Communication

• Support for MPI + OpenACC

• CUDA and OpenACC extensions in OMB

27

Outline

SC'13 NVIDIA Booth presentation

CUDA and OpenACC Extensions in OMB

• OSU Micro-benchmarks are widely used to compare

performance of different MPI stacks and networks

• Enhancements to measure performance of MPI communication

from GPU memory

– Point-to-point: Latency, Bandwidth and Bi-directional Bandwidth

– Collectives: support all collectives.

• Support for CUDA and OpenACC

• Flexible selection of data movement between CPU(H) and

GPU(D): D->D, D->H and H->D

• Available from http://mvapich.cse.ohio-state.edu/benchmarks

• Available in an integrated manner with MVAPICH2 stack

 28 SC'13 NVIDIA Booth presentation

http://mvapich.cse.ohio-state.edu/benchmarks
http://mvapich.cse.ohio-state.edu/benchmarks
http://mvapich.cse.ohio-state.edu/benchmarks

Summary

29 SC'13 NVIDIA Booth presentation

• MVAPICH2 evolving to efficiently support MPI communication on

heterogeneous clusters with NVIDIA GPU

• Simplifying task of porting MPI applications to these new architectures

• Optimizing data movement while hiding system complexity from the user

• Users have to still be aware of system configurations and the knobs

MVAPICH2 have to offer

• User feedback critical as the implementations mature

SC'13 NVIDIA Booth presentation

Web Pointers

NOWLAB Web Page

http://nowlab.cse.ohio-state.edu

MVAPICH Web Page

http://mvapich.cse.ohio-state.edu

30

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/

