
Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

Tricks, Tips, and Timings: The Data Movement Strategies You
Need to Know

David Appelhans

GPU Technology Conference
March 26, 2018

D. Appelhans Data Movement Tips and Tricks 1 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

INTRODUCTION

• My role: readying applications for SUMMIT and SIERRA supercomputers(past 3
years).

• Talk is a summary of data movement techniques, especially when working with
NVLINK:

• Importance of pinned memory. (Interoperability, CUDA+OpenMP+OpenACC)

• Zero-copy tricks. (Interoperability, CUDA+OpenMP)

• Dealing with nested data structures. (Efficiency, CUDA)

• All code examples are available on my public Github page.
https://github.com/dappelha/gpu-tips/nvtx

D. Appelhans Data Movement Tips and Tricks 2 / 27

https://github.com/dappelha/gpu-tips/nvtx

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

MOTIVATION: WHY YOU SHOULD PIN YOUR MEMORY

Pageable Memory Pinned Memory
0

5

10

15

20

25

30

35

40

45

50

Pageable vs Pinned HtoD Bandwidth Impact

Dual socket P9 + 6 Volta GPUs

OpenACC OpenMP CUDA

M
ea

su
re

d
B

an
dw

id
th

 (
G

B
/s

)

Hint: make sure your task starts in the appropriate socket: taskset -c 0 ./test
D. Appelhans Data Movement Tips and Tricks 3 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

PINNED MEMORY OPTION 1:

Use CUDA Fortran1pinned attribute to pin at allocation time,

1 real (kind=8), pinned, allocatable :: p_A(:)
2 allocate (p_A(N))
3 !$omp target data map(alloc :p_A)
4 do i=1,samples
5 !$omp target update to (p_A)
6 ...
7 enddo

Can also check success of pinning:

1 logical :: pstat
2 allocate (p_A(N), pinned=pstat)
3 if (. not . pstat) print ∗, "ERROR: p_A was not pinned"

1PGI and XLF compilers both support CUDA Fortran, so the pinned attribute can easily be combined with
directives.

D. Appelhans Data Movement Tips and Tricks 4 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

PINNED MEMORY OPTION 2:

Pin already allocated memory,2

1 use , intrinsic :: iso_c_binding
2 use cudafor
3 real , pointer , contiguous :: phi (:,:)
4 allocate (phi(dim1, dim2)) ! phi can also be pointer passed from C++
5 istat = cudaHostRegister(C_LOC(phi(1,1)), sizeof(phi) , cudaHostRegisterMapped)
6

7 !$acc enter data create (phi)
8 do i=1,samples
9 !$acc update self (phi)

10 ...
11 enddo

Warning: act of pinning memory is very slow. Memory should only be pinned if it is going
to be used for data transfers.

2This technique is especially useful if the memory was allocated outside the developers control, for
example in a C++ calling routine.

D. Appelhans Data Movement Tips and Tricks 5 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

OPENACC INTEROPERABILTY WARNING 1

You must use the flag -ta=tesla:pinned in order for OpenACC to benefit from pinned
memory.

1 Compiling with the flag -ta=tesla:pinned forces all memory to be pinned memory.
This is a big hammer approach.

2 Linking the final executable with -ta=tesla:pinned causes the OpenACC runtime to
check if an array is already pinned. This gives fine grain user control.

D. Appelhans Data Movement Tips and Tricks 6 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

OPENACC INTEROPERABILTY WARNING 2

The OpenACC runtime uses a memory pool on the device to save from repeated
allocation/deallocation of device memory. Can cause trouble when mixing CUDA with
OpenACC.

1 integer :: N = 8∗gigabyte
2 real (kind=8), allocatable :: A(:)
3 real (kind=8), device , allocatable :: d_A(:)
4 allocate (A(N))
5 !$acc enter data create (A)
6 !$acc exit data delete (A) ! <−−not truly free ’d unless PGI_ACC_MEM_MANAGE=0
7 allocate (d_A(N)) ! <−−−− can then run out of device memory

To disable this optimization, set the environment flag PGI_ACC_MEM_MANAGE=0 and
the runtime will free the data at the exit data.

D. Appelhans Data Movement Tips and Tricks 7 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

USES OF ZERO COPY

Zero copy refers to accessing host resident pinned memory directly from a GPU without
having to copy the data to the device beforehand (i.e. there are zero device copies).

• Quick overlap of data movement and kernel compute (unified/managed memory is
better for this purpose)

• Large arrays where only small percent of data is accessed in random pattern.

• All data is accessed, but read/write pattern is strided/not coalesced.

• Efficiently populating components of a structure, avoiding the overhead of many copy
API calls by using GPU threads to fetch data directly.

