AGENDA

Practical Considerations For Workstation Deployment

▪ Research to Production
 ▪ How do we deploy
 ▪ What do we need
 ▪ Scientist vs Engineer
 ▪ Using ONNX and WinML
 ▪ TensorRT and cuDNN

▪ The Last 10 Percent …

From Research to Production: It just works … or not?!

Summary
Research To Production

How do we deploy?

- Some constraints for workstation.
 - We likely be sharing the GPU with many other tasks
 - We may not know ahead of time what hardware will be available
 - Our deployment solution will likely need to integrate with an existing codebase
Research To Production
How do we deploy?

- Several solutions exist today.

- NVIDIA
 - cuDNN
 - TensorRT

- DirectX (Microsoft)
 - DirectML
 - WinML
Several solutions exist today.

- NVIDIA
- cuDNN
- TensorRT

NVIDIA provides optimized primitives

- DirectX (Microsoft)
 - DirectML
 - WinML
Research To Production
How do we deploy?

- Several solutions exist today.

NVIDIA
- cuDNN
- TensorRT

\[\text{Manually assemble model}\]

Intermediate representation e.g. ONNX, UFF

DIrectX (Microsoft)
- DirectML
- WinML
Several solutions exist today.

Research To Production

How do we deploy?
Research To Production

What do we need?

(e.g.) TensorFlow, PyTorch

Network Definition

Network Parameters
Research To Production

What do we need?

(e.g.) TensorFlow, PyTorch

Network Definition

Network Parameters

A few ways to do this.
Research To Production

C++ Parse The Protocol Buffers

- Most checkpoint/model file formats based on Protocol Buffers from Google
 - Check em out, they’re awesome.
- Message format defined in the .proto file
- Compiled with the Protocol Buffer Compiler
- Manipulate the contents with the Protocol Buffer API
- Good tutorials for this at
 - https://developers.google.com/protocol-buffers/docs/cpptutorial
Research To Production

Write the params and arch straight from Python

PyTorch example (simplified)

Load the model in Python, open output file for writing

......

head_0_spade_0_mlp_shared_0,Weights, 176198144,2342400, 128,183,5,5
head_0_spade_0_mlp_shared_0,biases, 176197632,512, 1,1,1,128
......
Research To Production
Write the model architecture straight from Python

PyTorch example (simplified)

Load the model in Python, open output file for writing

```python
input_file_path = <Path to Pytorch checkpoint>
ckpt = torch.load(input_file_path, map_location="cpu")
out_path = "netG_params.txt"

    with open(out_path, "w") as f:
```
PyTorch example (simplified)

Iterate the model, find the weights and biases

```python
input_file_path = <Path to Pytorch checkpoint>
ckpnt = torch.load(input_file_path, map_location="cpu")
out_path = “netG_params.txt”
with open(out_path,"w") as f:
    for model_key in ckpnt :
        if model_key.find("weight") > 0 or model_key.find("bias") > 0:
            cur_var = Variable(ckpnt[model_key])
            var_size = cur_var.size()
            size_len = len(var_size)
```
Replace ‘.’ with ‘_’ (personal preference)

tensor_name = model_key.replace(".","_")
tensor_type = ""
if model_key.find("weight") > 0:
 tensor_type = "Weights"
 tensor_name = tensor_name.replace("_weight","")
if model_key.find("bias") > 0:
 tensor_type = "biases"
 tensor_name = tensor_name.replace("_bias","")

tensor_dims = ""
tensor_total_size = 1
PyTorch example (simplified)

Record the tensor shape in a consistent manner

```python
if size_len < 4:
    size_len_delta = 4 - size_len
    for s in range(size_len_delta):
        tensor_dims += ',1'

    for s in range(size_len):
        tensor_dims += ',{}'.format(var_size[s])
        tensor_total_size *= var_size[s]

tensor_total_file_size = tensor_total_size * 4

tensor_size_data = ',{},{}'".format(tensor_offset, tensor_total_file_size)
```
Research To Production

