Deep Learning For Medical Knowledge Extraction From Unstructured Biomedical Text*

Andrew Beam, PhD
Postdoctoral Fellow
Department of Biomedical Informatics
Harvard Medical School
05/10/2017

*work in progress

AI & MEDICINE

AI has the potential to fundamentally change healthcare and medicine...

... but how do we measure the progress of AI for general medical diagnosis*?

MDs often serve as <u>the</u> comparison for medical AI, but setting up a <u>fair</u> comparison is harder than it seems

Image credit: http://www.bbc.com/news/magazine-28166019

Doctors Don't Predict

- Doctors **don't**:
 - Predict appearance of diagnoses in the future
 - Provide calibrated probabilities
 - Optimize for AUC
- Doctors do:
 - Infer <u>current</u> disease state given symptoms
 - Triage patients given current estimate of disease state

Doctors Disagree

- Doctors often disagree about the correct diagnosis for a given patient
- Even the correct list of diagnoses to consider (e.g. the differential) is often not unanimous
- Thus, an objective "gold standard" dataset of labeled patients can be *very* hard to create in some instances.

The Accuracy and Interobserver Agreement in Detecting the 'Gallop Sounds' by Cardiac Auscultation*

Charmaine E. Lok, MD; Christopher D. Morgan, MD; and Narasimhan Ranganathan, MD

Study objectives: To determine the observer accuracy and interobserver agreement in identifying S₄ and S₃ by cardiac auscultation and whether they improve with increasing observer experience. Design: Prospective, blinded study.

Setting: Cardiology and general internal medicine wards in a university-affiliated teaching hospital.

Patients: Forty patients with a cardiac diagnosis and 6 patients without were studied. Measurements and results: Two cardiologists, one general internist, three senior and two junior postgraduate internal medicine trainees, blinded to the patients' characteristics, examined the patients and documented their findings on a questionnaire. Computerized phonocardiogram was obtained in all patients as a gold standard and was interpreted by a blinded, independent cardiologist. The mean positive predictive values for S_a and S_b were S_a were S_a (range, S_b to S_b S_b). The mean negative predictive values for S_a and S_b were S_a (range, S_b to S_b) for S_b and S_b were S_b (range, S_b to S_b). respectively. The overall interobserver agreements for detecting S_a , was K = 0.08 (95% confidence interval [CI], S_b 0.1 to S_b 0.99 and S_b 1 was S_b 1.8 (95% CI, S_b 1.90 to S_b 2.4). There was no apparent trend in the accuracy or interobserver

Conclusion: The agreement between observers and the phonocardiographic gold standard in the correct identification of S_4 and S_3 was poor and the lack of agreement did not appear to be a function of the experience of the observers. The overall interobserver agreement for the detection of either S_4 or S_3 was little better than chance alone.

hic gold standard in the did not appear to be a er agreement for the

1998; 114:1283-1288)

predictive value; PCG =

phonocardiogram; PPV = positive predictive value

Healthcare Data is Messy

- In most healthcare data (e.g. EHR/claims) you don't observe the disease process directly, but instead the process of <u>healthcare dynamics</u>
- Information leakage is inevitable
- Doctor reasoning process is "baked in", can't take the doctor out of the data
- How will an AI system trained on one EHR generalize to a new one?

3-Year Survival After a WBC by Value and Hour

BENCHMARKING MEDICAL AI

Desirable Benchmark Properties

- <u>Clarity</u>: Unambiguous gold standard
- <u>Portability</u>: Easy to compare results across different healthcare environments and populations
- <u>Comparability</u>: Available metrics of human performance

Goal: Task that doctors actually do that also meets these criteria

USMLE STEP 1

<u>U</u>nited <u>S</u>tates <u>M</u>edical <u>L</u>icensing <u>E</u>xamination

Exam administered in 3 "steps"

- Step 1 is taken after the 2nd year of medical school
- Requires several months of dedicated study
- Tests understanding of fundamentals of biology and clinical medicine
- Multiple-choice format
- Large influence on residency placement
- "SAT" for med students

Necessary (but not sufficient) condition for becoming a physician

STEP 1 AND AI

Step 1 is an attractive benchmark for medical AI

- Requires broad knowledge of medicine and biology
- Unambiguous right/wrong answers (clarity)
- Potentially free from healthcare data "messiness" (portability)
- 25,000 medical students take it each year -> good human performance numbers (comparability)
- It's hard and will require methodological innovation
- Con: Unclear road to clinical tool

OVERVIEW

Unstructured Medical Text

Can we train a deep learning system capable of passing step 1?

