
PRACTICAL REAL-TIME VOXEL-BASED GLOBAL

ILLUMINATION FOR CURRENT GPUS
Alexey Panteleev

NVIDIA

2

OUTLINE

 Introduction: what is Global Illumination?

 Screenshots

 Overview of Voxel Cone Tracing

 Implementation details

— Voxel clipmaps and incremental updates

— Voxelization algorithms

— Light injection algorithms

— Cone tracing

 Performance

3

WHAT IS GLOBAL ILLUMINATION?
Here is a flashlight that lights the floor.

4

WHAT IS GLOBAL ILLUMINATION?
Here is a flashlight that lights the floor.

Light bounces off the floor

and hits the surrounding objects.

5

WHAT IS GLOBAL ILLUMINATION?
Here is a flashlight that lights the floor.

Light bounces off the floor

and hits the surrounding objects.

And then it bounces off those objects

back to the floor.

The process of computing these bounces

is called global illumination.

6

HOW IT IS USUALLY SOLVED
 Accurate physics-based GI computation is extremely

expensive

 Static approximations

— Flat ambient

— Light maps

 Dynamic approximations

— Manually placed lights simulating indirect illumination

— Virtual Point Lights – expensive, no occlusion

— SH irradiance volumes, Light propagation volumes – no specular

— Image-space approaches – incomplete scene information

— Sparse Voxel Octree Global Illumination (SVOGI) – doesn’t handle
dynamic or large scenes well

7

OUR SOLUTION
 Dynamic approximation

— No offline pre-computations

— Handles dynamic scenes easily

 Voxel Cone Tracing

— “Interactive Indirect Illumination Using Voxel Cone Tracing” by Cyril
Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, Elmar Eisemann

 Gathering information from a multi-resolution voxel
representation of the scene

8

DIRECT LIGHTING

9

INDIRECT LIGHTING

10

COMBINED

11

EMISSIVE MATERIALS ONLY

12

MORE EMISSIVE MATERIALS

13

SCREEN-SPACE AMBIENT OCCLUSION

Unreal Engine 4 Effects Cave demo

14

VOXEL-BASED AMBIENT OCCLUSION

Highlights the volumetric structure of the scene.

3.5x more expensive than HBAO+, including full scene voxelization.

15

OVERVIEW OF VOXEL CONE TRACING
 Transform the scene into voxels that encode opacity

— Then downsample the opacity map

 Inject light into voxels that encode emittance or radiosity

— This includes both emissive materials and light reflected by objects

— Then downsample the emittance map

 Gather light by tracing cones through the opacity and
emittance maps

16

VOXEL TEXTURE CONTENTS

 Opacity textures

— 3 or 6 opacity directions for each voxel

— “How opaque is the voxel when viewed from a certain direction”

— 6 directions work better for wide cones: less self-shadowing

 Emittance textures

— 3 or 6 emittance directions for each voxel

— “How much light does the voxel emit to a certain direction”

— 6 for HQ and second-bounce tracing, 3 for LQ tracing

17

OUR INNOVATION: 3D CLIPMAP
 We store the voxel data in clipmaps

— Multi-resolution texture

— Regions near the center have higher spatial resolution

— Seems to map naturally to cone tracing needs

 A clipmap is easier to build than SVO

— No nodes, pointers etc., handled by hardware

 A clipmap is easier to read from

— Same reasons

 Clipmap size is (64…256)^3 with 3…5 levels of detail

— 16…32 bytes per voxel => 12 MB … 2.5 GB of video memory required

18

CLIPMAP VS. MIPMAP

LOD 2

64 elements

LOD 1

64 elements
LOD 0

64 elements

LOD 3

8 elements

LOD 4

1 element
LOD 1

512 elements

LOD 0

4096 elements

Clipmap

MIP-map

LOD 2

64 elements

LOD 3

8 elements

LOD 4

1 element

19

UPDATING THE CLIPMAP DATA

Texture extent

New extent

Objects don’t move

world-space X world-space X

Y Y

20

TOROIDAL ADDRESSING

The background shows texture addresses: frac(worldPos.xy / levelSize.xy)

A fixed point in space always maps to the same address in the clipmap.