Write the model architecture straight from Python

PyTorch example (simplified)

Write the name, offset, size and shape to the text file.

tensor_total_file_size = tensor_total_size * 4

tensor_size_data = "\{\},\{\}".format(tensor_offset,tensor_total_file_size)
tensor_offset += tensor_total_file_size
tensor_name += "\{\}".format(tensor_type)
f.write(tensor_name)
f.write(tensor_size_data)
f.write(tensor_dims)
f.write("\n")
Research To Production

Write the params and arch straight from Python

PyTorch example (simplified)

Load the model in Python, open output file for writing

<table>
<thead>
<tr>
<th>Tensor Name</th>
<th>Offset,Size</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>head_0_spade_0_mlp_shared_0,Weights</td>
<td>176198144,2342400</td>
<td>128,183,5,5</td>
</tr>
<tr>
<td>head_0_spade_0_mlp_shared_0,biases</td>
<td>176197632,512</td>
<td>1,1,1,128</td>
</tr>
</tbody>
</table>

......
Research To Production

Write the params and arch straight from Python

PyTorch example (simplified)

Load the model in Python, open output file for writing

<table>
<thead>
<tr>
<th>Tensor Name</th>
<th>Offset,Size</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>head_0_spade_0_mlp_shared_0,Weights,</td>
<td>176198144,2342400,</td>
<td>128,183,5,5</td>
</tr>
<tr>
<td>head_0_spade_0_mlp_shared_0,biases,</td>
<td>176197632,512,</td>
<td>1,1,1,128</td>
</tr>
</tbody>
</table>

……
Research To Production

Write the model params straight from Python

PyTorch example (simplified)

Similar loop as before but extract the weights from the .data member and write to a single file

(iterate model as before)

data = ckpt[model_key]
cur_var = Variable(data)
var_size = cur_var.size()
np_data = data.cpu().numpy()
f.write(np_data.tobytes())
Combined size of all output tensors is **141.8 MB**

Only two tensors used at a time: input & output tensor

- Allocate two times the maximum tensor size: **50 MB**
MINIMIZING MEMORY FOOTPRINT

“Ping-Pong” Tensor Memory

Memory Pool
2x Largest Tensor

Conv1_1
Conv1_2
Conv1_3
Pool1
Conv2_1

A 25mb
B 25mb

 Doesn’t work for cached tensors, e.g., skip links!
MINIMIZING MEMORY FOOTPRINT

Workspace Memory

Size of a convolution workspace varies, depending on multiple parameters:

- input and output tensor dimensions
- Precisions
- Convolution algorithm
- ...

But: workspace can be shared among layers

- Allocate maximum workspace size!
Scientists express their models in an algebraically correct manner.

- They need to, that’s how science shares research and advances.
- But algebraically correct does not necessarily mean performant.

Engineers need to identify when an algorithm can be restructured for performance.

- That’s our job.
Research To Production

Scientist vs Engineer

Example 1. $Wx+b$ when you ONLY want the bias.

\[
\begin{pmatrix}
0.1762 & 0.0365 & -0.0102 & 0.9191 \\
-0.2368 & -0.0010 & 0.7723 & -0.5400 \\
0.0012 & -0.3333 & -0.0001 & 0.0638 \\
0.0019 & -0.0095 & 0.0200 & 0.0211
\end{pmatrix}
\times
\begin{pmatrix}
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0
\end{pmatrix}
+
\begin{pmatrix}
0.0 \\
0.0 \\
0.0 \\
0.0
\end{pmatrix}
\times
\begin{pmatrix}
0.1762 \\
-0.2368 \\
0.0012 \\
0.0019
\end{pmatrix}
\]
Research To Production

Scientist vs Engineer

Example 1. $Wx + b$ when you ONLY want the bias.
Example 1. Wx+b when you ONLY want the bias.

