
Christoph Kubisch, NVIDIA GTC 2017

Ingo Esser, NVIDIA

VULKAN TECHNOLOGY
UPDATE

2

AGENDA

Device Generated Commands

API Interop

VR in Vulkan

NSIGHT Support

3

VK_NVX_device_generated_commands

4

DEVICE GENERATED COMMANDS

GPU creates its own work (drawcalls and compute)

Define the work-load in-pipeline, in-frame

Reduce latency as no CPU roundtrip is required (VR!)

Use any GPU accessible resources to drive decision making
(zbuffer etc.)

Select level of detail, cull by occlusion, classify work into
different state usage, ...

GPU

GPU

CPU

1-2 frames latency

5

DEVICE GENERATED COMMANDS
OpenGL Examples

https://github.com/nvpro-
samples/gl_dynamic_lod

ARB_draw_indirect to classify how
particles are drawn (point, mesh,
tessellation)

https://github.com/nvpro-
samples/gl_occlusion_culling

ARB_multi_draw_indirect /
NV_command_list to do shader-based
occlusion culling Reverse angle & bboxes of culled

Model courtesy of PGO Automobiles

https://github.com/nvpro-samples/gl_dynamic_lod
https://github.com/nvpro-samples/gl_occlusion_culling

66

EVOLUTION

Draw Indirect:
Typically change
primitives,
instances

Multi Draw Indirect:
Multiple draw calls with
different index/vertex
offsets

GL_NV_command_list &
DX12 ExecuteIndirect:
Change shader input
bindings for each draw

VK_NVX_device_generated_
commands
Change shader (pipeline
state) per draw call

DrawElements
{
GLuint indexCount;
GLuint instanceCount;
GLuint firstIndex;
GLuint baseVertex;
GLuint baseInstance;

}

UniformAddressCommandNV
{
GLuint header;
GLushort index;
GLushort stage;
GLuint64 address;

}

DescriptorSetToken
{
GLuint objectTableIndex;
Gluint offsets[];

}

7

TRADITIONAL SETUP

Set Pipeline A

CPU-driven state setup is for worst-case distribution of indirect work

May yield lots of needless state setup (imagine 100s of potentially-used Pipelines)

Set Pipeline T

Set Pipeline G

Set Pipeline C

Draw Indirects

Draw Indirects

Draw Indirects

Draw Indirects

Not all items may create work

Shader classifies items into
lists of indirect buffer storage

8

NEW VULKAN ABILITY

Compact stream without unnecessary state setup or data overfetching

Grouping by state is still recommended

GPU classifies items with
state assignment

A G A G A G A G G
Draw Indirects

with State

Optionally preserve ordering
or provide permutation

A A A A G G G G G
Draw Indirects

with State

9

PIPELINE CHANGES

Add command-related work on the GPU to be more efficient at the actual tasks

Make use of shader specialization (less dynamic branching, more aggressive compile-
time optimizations...)

Shader level of detail

Partition & organize work by shader permutation or usage pattern

10

STATELESS DESIGN

Device-Generated Commands CPU CommandsCPU Commands

State Access

CPU-provided
state is inherited

Modified state is undefined for

subsequent sequences or CPU

commands

bind bind draw

Stateful within single

command sequence

bind bind draw

11

OVERVIEW

Reserved CommandBuffer Space

VkIndirectCommandsLayout

BindVertex

Buffer (binding)
Draw

VkObjectTable

Buffer A

Buffer B

[0]

[1]

[2] Buffer C

Buffer Buffer

VkIndirect

Commands

Token

2,256 0,0 ..