Step 1 Question

A full-term female newborn is examined shortly after birth ... Which of the following mechanisms best explains this cytogenetic abnormality?

Answer Probabilities

Answers

- (A) Nondisjunction in mitosis
- (B) Reciprocal translocation
- (C) Robertsonian translocation
- (D) Skewed X-inactivation
- (E) Uniparental disomy

DATA RESOURCES

Biomedical Journal Articles

PMC Open Access – 1.7M Elsevier – 2M Springer – 500K

Physician References

Merck Manuals

Mayo Clinic Disease Library

MEDLINE

DynaMed

Emedicine/Medscape

Biomedical Knowledge Commons

- 4.3M articles
- 50,000 pages of reference material
- 15,000 flash cards
- Dozens of books
- 10,000 Step 1 style questions

All preprocessed and normalized against a common medical thesaurus

Test Preparation

Flash cards
High Yield Concept List
Books

Open Osmosis Library Resources NBME

DATA PREPROCESSING

MED2VEC

What can we learn about medical concepts from 4.3 million journal articles?

MED2VEC

Query

bronchopulmonary dysplasia

Compute Similarity

Medical Con	cept Vecto	r Database
-------------	------------	------------

		•		
CUI 🔻	\$\propto \text{\$\phi\$}	String	x 1 [‡]	X2
C3872829	Biologically Active Substance	Adhesion protein	0.0056652557	-0.196249962
C3872700	Health Care Related Organization	Clinical pathology service	-0.4462876022	-0.013221873
C3872595	Nucleic Acid, Nucleoside, or Nucleotide	Human papillomavirus DNA	-0.0793692693	-0.198981807
C3872595	Biologically Active Substance	Human papillomavirus DNA	-0.0793692693	-0.198981807
C3872494	Manufactured Object	Device tip (physical object)	-0.1605362296	-0.325420946
C3872476	Medical Device	Body reference point marker	-0.0516590886	0.078756697
C3871203	Temporal Concept	At discharge	0.1280273497	0.100455143
C3864436	Medical Device	Anatomical structure separator	-0.0629289672	0.406454623
C3856907	Manufactured Object	Projector	0.1593338698	0.359946638

60,000 medical concepts

WHAT DRUGS ARE USED FOR BPD?

Query

bronchopulmonary dysplasia

Filter

Pharmacologic Substance

Rank

♦ String	\$ Similarity	\$
Pulmonary Surfactants	0.3964883	
palivizumab	0.3360302	

HOW IS BPD MANAGED?

Query

bronchopulmonary dysplasia

Filter

Therapeutic or Preventive Procedure

Rank

String	♦ Similarity	\$
Oxygen Therapy Care	0.5373769	
Mechanical ventilation	0.5018497	
Intermittent Positive-Pressure Ventilation	0.4676242	
High frequency oscillatory ventilation	0.4653350	
Noninvasive Ventilation	0.4361196	

DEEP LEARNING FOR QA

<u>Approach</u>: Deep neural network that maps word vectors in question -> correct answer

End-to-end deep learning QA systems need 100k – 1M QA pairs.

Existing SOTA operate in an "easier" domain (e.g. Who is Obama's wife?)

10,000 questions are not enough. We need a way to generate more questions.

SYNTHETIC QUESTIONS

Scan through entire corpus

Extract Potential QA pair

Using UMLS NLP/POS tagger:

- Tag noun-phrases that mention medical concepts as potential answers
- Surrounding sentences as potential question
- Each QA pair becomes a potential fill in the blank question.

Score Synthetic QA Pairs

Compare semantic similarity of synthetic QA pairs against real ones.

Only keep high scoring synthetic QA pairs.

Results: 1 billion potential QA pairs

MODEL OVERVIEW

Work is on going!

CONCLUSIONS

- Thoughtful metrics of progress for medical AI are vitally important
- Head to head comparisons with doctors can be tricky
- Step 1 may be a good benchmark for medical AI
- Unsupervised learning on large sources of biomedical text can automatically extract relationships between medical concepts
- Deep learning has promise for answering step 1 questions

ACKNOWLEDGEMENTS

Harvard Medical School

Inbar Fried Sam Finlayson Nathan Palmer Isaac Kohane

Google Brain

Jasper Snoek Alex Wiltschko

Funding

Hardware

Data

