

 G
en

er
at

iv
e

Ar
t —

 M
ad

e
w

ith
 U

ni
ty

DirectX Ray Tracing in
Unity 2019.3
Siggraph 2019

Tianliang Ning, DXR Graphics Dev
paulan@unity3d.com

3

DXR Integration and
Overview

DXR Overview

4

API designed to leverage hardware-accelerated ray
tracing

Why trace rays?

— Off-screen rendering (reflection, refraction)
— Algorithms that call for raycasting

Two major concepts to be concerned with:

— Ray Tracing Acceleration Structures:
What are we drawing?

— Ray Tracing Shaders:
How should we draw things?

Acceleration Structure

5

— Bottom-Level AS: Geometry only
— BVH construction done by driver
— Top-Level AS: Geometry, materials,

transforms, hierarchy

BLAS

TLAS

BLASBLAS

Acceleration Structure

6

New Unity class: RayTracingAccelerationStructure

— May be manually or automatically managed
– Manual: AddInstance(), UpdateInstanceTransform()

— Specify layer masks on creation to filter which GameObjects
may be added

— Call BuildRayTracingAccelerationStructure once a frame

Acceleration Structure Management

7

New Renderer setting: RayTracingMode

In order from least to most expensive:

1. Off
2. Static
3. DynamicTransform
4. DynamicGeometry

8

Ray Tracing Shaders

Raytrace Shaders

— RayGen: First shader executed on dispatch
— Miss: Executes if ray fails to intersect with any

geometry that has a hit shader

Surface Shaders

— ClosestHit: Executes on hit nearest to ray origin
— AnyHit*: Executes on every intersection

Callable Shaders

Execute
AnyHit
Shader

Don’t Execute
ClosestHit
Shader

May Execute
AnyHit Shader
(results unused)

Ray Tracing Shaders

9

Execute
ClosestHit
Shader

Execute
RayGen Shader

Execute AnyHit
Shader

Execute
ClosestHit
Shader

Execute
Miss Shader

Ray Tracing Shader API

10

— New shader type: RayTracingShader
– Extension is .raytrace

— New CommandBuffer API:
– CommandBuffer.SetRayTracingShaderPass
– CommandBuffer.SetRayTracingAccelerationStructure
– CommandBuffer.SetRayTracing*Param

– e.g. SetRayTracingMatrixParam, SetRayTracingIntParam, etc.
– CommandBuffer.DispatchRays
– Analogous bindings also available from RayTracingShader class

itself, for immediate execution

Ray Tracing Shader Authoring

11

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

// Dispatch shader: Defines at minimum a ray generation shader, often also a miss shader.
// This is the shader that is dispatched, as one would a compute shader,
// for a given ray traced pass.

struct RayPayload { float4 color; uint2 launchIdx; }; // User-defined

[shader(“raygeneration”)]
void FullResRayGen()
{
 uint2 launchIdx = DispatchRaysIndex().xy; // DXR callback
 uint2 launchDim = DispatchRaysDimensions().xy; // DXR callback
 float2 ndcCoords = (launchIdx / float2(launchDim.x - 1, launchDim.y - 1)) * 2 - float2(1, 1);
 float3 viewDirection = normalize(float3(ndcCoords.x * aspectRatio, ndcCoords.y, -1);
 RayDesc ray; // DXR defined
 ray.Origin = float3(camera_IV[0][3], camera_IV[1][3], camera_IV[2][3]);
 ray.Direction = normalize(mul(camera_IV, viewDirection));
 ray.TMin = 0;
 ray.TMax = 1e20f;
 RayPayLoad payload;
 payload.color = float4(0, 0, 0, 0);
 TraceRay(accelerationStructure, 0, 0xFF, 0, 1, 0, ray, payload); // DXR callback
}

Ray Tracing Shader Authoring

12

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

[shader(“miss”)]
void SampleSkybox(inout RayPayload payload : SV_RayPayload)
{
 rayDirection = WorldRayDirection();
 float4 skyboxColor = skyboxTex.SampleLevel(linearRepeatSampler, rayDirection, 0);
 payload.color = skyboxColor;
}

// These slides have a good introduction to built-in DXR callbacks:
// http://intro-to-dxr.cwyman.org/presentations/IntroDXR_RaytracingShaders.pdf

Surface Shader Authoring for Ray Tracing

13

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

// Material/Surface shader: Hit shaders should be defined as a pass in a shader used for a
// material in the scene.
Shader “FlatColor”
{

SubShader { Pass { CGPROGRAM
#pragma vertex vert
#pragma fragment frag
v2f vert (appdata v) { return UnityObjectToClipPos(v.vertex); }
fixed4 frag (v2f i) : SV_Target { return albedo; }
ENDCG

} }

SubShader { Pass Name "DefaultRTPass" { HLSLPROGRAM // Pass name must match that specified by SetShaderPass()
#pragma raytracing
struct AttributeData { float2 barycentrics; }; // User-defined
[shader(“closesthit”)]
void FullResRayGen(inout RayPayload payload : SV_RayPayload,

 AttributeData attribs : SV_IntersectionAttributes)
{ // A trivial hit shader that populates a bound RT with albedo of hit object
 payload.color = albedo;
 outputRT[payload.launchIdx] = albedo;
} ENDHLSL

} }
}

Setup Requirements for DXR in Unity

14

— Windows 10 v1809+
— Unity 2019.3b1+
— Graphics card with latest drivers:

credit: nvidia

Unity Project settings:

— Select DX12 as Windows Graphics
API

Ray Tracing Setup for HDRP

15

— Everything on the previous slide
— Clone HDRP from Github
— Windows > Render Pipeline > HDRP Wizard > check everything under DXR

additional configuration, which takes care of the following:
– Sets DX12 as graphics API if you haven’t already
– In Project Settings > Player > Scripting Define Symbols, add

REALTIME_RAYTRACING_SUPPORT
– In HDRP Asset > Rendering, enable Realtime Raytracing

— Find ShaderConfig.hlsl in your local copy of the high-definition-config package,
and change #define SHADEROPTIONS_RAYTRACING to (1)

— Add a Game Object > Rendering > Ray Tracing Environment to your scene
— For ray traced shadows: enable screen space shadows in HDRP Asset

State of Unity DXR

16

— Ray Tracing API is pipeline-agnostic
– However, it’s only officially supported for HDRP

– HDRP is also the only pipeline that actually implements
features using ray tracing

– In ShaderGraph, HDRP master nodes for Lit, Unlit, and Fabric
support ray tracing

– Users can still use the public C# API to build their own features!
— Unsupported in 19.3:

– Intersection shaders
– Animated meshes
– Procedural geometry

17

Ray Tracing Features in the
High Definition Render
Pipeline

— Primary rays for most effects are computed from depth/normal buffers
— Cluster-based lighting added to HDRP for ray tracing
— Render graph here is simplified and omits many HDRP stages

Architecture

18

Prepass

GBuffer

Shadows

RT Directional
Shadows

RT Area
Shadows

RT Ambient
Occlusion

RT Light
Clusters

RT Reflections

RT Indirect
Diffuse

Deferred
Lighting

RT
Transparents PostProcessing

Ray Traced Effects

19

TransparentsShadowsIndirect Lighting

Ray Traced Indirect Lighting

20

Ambient Occlusion

● Not technically
lighting

● Same as GI but only
visibility/no color

● 1 bounce

Reflections
(Indirect Specular)

● Isotropic GGX lobe
sampling

● Split sum approximation
● Multiple bounces
● Temporally accumulated

Global Illumination
(Indirect Diffuse)

● Lambert lobe sampling
● Multiple bounces
● Temporally accumulated

Cluster Based Light
Lists

21

— Ray Tracing must look up light list
given 3D intersection location in
scene

— Populated with lights within culling
radius of camera

— Debug view shows # of lights
affecting a given cluster

Ray Traced Shadows

22

Directional Lights:

● Ray-traced screen space soft shadows
● Sun modeled as adjustable-size disk

Area Lights:

● Rays cast across surface of area light
● Combined with analytic lighting using a

ratio estimator

23

Transparents

— Need angle of incidence, so trace
primary rays (rather than
constructing first hit from
GBuffer)

— Each bounce generates 2 rays:
one for transmission, one for
reflection

— More overlapping transparent
layers require more bounces

3 bounces 5 bounces 7 bounces

Screen space refraction Recursive ray tracing

24

Spatiotemporal Sampling

Sample count is configured per-effect.

1. Ray pixel coordinates are used to
sample spatial noise from
dithered blue-noise texture

2. Spatial noise results and frame
index used to sample temporal
noise from a looping Sobol
sequence

3. Resulting value is mapped to the
appropriate PDF for each effect
to calculate raycast direction

Blue Noise Tile 256x256x2

Owen Scrambled Sobol Sequence
256x1x4

Example lobes for secondary
ray directions

Denoising

25

Denoising is done per-effect in a compute
shader:

— Temporal sample accumulation
— Use accumulated samples across

previous 8 frames
— Previous frames reprojected to

correct for camera motion
— Separable Bilateral Gaussian filtering

— Uses depth/normal buffers detect
and avoid artifacting at edges

— Incompatible with transparents

Optimization Knobs

26

Ray tracing effects may be accessed in the
volume inspector

Per-Effect config

— Ray length
— # samples
— # bounces

Content management

— Mesh count
— Per-effect and per-camera layer masks
— Selective application of effects

Acknowledgements

27

Anis Benyoub

Sebastien Lagarde

Justin Lee

Mike Lee

Ionut Nedelcu

Marc Scattergood

Soner Sen

Natasha Tatarchuk

Joel de Vahl

28

We are hiring

29

Together, we empower real-time
creativity around the world.

careers.unity.com
277 open positions across 25 locations in 10 departments

Want to learn more?

Tutorial:
Particle System: Lights

Tutorial:
Post-Processing Effects
(2018.x+)

Tutorial:
Introduction to the Post
Processing Stack

Unity experts, live sessions, and advanced learning at
learn.unity.com

 G
en

er
at

iv
e

Ar
t —

 M
ad

e
w

ith
 U

ni
ty

Thank you.

#unity3d

Resources

Ray Tracing Shader Execution

33

https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html

AnyHit:

“The TMin value tracked by the system never changes
over the lifetime of a ray. On the other hand, as
intersections are discovered (in arbitrary spatial
order), the system reduces TMax to reflect the closest
intersection so far. When all intersections are
complete, TMax represents the closest intersection,
the relevance of which appears later...”

AnyHit

34

— IgnoreHit()
— AcceptHitAndEndSearch()
— Otherwise, implicitly accepts hit and continues traversal

Don’t
Execute

ClosestHit
Shader

May
Execute
AnyHit
Shader
(results
unused)

Execute
AnyHit
Shader

Ray Tracing Shaders

35

Execute
ClosestHit

Shader Execute
Miss Shader

Execute
RayGen Shader

Execute
AnyHit
Shader

May Execute
Miss Shader
(results unused)

Execute
ClosestHit

Shader

Execute Custom
Intersection Shader

Replace with image

Hybrid Render Graph

36

Replace with image

Indirect Specular

37

*