VkIndirect

Commands

Token

VkCmdProcess
Commands VkCmdBindVertexBuffer

(binding, Buffer C, 256)
VkCmdDraw(..) VkCmdBind.. VkCmdDraw

Sequence & CPU Arguments GPU-Written Arguments Resources

uint32[]

12

WORKFLOW

Define a stateless sequence of commands as VkIndirectCommandsLayout

Register Vulkan resources (VkBuffer, VkDescriptorSet, VkPipeline) in VkObjectTable
at developer-managed index

Fill & modify VkBuffers with command arguments and object table indices for many
sequences

Use VkCmdReserveSpaceForCommands to allocate command buffer space

Generate the commands from token buffer content via VkCmdProcessCommands

Execute via VkCmdExecuteCommands

13

SEPARATE GENERATION & EXECUTION

Primary CommandBuffer

Secondary CmdBuffer

VkCmdExecuteCommands

VkCmdReserveSpace...

VkCmdProcessCommands

CmdBuffer

...

Secondary

Barrier

Record an array of command sequences into
the reserved space

Generate & Execute as single action is also
supported

Reuse commands, or
reuse reserved space
for another generation

14

OBJECT TABLE

ObjectTable behaves similar to DescriptorPool

Do not delete it, nor modify resource indices that may be in-flight

VkObjectTable

Buffer AVkCmdProcessCommands

VkRegisterResource(..., 0)

GPU

Timeline

CPU

[0]

15

OBJECT TABLE

CommandBuffer reservation depends on ObjectTable‘s state

Use only those resources, that were registered at reservation time

VkObjectTable

Buffer B
VkCmdProcess

Commands

VkCmdReserve...

GPU

Timeline

CPU

[1]

VkRegister...(..,1) VkCmdProcess...

Buffer A[0]

VkObjectTable

Buffer A[0]

1616

INDIRECT COMMANDS

VK_INDIRECT_COMMANDS_TOKEN
EQUIVALENT COMMAND &
GPU-WRITTEN ARGUMENTS

_PIPELINE_NVX vkCmdBindPipeline(… pipeline)

_DESCRIPTOR_SET_NVX vkCmdBindDescriptorSets(… descrSet, offsets)

_INDEX_BUFFER_NVX vkCmdBindIndexBuffer(… buffer, offset)

_VERTEX_BUFFER_NVX vkCmdBindVertexBuffer (… buffer, offset)

_PUSH_CONSTANT_NVX vkCmdPushConstants(... data)

_DRAW_INDEXED_NVX vkCmdDrawIndexed(*all*)

_DRAW_NVX VkCmdDraw(*all*)

_DISPATCH_NVX VkCmdDispatch(*all*)

1717

MULTIPLE INPUT STREAMS

Buffer 0 0 0 1 1

Command Sequences

0 Command C0 Command A 0 Command B

Traditional approaches used single interleaved stream (array of structures AoS)

11 1

1

Buffer 0 1

Buffer 0 1

Buffer 0 1

VK extension uses input streams (SoA), allows individual re-use and efficient updates on input

Buffer 0 1

Buffer 0,1

Buffer 0,1,..

Common
Input Rate

Individual
Input Rate

18

FLEXIBLE SEQUENCING

0 1 2 3

Buffer

4 5 6 7

Ordered Sequences

3 2 0 1

Unordered / Subset

Default monotonic order of
command sequences

Allow impl.-dependent ordering
(incoherent)

4

Custom Subset

2 5 1 4

Actual number provided by
GPU Buffer

Buffer 2

Provide sequence indices as
additional GPU buffer

5 1 4

Buffer 4CPU Argument 8

Number of sequences
by CPU

19

TEST BENCHMARK

200.000 Drawcalls (few triangles/lines)

45.000 Pipeline switches (lines vs triangles)

6 Tokens:
Pipeline
DescriptorSet (1 ubo + 1 offset)
DescriptorSet (1 ubo + 1 offset)
VertexBuffer + 1 offset
IndexBuffer + 1 offset
DrawIndexed

https://github.com/nvpro-

samples/gl_vk_threaded_cadscene/blob/ma

ster/doc/vulkan_nvxdevicegenerated.md

https://github.com/nvpro-samples/gl_vk_threaded_cadscene/blob/master/doc/vulkan_nvxdevicegenerated.md

2020

TEST BENCHMARK
200 000 DRAWCALLS
45 000 PSO CHANGES

GENERATE EXECUTE

Driver (CPU 1 thread) 8.74 ms (async, on CPU) 14.74 ms

Device Gen. Cmds 0.35 ms 8.12 ms

100 000 DRAWCALLS
NO PSO

GENERATE EXECUTE

Driver (CPU 1 thread) 3.8 ms (async, on CPU) 1.8 ms

Device Gen. Cmds 0.20 ms 1.8 ms

Test benchmark is very simplified scenario, your milage will vary

21

NVIDIA IMPLEMENTATION

Currently experimental extension, feedback welcome (design, performance etc.)