In this particular case:

- Use a bias ad op to a zero tensor if you have one
- or
- Write custom kernel to write the bias values.
- And if possible fuse with previous and/or next step.
Example 2. Downsampling called many times on the same data.

Layer Block (e.g. Resnet)
- Sub Layer 0 - (e.g. Normalization)
- Sub Layer 1 -
- Sub Layer S - (ResNet Shortcut)

Sub Layer
- Downsample original Input
- Do Layer Specific Stuff
Example 2. Downsampling called many times on the same data.

Layer Block (e.g. ResNet)
- Sub Layer 0 - (e.g. Normalization)
- Sub Layer 1 -
- Sub Layer S - (ResNet Shortcut)

Sub Layer
- Downsample original Input
- Do Layer Specific Stuff

This is the same operation on the same data 3 times
Research To Production

Scientist vs Engineer

Example 2. Re order the operations....

Layer Block (e.g. Resnet)

- Downsampling original Input
- Sub Layer 0 - (e.g. Normalization)
- Sub Layer 1 -
- Sub Layer S - (ResNet Shortcut)

Sub Layer

- Do Layer Specific Stuff

This is the same operation on the same data 3 times.
Several solutions exist today.

- NVIDIA
 - cuDNN
 - TensorRT

Manually assemble model

Intermediate representation e.g. ONNX, UFF

DirectX (Microsoft)
- DirectML
- WinML
Research To Production

Using ONNX

- ONNX is great for a production workflow
Research To Production

Using ONNX

- ONNX is great for a production workflow
 - Designed to be seamless

Diagram:

1. Research Implementation
2. ONNX
3. Deployment (Inference)
Research To Production

Parser vs Engineer

- Parsers and converters aren’t always perfect
 - Though they are improving all the time
- Sometimes a resulting ONNX graph needs some closer inspection
- Numerous ways to perform surgery on ONNX graph
- ONNX graphs also based on protocol buffers
- Simple to create a custom ONNX parser
 - Analyze the graph
 - Make changes
 - Write out a new graph
Research To Production

Parser vs Engineer

Conv2d

Activation

Affine (redundant)

Conv2d

Activation

e.g. \(Wx + b \) where
\[
W = 1.0f \\
b = .0.f
\]
Research To Production

Parser vs Engineer

```
Conv2d
Activation
Affine (redundant)
Conv2d
Activation
```

E.g. \(Wx + b \) where

\[
W = 1.0f \\
b = 0.0f
\]

Neither operation nor parameter data are needed in the mode.
Research To Production

Parser vs Engineer

Manually edit the graph Using e.g. protocol buffers API
Research To Production
Parser vs Engineer

Now the model is smaller
And it’s going to run faster
Research To Production

Porting to WinML and/or DirectML

TensorFlow PyTorch Caffe etc.

3rd Party Utils

ONNX

Weights and Architecture

A bit of elbow grease

C++ API

Inference with DirectX Compute
Research To Production

Porting to TensorRT

TensorFlow, PyTorch, Caffe etc.

- 3rd Party Utils
- Trt Python tools
- ONNX
- UFF
- TensorRT

Weights and Architecture

- A bit of elbow grease
- C++ API
Research To Production
UFF, ONNX or API Which to use....

- Most common architectures will import directly from TensorFlow/PyTorch etc
- Most common operations are already supported in TensorRT
- Convolution/Cross Correlation
- Activation
 - Sigmoid, Relu, Clipped Relu, TanH, ELU
- Batch Norm
 - Spatial, Spatial_persistent, Per Activation
- Pooling
 - Max, Average
Research To Production

UFF, ONNX or API Which to use....

• Sometimes it’s not that easy

• Sometimes some graph surgery is required.
 • Edit the graph to strip out e.g. pre/post processing at either end of the graph

• TensorRT provides a plug-in interface for custom layers
 • Name custom layers as per the incoming model (e.g. LeakyRelu)
 • From TrT 5.1 : The IPlugInV2 interface supports optimization.