1, 1

0, 0 1, 0

0, 1 1, 1

0, 0 1, 0

0, 1

1, 1

0, 0 1, 0

0, 1 1, 1

0, 0 1, 0

0, 1

1, 1

0, 0 1, 0

0, 1 1, 1

0, 0 1, 0

0, 1

1, 1

0, 0 1, 0

0, 1 1, 1

0, 0 1, 0

0, 1

world-space X world-space X

Y Y

21

INCREMENTAL UPDATES: CLIPMAP MOVES
When the clipmap moves slightly, most of the data remains valid.

1, 1

0, 0 1, 0

0, 1 1, 1

0, 0 1, 0

0, 1

1, 1

0, 0 1, 0

0, 1 1, 1

0, 0 1, 0

0, 1

1, 1

0, 0 1, 0

0, 1 1, 1

0, 0 1, 0

0, 1

1, 1

0, 0 1, 0

0, 1 1, 1

0, 0 1, 0

0, 1

Kept

Revoxelized

world-space X world-space X

Y Y

22

INCREMENTAL UPDATES: OBJECTS MOVE
If some objects change, only the corresponding regions need to be revoxelized.

world-space X world-space X

Y Y

Revoxelized

Kept

23

VOXELIZATION

 The process of converting a mesh
into a voxel representation

 Different kinds of voxelization:

— Solid or surface

— 6 or 26-separating

— Binary, antialiased or more complex
(e.g. surface parameters stored in
voxels)

 We use antialiased 6-separating
surface voxelization + thickening

A binary voxel representation

 of an object with color information

24

VOXELIZATION FOR OPACITY

1. We have a triangle and a voxel.

?

??

This is one voxel.

25

VOXELIZATION FOR OPACITY

2. Select the projection plane that

yields the biggest projection area

(the back face in this case).

?

??

26

VOXELIZATION FOR OPACITY

3. Rasterize the triangle using

MSAA to compute one coverage

mask per pixel.

Actual MSAA pattern is different,

but we translate those samples

onto a regular grid.

?
?

27

VOXELIZATION FOR OPACITY

4. Now take the MSAA samples and

reproject them onto other planes

using the triangle plane equation.

28

VOXELIZATION FOR OPACITY

5. Repeat that process for all

covered samples.

29

VOXELIZATION FOR OPACITY

6. Thicken the result by blurring

all the reprojected samples.

Some samples may go into the

closer or further voxels

depending on the Z-slope of the

triangle.

We can add uniform noise

(dither) to Z positions of

samples to reduce aliasing.

30

VOXELIZATION: SCENE GEOMETRY

31

VOXELIZATION: DIRECTIONAL COVERAGE

32

VOXELIZATION: OPACITY

33

VOXELIZATION: DOWNSAMPLING 1

34

VOXELIZATION: DOWNSAMPLING 2

35

VOXELIZATION FOR EMITTANCE

 Step 1: select the projection plane and rasterize the triangle

 Step 2: compute the approximate light intensity for each
voxel

— Can use the coverage mask to weigh the emittance texture/color

— Project the intensity to 3 or 6 directions

 Step 3: accumulate the directional intensities for all
rasterized triangles

36

EMISSIVE VOXELIZATION ALIASING
 Small objects change apparent brightness abruptly

 Mostly appears in the remote regions of the clipmap

 Possible solutions are adaptive supersampling and analytical
coverage computation

 8x MSAA pattern

 The object covers:

— Left: 4 samples

— Right: 1 sample

— Flickers when moves

37

ADAPTIVE SUPERSAMPLING
 Compute the triangle AABB and edge equations in the GS

 Rasterize the triangle conservatively

 Sample the edge equations on a regular grid within the
bounding box in the PS

 Number of samples depends on the clip level / voxel size

 The result: no flickering at all.

38

MULTI-RESOLUTION VOXELIZATION

 MIP-map: downsample finer levels to get coarser levels

 Clipmap: there are no finer levels for most of coarser levels

 Rasterize every triangle at several resolutions

— Obtain center regions of coarser levels by downsampling finer levels

— Use GS instancing to rasterize one triangle several times

39

MULTI-RESOLUTION VOXELIZATION

Voxelization with downsampling yields higher quality results than multi-res voxelization.