VkIndirectCommandsLayout generates internal compute shader

Compute shader stitches the command buffer from data stored in the VkObjectTable

Implements redundant state filter within local workgroup

Reserved command buffer space has to be allocated for worst-case scenario

22

NVIDIA IMPLEMENTATION

Previous 200.000 drawcall example
reserved ~35 and generated ~15 megs

struct ObjectTable {
uint pipelinesCount;
uint descriptorsetsCount;
uint vertexbuffersCount;
uint indexbuffersCount;
uint pushconstantCount;
uint pipelinesetsCount;

ResourcePipeline* pipelines;
ResourceDescriptorSet* descriptorsets;
ResourceVertexBuffer* vertexbuffers;
ResourceIndexBuffer* indexbuffers;
ResourcePushConstant* pushconstants;
ResourcePipelineSet* pipelinesets;

uint* rawPipelines;
uint* rawDescriptorsets;
uint* rawVertexbuffers;
uint* rawIndexbuffers;
uint* rawPushconstants;
uint* rawPipelinesets;

uvec2* pipelinediffs;
uint* rawPipelinediffs;

};

Variable GPU
command sizes

per object

Reserved size for
worst-case

Global memory used internally to stitch
command buffer

struct GeneratingTask {
uint maxSequences;
uvec4 sequenceRawSizes;
uint* outputBuffer;
uint* inputBuffers[MAX_INPUTS];
...

};

layout(std140,binding=0) uniform tableUbo {
ObjectTable table;

};

layout(std140,binding=1) uniform taskUbo {
GeneratingTask task;

};

Pipelines DescriptorSets

VkObjectTable

Command Space

Bind Bind Draw

23

CONCLUSION

GPU-generating will get slower with divergent resource usage

Still important to group by state, helps both CPU and GPU

CPU-generating is asynchronous to device, may not add to frame-time

GPU-generating is on device, best used to save work, not to offload work

24

CROSS API INTEROP

25

CROSS API INTEROP

Generic framework lead by Khronos

Share device memory & synchronization primitives across APIs and processes

Created in context of Vulkan, but not exclusive to it

Vulkan, OpenGL, DirectX (11,12), others may follow

26

EXTERNAL MEMORY
VK_KHX_external_memory (& friends)

New extensions to share memory objects across APIs

VkMemoryAllocateInfo was extended

VkImportMemory*Platform*HandleInfoKHX to reference memory owned by other
instances of the same device

VkExportMemory*Platform*HandleInfoKHX to make memory accessible to other
instances

VkGetMemory*Platform*KHX to query platform handle

27

EXTERNAL MEMORY
VK_KHX_external_memory (& friends)

Memory AllocationResource
owning

instance/API Buffer Image

Memory Allocation

Native

Handle

Buffer Image

Resource
shared

instance/API

Export

Import

Vulkan/DX/...

Vulkan/GL/DX/...

Memory offsets for resources are
provided by original instance

28

EXTERNAL SYNCHRONIZATION
VK_KHX_external_semaphore (& friends)

Same principle as with memory

Allows sharing device synchronization primitives

Control command flow and dependencies on the same device

Command Stream

Command Stream

Native Handle

API/Instance B
Vulkan/GL/DX/...

API/Instance A
Vulkan/GL/DX/...

