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100倍以上速く、
本当に可能ですか？
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Neural Machine 

Translation Unit

DOUGLAS ADAMS – BABEL FISH
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OVER 100X FASTER,
IS IT REALLY POSSIBLE?

Over 200 

years
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NVIDIA TENSORRT
Programmable Inference Accelerator

developer.nvidia.com/tensorrt

DRIVE PX 2

JETSON TX2

NVIDIA DLA

TESLA P4

TESLA V100

FRAMEWORKS GPU PLATFORMS

TensorRT

Optimizer Runtime
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• Convolution

• LSTM and GRU

• Activation: ReLU, tanh, sigmoid

• Pooling: max and average

• Scaling

• Element wise operations 

• LRN

• Fully-connected

• SoftMax

• Deconvolution

TENSORRT LAYERS

Built-in Layer Support Custom Layer API

CUDA Runtime

Deployed Application

TensorRT Runtime

Custom Layer
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TENSORRT OPTIMIZATIONS

Kernel Auto-Tuning

Layer & Tensor Fusion

Dynamic Tensor

Memory

Weights & Activation

Precision Calibration
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Inference throughput (images/sec) on ResNet50. V100 + TensorRT: NVIDIA TensorRT (FP16), batch size 39, Tesla V100-SXM2-

16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On V100 + TensorFlow: Preview of volta optimized TensorFlow (FP16), 

batch size 2, Tesla V100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. CPU-Only: Intel Xeon-D 1587 

Broadwell-E CPU and Intel DL SDK. Score doubled to comprehend Intel's stated claim of 2x performance improvement on Skylake 

with AVX512.

40x Faster CNNs on V100 vs. CPU-Only 

Under 7ms Latency (ResNet50)
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•What is NMT?

•What is current state?

•What are the problems?

•How did we solve it?

•What perf is possible?
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ACRONYMS AND DEFINITIONS

NMT: Neural Machine Translation

OpenNMT: Open source NMT project for academia and industry

Token: The minimum representation used for encoding(symbol, word, character, 
subword)

Sequence: A number  of tokens wrapped by special start and end sequence tokens.

Beam Search: directed partial breadth-first tree search algorithm

TopK: Partial sort resulting in N min/max elements

Unk: Special token that represents unknown translations.
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OPENNMT INFERENCE
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DECODER EXAMPLE
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TRAINING VS INFERENCE
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•What is NMT?

•What is current state?

•What are the problems?

•How did we solve it?

•What perf is possible?
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INFERENCE TIME IS BEAM SEARCH TIME

• Wu, Et. Al. 2016, ‘Google's Neural Machine Translation System: 
Bridging the Gap between Human and Machine Translation’ 
arXiv:1609.08144

• Sharan Narang, Jun, 2017, Baidu’s DeepBench -
https://github.com/baidu-research/DeepBench

• Rui Zhao, Dec, 2017, ‘Why does inference run 20x slower than 
training.’ - https://github.com/tensorflow/nmt/issues/204

• David Levinthal, Ph.D., Jan, 2018, ‘Evaluating RNN performance 
across hardware platforms.’ 

https://arxiv.org/abs/1609.08144
https://github.com/tensorflow/nmt/issues/204
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•What is NMT?

•What is current state?

•What are the problems?

•How did we solve it?

•What perf is possible?
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PERF ANALYSIS
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KERNEL ANALYSIS
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•What is NMT?

•What is current state?

•What are the problems?

•How did we solve it?

•What perf is possible?
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ENCODER

Encoder

EncoderRNN

Input

Setup
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Sequence

Length
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Sequence
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DECODER
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Decoder, 1st Iteration
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Decoder, 2nd+ Iteration
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Global Attention Model
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Projection
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TopK Part 1
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TopK Part 2
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Beam Search – Beam Shuffle
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Beam Search – Beam Scoring
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Beam Search – Batch Reduction
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Output

Output Beam1,Idx2 Beam4,idx6 Beam3,Idx0 Beam0,Idx1 Beam4,Idx7

All Done? No Decoder Input
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こんにちは。
これはテストです。
さようなら。
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TENSORRT ANALYSIS



34

TENSORRT KERNEL ANALYSIS
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•What is NMT?

•What is current state?

•What are the problems?

•How did we solve it?

•What perf is possible?
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RESULTS

4
25

550

280 ms

153 ms

117 ms

0

50

100

150

200

250

300

350

400

450

500

0

100

200

300

400

500

600

CPU-Only + Torch V100 + Torch V100 + TensorRT

L
a
te

n
c
y
 (m

s)

S
e
n
te

n
c
e
s/

se
c

Inference throughput (sentences/sec) on OpenNMT 692M. V100 + TensorRT: NVIDIA TensorRT (FP32), batch size 64, Tesla V100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. V100 + Torch: Torch (FP32), batch size 

4, Tesla V100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. CPU-Only: Torch (FP32), batch size 1, Intel E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On

140x Faster Language Translation RNNs on V100 vs. CPU-Only Inference 

(OpenNMT)
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SUMMARY
• Show that topK no longer dominates sequence inference time.

• Show that RNN Inference is compute bound, not memory bound.

• TensorRT accelerates sequence inferencing.

• Over two orders of magnitude higher throughput over CPU.

• Latency reduction by more than half over CPU.

developer.nvidia.com/tensorrt

PRODUCT PAGE
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LEARN MORE

developer.nvidia.com/tensorrt

PRODUCT PAGE

docs.nvidia.com/deeplearning/sdk

DOCUMENTATION

nvidia.com/dli

TRAINING
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Q&A