Rasterize… Downsample once Downsample twice

40

OPACITY INTERPOLATION
 Issue: When an object moves from one clip level to another,

its coarse representation changes

 Solution: interpolate between downsampled and directly
voxelized representations

— The weights are derived from the distance to the clipmap anchor

— Smooth changes in AO following the camera

LOD 0

LOD 1 (combined)

LOD 1 (voxelized)

LOD 0

LOD 1 (combined)

LOD 1 (voxelized)

No interpolation With interpolation

weight

41

LIGHT INJECTION
 A process of calculating emittance of voxels that contain

surfaces lit by direct lights

 We can take information from reflective shadow maps (RSMs)

Shadow map rays

RSM texels

Affected voxels

42

RSM LIGHT INJECTION ALGORITHMS
 Simplest option: test every voxel center against the RSM

— Consider only voxels with nonzero opacity

— If a voxel is lit, take the color and normal from the RSM

— Problems: aliasing, false lighting on object boundaries

 Better option: gather all RSM texels that belong to the voxel

— Many texture fetches per voxel, most of them are useless

 Even better option: scatter RSM texels into voxels using
atomic operations

— Lots of atomic collisions if there are many texels per voxel

— Not very stable if there are few texels per voxel

43

LIGHT INJECTION ALIASING

Slight changes in object or light positions sometimes change the lighting significantly.

44

LIGHT INJECTION ALIASING

Slight changes in object or light positions sometimes change the lighting significantly.

45

LIGHT INJECTION PRE-FILTERING

 Need to pre-filter the RSM point cloud before injecting

— Every texel will affect more than 1 voxel (3^3 or even 5^3)

— Expensive to inject with scattering: atomics will be a bottleneck

 Solution: add noise to point positions and hope there are
enough points to filter out that noise

— Dithering once again

— The offset is computed as (normal * voxelSize * [-0.5…0.5])

— Using different noise scales for different clip levels results in a
mismatch between injected and downsampled light…

46

VOXELIZATION BASED LIGHT INJECTION

 Alternative approach to light injection

— Voxelize all potentially lit scene geometry as emissive objects

— Compute the reflected light amount for every rasterized fragment
using the material shader and shadow maps

 Compared to scatter light injection…

— No need for the expensive-to-render RSMs

— Higher quality with low-res shadow maps

— Better performance with simple enough geometry and high-res
shadow maps

47

CONE TRACING BASICS
 Several cones are traced from every visible surface

 A cone marches through the clipmap accumulating:

— transparency (1-opacity)

— illumination (emittance * transparency)

Each sample is taken

from a coarser LOD

than the previous one. 1

0
transparency
illumination

48

DIFFUSE AND SPECULAR CONE TRACING

Diffuse

n

Rough Specular

n

Fine Specular

49

SPARSE DIFFUSE CONE TRACING

 Diffuse lighting is usually low-frequency

— HQ cone tracing for every pixel is redundant

 We trace every Nth pixel on the screen

— N = {1, 4, 9, 16}

— Rotated grid pattern to reduce aliasing

 Interpolate using a bilateral filter

— MSAA resolve fits naturally into the interpolation pass

50

LIGHT LEAKING ISSUE

Lit surfaces

A coarse voxel

Indirect lighting receiver

Unilt samples

Lit sample

51

PERFORMANCE
 Full GI is practical on current mainstream GPUs

— e.g. GeForce GTX 770

 Voxel-based AO works well on low-end GPUs, too

— Looks much better than SSAO

 GI processing time per frame, in ms:

AO only Med High Ultra

GTX 650 (GK107) 14.3 28.1

GTX 770 (GK104) 3.8 7.4 12.9

GTX TITAN (GK110) 3.1 6.6 9.6 25.4

@ 1920x1080

52

RENDERING TIME BREAKDOWN

18%

59%

17%

3%

4%

0% 10% 20% 30% 40% 50% 60% 70%

Specular tracing and filtering

Diffuse tracing and interpolation

Emittance representation update

Opacity representation update

Allocation map update

Fraction of total GI processing time

High quality settings: 1920x1080, 17 cones, trace every 9th pixel. GTX TITAN.

53

CONCLUSION
 Fully dynamic GI becomes practical on mainstream GPUs

— Low end GPUs can benefit from much higher-quality AO

 Future work

— Further reduction of aliasing issues

— Performance optimizations

— Reduce the amount of content changes necessary

 Planned to be released as NVIDIA global illumination library

54

QUESTIONS?

 Send them to me: alpanteleev@nvidia.com

 Thanks:

— Cyril Crassin Yury Uralsky

— Evgeny Makarov Sergey Bolotov

— Khariton Kantiev Alexey Barkovoy

— Monier Maher Miguel Sainz

— Holger Gruen Louis Bavoil

— Lucas Magder Zohirul Sharif

— Chris Cowan Edward Liu