Semaphore

Semaphore

29

CROSS API INTEROP

May allow adding Vulkan (or other APIs) to host applications not designed for it

OpenGL extension to import Vulkan memory is in progress (but not to export from it)

Synchronization across (or within) APIs should not be very frequent (Frankenstein API
usage)

30

VULKAN VR

31

NVIDIA VRWORKS
Comprehensive SDK for VR Developers

GRAPHICS HEADSET AUDIOTOUCH & PHYSICS

PROFESSIONAL

VIDEO

32

NVIDIA VRWORKS
Comprehensive SDK for VR Developers

GRAPHICS HEADSET AUDIOTOUCH & PHYSICS

PROFESSIONAL

VIDEO

33

GRAPHICS PIPELINE
VR Workloads

1512

1
6
8
0

1512

124M Pix/s
N vertices

60 Hz

457M Pix/s
2N vertices

90 Hz

Preprocessing

Geometric

Pipeline

Rasterization

Fragment Shader

Postprocessing

~3.6x

3x

1
0
8
0

1920

34

NVIDIA VRWORKS
Comprehensive SDK for VR Developers

GRAPHICS HEADSET AUDIOTOUCH & PHYSICS

PROFESSIONAL

VIDEO

35

SINGLE PASS STEREO

Render eyes separately

Doubles CPU and GPU load

Traditional Rendering

36

SINGLE PASS STEREO

Single Pass Stereo uses Simultaneous Multi-Projection architecture

Draw geometry only once

Vertex/Geometry stage runs once
Outputs two positions for left/right

Only rasterization is performed per-view

More Detail:
GTC2017 - S7578 - ACCELERATING YOUR VR APPLICATIONS WITH VRWORKS

Using SPS to improve rendering performance

37

SINGLE PASS STEREO

In Vulkan via VK_NVX_multiview_per_view_attributes

Requires VK_KHX_multiview and VK_NV_viewport_array2 extensions

Check support using vkGetPhysicalDeviceFeatures2KHR with a
VkPhysicalDeviceMultiviewPerViewAttributesPropertiesNVX struct

Spec distinguishes between extension support in one or all components of position
attribute

We only need support for the X component for VR

Vulkan

38

SINGLE PASS STEREO

Create layered texture image and view for rendering left and right simultaneously

Set up render pass with MultiView support

Broadcast rendering to both viewports

VkRenderPassMultiviewCreateInfoKHX::pViewMasks -> 0b0011

Hint to render both views concurrently, if possible

VkRenderPassMultiviewCreateInfoKHX::pCorrelationMasks -> 0b0011

Fill UBO with offsets for left and right eye

Setup

39

SINGLE PASS STEREO

Calculate projection space position

proj_pos = (proj * view * model * inPosition).xyz;

Standard MultiView – specify once, may execute shader twice

gl_Position = proj_pos + UBO.offsets[gl_ViewIndex];

With per-view attributes - also specify positions explicitly, execute shader only once

gl_PositionPerViewNV[0] = proj_pos + UBO.offsets[0];

gl_PositionPerViewNV[1] = proj_pos + UBO.offsets[1];

Vertex Shader

40

Single Pass Stereo brings benefits in geometry bound scenarios

Heavy fragment shaders will reduce scaling

7.1 7.2
6.7 6.8

3.7

4.5

Flat shading + Phong

Traditional MultiView MultiView with per-view attributes

7.1 7.2 7.2
6.7 6.8 6.9

3.7

4.5
4.9

Flat shading + Phong + Noise

Traditional MultiView MultiView with per-view attributes

GRAPHICS PIPELINE
Single Pass Stereo Performance Results

Preprocessing

Geometric

Pipeline

Rasterization

Fragment Shader

Postprocessing

SPS

NVIDIA Quadro P6000, Scene with 17.6M faces, frame times in ms

7.1
6.7

3.7

Flat shading

Traditional MultiView MultiView with per-view attributes

41

NVIDIA VRWORKS
Comprehensive SDK for VR Developers

GRAPHICS HEADSET AUDIOTOUCH & PHYSICS

PROFESSIONAL

VIDEO

42

LENS MATCHED SHADING
Countering Lens Distortion

User’s ViewDisplayed Image Optics

43

LENS MATCHED SHADING
Oversampling near the borders

Displayed ImageRendered Image

44

LENS MATCHED SHADING
w’ = w + Ax + By

Original Image Warped Quadrant

45

LENS MATCHED SHADING
Four Viewports

Original Image LMS Image

46

In Vulkan via VK_NV_clip_space_w_scaling extension

Set up four viewports, rendering full resolution

Set scissors to each quadrant

VkPipelineViewportWScalingStateCreateInfoNV

W scaling parameters:

Use the viewport struct / set on creation

Dynamic state & vkCmdSetViewportWScalingNV

Viewport 0

Scissor 0

LENS MATCHED SHADING
Vulkan

47

LENS MATCHED SHADING

gl_ViewportMask[0] controls broadcasting
of vertices and primitives

Inefficient – set mask in vertex shader

gl_ViewportMask[0] = 15;

More efficient – filter in pass through geometry shader

Determine quadrant(s) for each primitive

Set bit(s) in gl_ViewportMask[0]

Shaders

Viewport 0

Scissor 0

48

LENS MATCHED SHADING
Scaling and Unscaling

HMD runtime can‘t consume w warped images yet, need to unscale before submit

𝑠𝑐𝑎𝑙𝑒 =
1

1− 𝑤𝑥∗𝑃
′
𝑥 −𝑤𝑦∗𝑃

′
𝑦

𝑃′ = 𝑠𝑐𝑎𝑙𝑒 ∗ 𝑃

𝑢𝑛𝑠𝑐𝑎𝑙𝑒 =
1

1+ 𝑤𝑥∗𝑃𝑥 +𝑤𝑦∗𝑃𝑦

𝑃 = 𝑢𝑛𝑠𝑐𝑎𝑙𝑒 ∗ 𝑃′

Quadrant 0

0,0

w/2, h/2

𝑃′

𝑢𝑛𝑠𝑐𝑎𝑙𝑒

𝑠𝑐𝑎𝑙𝑒

𝑃

49

LENS MATCHED SHADING
Scaling and Unscaling

50

LENS MATCHED SHADING
Wx = 0.4 Wy = 0.4 24.2ms -> 11.3ms

51

LENS MATCHED SHADING
Wx = 1.0 Wy = 1.0 24.2ms -> 5.9ms

52

LENS MATCHED SHADING
Wx = 2.0 Wy = 2.0 24.2ms -> 3.3ms

53

GRAPHICS PIPELINE

LMS can improve performance of
Raster / Fragment stage

Trade-off between quality and performance

Lens Matched Shading Results

Preprocessing

Geometric

Pipeline

Rasterization

Fragment Shader

Postprocessing

LMS

SPS

54

NVIDIA VRWORKS
Comprehensive SDK for VR Developers

GRAPHICS HEADSET AUDIOTOUCH & PHYSICS

PROFESSIONAL

VIDEO

55

VR SLI
Overview

Common HMD VR use case, realized through VK_KHX_device_group extension

1. Broadcast scene data, upload separate view data

2. Render left view @ GPU 0, right view @ GPU 1

3. Transfer right view @ GPU 1 to GPU 0 for HMD submit

L

R

R

Scene

Left View

Right View

Render

L

Display

56

VR SLI

Create VkInstance using VK_KHX_device_group_creation

Use vkEnumeratePhysicalDeviceGroupsKHX
to enumerate device groups

Check that devices in a candidate group
support VK_KHX_device_group

Make sure the device group supports peer access via
vkGetDeviceGroupPeerMemoryFeaturesKHX

Create logical VkDevice using
VkDeviceGroupDeviceCreateInfoKHX struct

Enumerate devices, create device group

Device 0

Device 1

Group 0

57

VR SLI

Use vkBindImageMemory2KHX to bind memory to images across GPU boundaries

No direct texture copies in VK,
Use bindings to access memory

deviceIndices0[] = { 0, 1 };

deviceIndices1[] = { 1, 1 };

Make sure the formats match!