D. Appelhans Data Movement Tips and Tricks 8 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

CUDA ZERO COPY SETUP

To set up zero copy of a basic array in Fortran, use a CUDA API to get a device pointer
that points to the pinned host array, and then associate a fortran array with that C device
pointer, specifying the Fortran array attributes.

1 use iso_c_binding ! provides c_f_pointer and C_LOC
2 ! zero copy pointers for psib
3 type(C_DEVPTR) :: d_psib_p
4 real (adqt) , device , allocatable :: pinned_psib (:,:,:)
5

6 ! sets up zero copy of psib on device .
7 istat = cudaHostGetDevicePointer(d_psib_p, C_LOC(psib(1,1,1)), 0)
8 ! Translate that C pointer to the fortran array with given dimensions
9 call c_f_pointer (d_psib_p, pinned_psib , [QuadSet%Groups, Size%nbelem, QuadSet%NumAngles])

D. Appelhans Data Movement Tips and Tricks 9 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

OPENMP ZERO COPY EXAMPLE
Only requires CUDA pinned array and OpenMP is_device_ptr clause.

1 real (kind=8), pinned, allocatable :: A (:,:) ,At (:,:)
2 allocate (A(nx,ny), At(ny,nx))
3

4 ! Transpose in the typical way:
5 !$omp target enter data map(alloc :A,At)
6 call transpose (A,At,nx,ny)
7 !$omp target update from(At)
8 !$omp target exit data map(delete :At)
9

10 ! Ensure device has finished for accurate benchmarking
11 ierr = cudaDeviceSynchronize()
12

13 ! Transpose using zero copy for At.
14 ! At is no longer mapped−−is_device_ptr(At) will
15 ! allow addressing host pinned memory (zero copy)
16 call transpose_zero_copy(A,At,nx,ny)

continued on next slide

D. Appelhans Data Movement Tips and Tricks 10 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

OPENMP ZERO COPY EXAMPLE CONTINUED

1 subroutine transpose_zero_copy(A,At,nx,ny)
2 ! example of strided writes to an array that lives on the host
3 implicit none
4 real (kind=8), intent (in) :: A (:,:)
5 real (kind=8), intent (out) :: At (:,:)
6 integer , intent (in) :: nx, ny
7 integer :: i , j
8 !$omp target teams distribute parallel do is_device_ptr (At)
9 do j=1,ny

10 do i=1,nx
11 At(j , i) = A(i , j)
12 enddo
13 enddo
14 return
15 end subroutine transpose_zero_copy

D. Appelhans Data Movement Tips and Tricks 11 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

OPENMP ZERO COPY TRANSPOSE

8 32 128 512 2048
0.0

0.5

1.0

1.5

2.0

2.5

1.1 1.3
1.5

1.9

0.5

Zero-Copy-Transpose Speedup vs Naive Transpose

Matrix Size (MB)

S
pe

ed
up

Figure : Power9 + V100 results of doing a traditional matrix transpose and then copying back from
GPU vs doing the transpose directly into pinned host memory.

D. Appelhans Data Movement Tips and Tricks 12 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

NESTED DATA STRUCTURES

Motivation:

1 subroutine my_kernel_to_port (...)
2 ...
3 element(id)%val(n) = element(id)%x(n)∗element(id)%y(n)
4 ...
5 end subroutine

Production codes often have dynamic structures with dynamic components.
• Flattening data structures is messy (index arrays required for unstructured data) and

invasive.
• Would like to keep nested references in compute kernel for portability.
• Often only parts of the data structure need to be used on the GPU.

D. Appelhans Data Movement Tips and Tricks 13 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

NESTED DATA STRUCTURES

Two Topics:

• How do you make them referencable on the device?

• How do you efficiently move data into them?

D. Appelhans Data Movement Tips and Tricks 14 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

Often only parts of the data structure need to be used on the GPU

Components

Structure

element(1) element(n)

...

element_type

type , public :: element_type
integer :: Nnodes
real (kind=8) :: volume
real (kind=8), allocatable , pinned :: x (:)
real (kind=8), allocatable , pinned :: y (:)
real (kind=8), allocatable , pinned :: val (:)
real (kind=8), allocatable :: old (:)

end type element_type

Can create a skinny version of the data structure with components that are device variables.

type , public :: GPUelement_type
integer :: Nnodes
real (kind=8), device , allocatable :: x (:)
real (kind=8), device , allocatable :: y (:)
real (kind=8), device , allocatable :: val (:)

end type GPUelement_type

D. Appelhans Data Movement Tips and Tricks 15 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

Often only parts of the data structure need to be used on the GPU

Components

Structure

element(1) element(n)

...

element_type

type , public :: element_type
integer :: Nnodes
real (kind=8) :: volume
real (kind=8), allocatable , pinned :: x (:)
real (kind=8), allocatable , pinned :: y (:)
real (kind=8), allocatable , pinned :: val (:)
real (kind=8), allocatable :: old (:)

end type element_type

Can create a skinny version of the data structure with components that are device variables.