• There is a simpler option
Research To Production
Porting to TensorRT Using TfTrt

• Converts TensorFlow graph into 1 or more TensorRT ‘blocks’
• Add’s these blocks back onto TensorFlow graph
• Inference of these blocks performed with TensorRT
• The rest use TensorFlow
• Workflow:
 • Load TensorFlow graph
 • Prepare for inference (freeze layers, convert variables to constants etc)
 • Call trt.create_inference_graph(input_graph_def, outputs, max_batch_size,max_workspace_size,precision_mode)
Porting to TensorRT Using TfTrt

TensorFlow → TfTrt → Still TensorFlow

TensorRT friendly
Custom Stuff
TensorRT friendly
Custom Stuff
TensorRT friendly

TensorRT ‘blocks’ optimized and added back onto the TensorFlow Graph
Important takeaways from this

You don’t need generate a single monolithic graph with TensorRT

Generate graph snippets from TensorRT interleaved with custom CUDA

You can do this with the TensorRT API

Execute them in whatever sequence you need at run time.

Allows you to create inference solutions with dynamic runtime behavior.

Keep all data on the GPU whenever possible.
Research To Production
When it doesn’t ….. Just work.

Here’s a debugging tip...

- Original Pytorch/Tf Working 😊
- TensorRT or cuDNN Not working ☹️
Research To Production
When it doesn’t …… Just work.

Here’s a debugging tip...

- Original Pytorch/Tf Working 😊
- TensorRT or cuDNN Not working 😞

Dump Layer Outputs to Disk
Here’s a debugging tip...

Original Pytorch/Tf Working 😊

TensorRT or cuDNN Not working 😞

Compare tensors with Python script.

Narrow down the problem to here.
LOW PRECISION INFERENCE

In most cases FP16 / half provides more than adequate precision for image processing

As long as there is fairly low variance across the model

Volta and Turing have hardware for FAST fp16 - TRUE_HALF_CONFIG

On Pascal and below, store in fp16 but process in fp32 - PSEUDO_HALF_CONFIG

Given an FP32 model, simply converting the weights to FP16 often retains decent quality

For best results ⇒ Retrain with FP16 precision
LOW PRECISION INFERENCE

Deep Image Matting, Chris Hebert, GTC‘18

![Bar chart showing speedup vs input size for FP32 and FP16 precisions.](chart.png)
LOW PRECISION INFERENCE
Deep Image Matting, Chris Hebert, GTC‘18

Memory Demands

```
Input Size     FP32       FP16
320x320        | 100.00%   | 60.00%
640x640        | 100.00%   | 60.00%
960x960        | 100.00%   | 60.00%
1280x1280      | 100.00%   | 60.00%
```
LOW PRECISION INFERENCE

Deep Image Matting

FP32

FP16

Abs difference x100
Tensor Cores perform FP16 matrix multiply accumulate (HMMA)

Turing also supports INT8 and INT4

Only two algorithms supported:

- `CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED`
- `CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM`

Number of Input and output channels must be multiple of eight!

Convolution math type must be set to `CUDNN_TENSOR_OP_MATH`

And it will be much MUCH faster!
TENSOR CORES ON VOLTA & TURING

8 Tensor Cores per sm.

Each Tensor Core performs 64 FMA operations per clock

 4x4x4 sub matrices

Each warp utilizes multiple Tensor Cores to accumulate results

Hardware operates in FP16, cuDNN 7.3 onwards transparently converts from/to FP32:

 CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION
Mixed Precision Matrix Math
4x4 matrices

\[D = \begin{pmatrix}
A_{0,0} & A_{0,1} & A_{0,2} & A_{0,3} \\
A_{1,0} & A_{1,1} & A_{1,2} & A_{1,3} \\
A_{2,0} & A_{2,1} & A_{2,2} & A_{2,3} \\
A_{3,0} & A_{3,1} & A_{3,2} & A_{3,3}
\end{pmatrix}
\begin{pmatrix}
B_{0,0} & B_{0,1} & B_{0,2} & B_{0,3} \\
B_{1,0} & B_{1,1} & B_{1,2} & B_{1,3} \\
B_{2,0} & B_{2,1} & B_{2,2} & B_{2,3} \\
B_{3,0} & B_{3,1} & B_{3,2} & B_{3,3}
\end{pmatrix}
+ \begin{pmatrix}
C_{0,0} & C_{0,1} & C_{0,2} & C_{0,3} \\
C_{1,0} & C_{1,1} & C_{1,2} & C_{1,3} \\
C_{2,0} & C_{2,1} & C_{2,2} & C_{2,3} \\
C_{3,0} & C_{3,1} & C_{3,2} & C_{3,3}
\end{pmatrix}

D = AB + C
LOW PRECISION INFERENCE
Deep Image Matting, Chris Hebert, GTC‘18

Input Size

Speedup

320x320 640x640 960x960 1280x1280

FP32 FP16 FP16 + TC
LOW PRECISION INFERENCE
Deep Image Matting, Chris Hebert, GTC‘18

[Diagram showing memory demands for different input sizes (320x320, 640x640, 960x960, 1280x1280) with memory demands ranging from 0.00% to 100.00% using FP32, FP16, and FP16 + TC precision.]
TENSOR CORES ON VOLTA AND TURING

NCHW vs NHWC

<table>
<thead>
<tr>
<th>Input Tensor Size</th>
<th>Output Tensor Size</th>
<th>Filter Size</th>
<th>NCHW</th>
<th>NHWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 x 32 x 64</td>
<td>16 x 16 x 128</td>
<td>3 x 3</td>
<td>0.05 ms</td>
<td>0.04 ms</td>
</tr>
<tr>
<td>128 x 128 x 128</td>
<td>128 x 128 x 128</td>
<td>3 x 3</td>
<td>0.11 ms</td>
<td>0.08 ms</td>
</tr>
<tr>
<td>512 x 512 x 32</td>
<td>256 x 256 x 64</td>
<td>5 x 5</td>
<td>0.25 ms</td>
<td>0.15 ms</td>
</tr>
<tr>
<td>1920 x 1080 x 8</td>
<td>1920 x 1080 x 32</td>
<td>5 x 5</td>
<td>3.00 ms</td>
<td>2.31 ms</td>
</tr>
<tr>
<td>16 x 16 x 128</td>
<td>8 x 8 x 256</td>
<td>7 x 7</td>
<td>0.26 ms</td>
<td>0.11 ms</td>
</tr>
<tr>
<td>128 x 128 x 128</td>
<td>128 x 128 x 128</td>
<td>7 x 7</td>
<td>0.37 ms</td>
<td>0.34 ms</td>
</tr>
<tr>
<td>800 x 800 x 8</td>
<td>400 x 400 x 8</td>
<td>9 x 9</td>
<td>1.20 ms</td>
<td>2.53 ms</td>
</tr>
</tbody>
</table>

Convolution algorithm selected using cudnnFindConvolutionForwardAlgorithm(…)

Introduction to cuDNN

cuDNN Best Practices:

- Memory Management Done Right
- Choosing the Right Convolution Algorithm & Tensor Layout
- Tensor Cores: Low Precision Inference at Speed of Light
- The Last 10 Percent …

From Research to Production: It just works … or not?!

Summary/Demo
SUMMARY

Common DL frameworks often far from optimized for inference on GPUs

➢ Use cuDNN (or TensorRT) if you care about performance & memory!

Memory Management matters!

Lower your precision if possible!

Use hardware-specific optimizations, e.g.Tensor Cores on Volta & Turing!

You can never profile too much!