type , public :: GPUelement_type
integer :: Nnodes
real (kind=8), device , allocatable :: x (:)
real (kind=8), device , allocatable :: y (:)
real (kind=8), device , allocatable :: val (:)

end type GPUelement_type

D. Appelhans Data Movement Tips and Tricks 15 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

Often only parts of the data structure need to be used on the GPU

Components

Structure

element(1) element(n)

...

element_type

type , public :: element_type
integer :: Nnodes
real (kind=8) :: volume
real (kind=8), allocatable , pinned :: x (:)
real (kind=8), allocatable , pinned :: y (:)
real (kind=8), allocatable , pinned :: val (:)
real (kind=8), allocatable :: old (:)

end type element_type

Can create a skinny version of the data structure with components that are device variables.

type , public :: GPUelement_type
integer :: Nnodes
real (kind=8), device , allocatable :: x (:)
real (kind=8), device , allocatable :: y (:)
real (kind=8), device , allocatable :: val (:)

end type GPUelement_type

D. Appelhans Data Movement Tips and Tricks 15 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

Often only parts of the data structure need to be used on the GPU

Components

Structure

element(1) element(n)

...

element_type

type , public :: element_type
integer :: Nnodes
real (kind=8) :: volume
real (kind=8), allocatable , pinned :: x (:)
real (kind=8), allocatable , pinned :: y (:)
real (kind=8), allocatable , pinned :: val (:)
real (kind=8), allocatable :: old (:)

end type element_type

Can create a skinny version of the data structure with components that are device variables.

Host DeviceLegend: Managed

Components

Structure

element(1) element(n)

...

GPUelement_type
type , public :: GPUelement_type

integer :: Nnodes
real (kind=8), device , allocatable :: x (:)
real (kind=8), device , allocatable :: y (:)
real (kind=8), device , allocatable :: val (:)

end type GPUelement_type

D. Appelhans Data Movement Tips and Tricks 15 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

This gives a way to loop through the structure and allocate device components while on the
host:

! can allocate on the host
do id=1,Nelements

Nnodes = element(id)%Nnodes
allocate (element(id)% x(Nnodes))

enddo

but still cannot use the structure in a device kernel.

attributes (global) subroutine cuda_kernel (...)
...

x = element(id)%x ! <− invalid reference of element
...

end subroutine cuda_kernel

Two ways to address this.

D. Appelhans Data Movement Tips and Tricks 16 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

OPTION1: DEVICE STRUCTURE THAT POINTS TO THE SAME DEVICE

COMPONENT MEMORY:

Components

Structure

element(1) element(n)

...

GPUelement_type

d_Structure

...

d_element(1) d_element(n)

1 ! CPU valid version for use on the host :
2 type(GPUelement_type), pinned, allocatable :: GPUelement(:)
3 ! Device structure that will point to same device components:
4 type(GPUelement_type), device, allocatable :: d_GPUelement(:)
5 allocate (GPUelement(Nelements))
6 allocate (d_GPUelement(Nelements))
7 ! GPUelement%components(:) can be allocated in host code
8 ! copy scalars and addresses of host struct to d struct :
9 cudaMemcpy(d_GPUelement, GPUelement, size(GPUelement))

D. Appelhans Data Movement Tips and Tricks 17 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

BEST: ALLOCATE THE STRUCTURE AS MANAGED MEMORY:

Host DeviceLegend: Managed

Components

Structure

m_element(1) m_element(n)

...

GPUelement_type

1 ! host and device valid structure (managed memory):
2 type(GPUelement_type), managed, allocatable :: m_GPUelement(:)
3

4 allocate (m_GPUelement(Nelements))
5 ! m_GPUelement%components(:) can be allocated in host code
6 ! they still live on the device
7 ...
8 ! can prefetch structure to device to avoid pagefault :
9 cudaMemPrefetchAsync(m_GPUelement,size(m_GPUelement),device=0,

stream=0)

D. Appelhans Data Movement Tips and Tricks 18 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

NESTED DATA STRUCTURES

Two Topics:

• How do you make them referencable on the device?

• How do you efficiently move data into them?

D. Appelhans Data Movement Tips and Tricks 19 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

EFFICIENTLY POPULATING NESTED STRUCTURES

A naive implementation for getting data structures populated on the GPU usually looks
like this:

1 ! Host data structure has been created and populated .
2 ! GPU data structure has also been allocated .
3

4 ! still need to poplulate the values from the host version of the data structure :
5 do id=1, Nelements
6 GPUelement(id)%Nnodes = element(id)%Nnodes ! implicit cudaMemcpy
7 GPUelement(id)%x = element(id)%x ! implicit cudaMemcpy
8 GPUelement(id)%y = element(id)%y ! implicit cudaMemcpy
9 GPUelement(id)%val = element(id)%val ! implicit cudaMemcpy

10 enddo

This becomes very slow when Nelements is large.

D. Appelhans Data Movement Tips and Tricks 20 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

EFFICIENTLY POPULATING NESTED STRUCTURES

There are two ways to fix the naive approach,

1 BETTER: push from host with cudaMemcpyAsync calls instead of the numerous
blocking calls done above,

2 BEST: pull the data from the GPU by populating the arrays from within a device
kernel using zero copy.

D. Appelhans Data Movement Tips and Tricks 21 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

PUSH WITH LOOP OF ASYNC CALLS

Issue copy calls to default stream which is asyncronous to the CPU:

1 do id=1, Nelements
2 GPUelement(id)%Nnodes = element(id)%Nnodes ! cpu to cpu copy
3 istat =cudaMemcpyAsync(GPUelement(id)%x, element(id)%x, size(element(id)%x), stream=0)
4 istat =cudaMemcpyAsync(GPUelement(id)%y, element(id)%y, size(element(id)%y), stream=0)
5 istat =cudaMemcpyAsync(GPUelement(id)%val, element(id)%val, size(element(id)%val), stream=0)
6 enddo

Can do similar in OpenMP 4, with update nowait.

Host threading over id loop made no difference in performance.

D. Appelhans Data Movement Tips and Tricks 22 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

PULLING FROM THE GPU
Set up a structure to reference pinned host components from the device (zero copy of
structure components):

Components

Structure

element(1) element(n)

...

element_type

d_Structure
d_element(1) d_element(n)

...

1 ! to use element on the device , we have to make a device valid copy called d_element:
2 istat =cudaMemcpyAsync(d_element, element, size(element), 0)
3

4 ! Now we can use these in a CUDA kernel to zero copy
5 ! the component data from d_element into d_GPUelement
6 call set_elements_kernel <<<blocks,threads>>>(d_GPUelement,d_element,Nelements)

D. Appelhans Data Movement Tips and Tricks 23 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

Launch a kernel to have GPU threads pull data from structures on the host into structures
on the device:

1 attributes (global) subroutine set_elements_kernel (GPUelement,element, Nelements)
2 implicit none
3 ! kernel that uses zero copy to popluate the GPUelement structure .
4 type(GPUelement_type), device, intent (inout) :: d_GPUelement(:) ! members are device
5 type(element_type) , device , intent (in) :: p_element (:) ! members are pinned host
6 integer , value , intent (in) :: Nelements
7 integer :: id , Nnodes, node
8

9 do id=blockIdx%x,Nelements, gridDim%x
10 Nnodes = p_element(id)%Nnodes
11 d_GPUelement(id)%Nnodes = Nnodes
12 do node = threadIdx%x, Nnodes, blockDim%x
13 d_GPUelement(id)%x(node) = p_element(id)%x(node)
14 d_GPUelement(id)%y(node) = p_element(id)%y(node)
15 d_GPUelement(id)%val(node) = p_element(id)%val(node)
16 enddo
17 enddo
18

19 end subroutine set_elements_kernel

D. Appelhans Data Movement Tips and Tricks 24 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

CPU Reference Naive movement Push Async Pull from GPU
0

20

40

60

80

100

120

140

160

180

0.5

92.5

39.0

0.2

Populating Nested Data Structures
POWER9 + V100

1M elements, 4 nodes/element

Populate Allocate

S
ec

on
d

s

462x speedup when pulling from the GPU!
D. Appelhans Data Movement Tips and Tricks 25 / 27

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

CLOSING REMARKS

nvtx marker module available for Fortran
• Easily mark regions of host code for viewing in the Nvidia Visual Profiler.
• Works with CUDA, OpenMP, and OpenACC.
• Newly supports non-nested marked regions.
• Very helpful to understand flow of your application.

Availabe at https://github.com/dappelha/gpu-tips/nvtx

D. Appelhans Data Movement Tips and Tricks 26 / 27

https://github.com/dappelha/gpu-tips/nvtx

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures Closing Remarks

CONCLUSIONS

• Pinning memory is important, even when using directives
• Managed memory makes nested data structure book keeping easier.
• Still important to efficiently populate data structures.
• Zero-copy populating from the device is the fastest method (462x).

Various example codes are availabe at
https://github.com/dappelha/gpu-tips

Questions?
David Appelhans - dappelh@us.ibm.com

D. Appelhans Data Movement Tips and Tricks 27 / 27

https://github.com/dappelha/gpu-tips

	Introduction
	Pinned Memory
	Uses of Zero Copy
	Nested Data Structures
	Closing Remarks