Prepare multi-GPU textures

Image 0

Image 0

Image 1

L

R

58

Right View

Scene

Left View

VR SLI

Upload data e.g. using vkCmdUpdateBuffer recorded in command buffer

Submit with a VkDeviceGroupSubmitInfoKHX struct, allowing device masks

Scene and other view independent data can be broadcast

View matrix and other view dependent uploads are limited to one GPU

Data Upload

59

VR SLI

Submit one command buffer for rendering on both GPUs

Use Image 0 as render target

Broadcasting is the default

Restrict rendering using

Command Buffer Info

Render Pass Info

vkCmdSetDeviceMaskKHX

Submit Infos

Rendering

Image 0

Image 0

Image 1

L

R

60

VR SLI

Texture transfer via vkCmdCopyImage or vkCmdBlitImage restricted to GPU 0

Transfer Image 0 and Image 1

Targets

Swap Chain Image

HMD textures

Post-Process texture

Texture Transfer

Image 0

Image 0

Image 1

L

R

L R

61

GRAPHICS PIPELINE

VR SLI covers a wide variety of workloads

Perfect load balancing between
left/right eye and two GPUs

Copy overhead and view independent
workloads limit scaling

VR SLI impact

Preprocessing

Geometric

Pipeline

Rasterization

Fragment Shader

Postprocessing

LMS

SPS

VR SLI

62

TRY IT OUT!

VRWorks SDK: https://developer.nvidia.com/vrworks

SPS: vk_stereo_view_rendering

LMS: vk_clip_space_w_scaling

VR SLI: vk_device_group

Extensions

www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html

KHX and NVX are experimental, feedback welcome!

https://developer.nvidia.com/vrworks
http://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html

63

VULKAN NSIGHT SUPPORT

64

NSIGHT + VULKAN
What is Nsight Visual Studio Edition

Understand CPU/GPU interaction

Explore and debug your frame as it is rendered

Profile your frame to understand hotspots and bottlenecks

Save your frame for targeted analysis and experimentation

Debug & profile VR applications

Leverage the Microsoft Visual Studio platform

New in 5.3: Vulkan 1.0.42 support, extensions, serialization, shader reflection, and
descriptor view

65

NSIGHT & VULKAN
Scrubber

Multi-queue /

multi-thread

State buckets &

VK_EXT_debug_markers
Synchronization

66

NSIGHT + VULKAN
API Inspector – All of the render state

• Pipeline

• Render Pass

• Framebuffer

• Input Assembly

• Shaders

• SPIRV Decorations

• Uniform Values

• Viewport

• Raster

• Pixel Ops.

• Misc.

67

NSIGHT + VULKAN
Device Memory

Memory

Objects

Contained

resources

Raw

memory

Mini-map

view

68

NSIGHT + VULKAN
Descriptor Sets

Pool information

Selected resource

information

Associated

resources

All descriptor

objects with

usage counts

69

NSIGHT + VULKAN
C/C++ Serialization – Challenges Solved

Portability

Frame looping
Where are my particles!?

Trace api

Convert trace into lightweight
portable C/C++ project

Maybe useful to experiment with
the project rather than full
application

Supports original threads,
queues etc.

70

NSIGHT + VULKAN
Roadmap

Profiler & Performance Analysis

Android & Linux Support

Shader Editing

Sparse Texture Support

Improved Resource Barrier Visualization

Future Extensions & Core Releases

THANK YOU

JOIN THE NVIDIA DEVELOPER PROGRAM AT

developer.nvidia.com/join

Christoph Kubisch (ckubisch@nvidia.com, @pixeljetstream)
Ingo Esser (iesser@nvidia.com)

developer.nvidia.com/join

72

BACKUP

7373

OBJECT TABLE

VkObjectTableCreateInfoNVX createInfo = {VK_STRUCTURE_TYPE_OBJECT_…};
createInfo.maxPipelineLayouts = 1;
createInfo.pObjectEntryTypes = {VK_OBJECT_ENTRY_PIPELINE_NVX,… };
createInfo.pObjectEntryCounts = {4,… };
…
vkCreateObjectTableNVX(m_device, &createInfo, NULL, &m_table.objectTable);

VkObjectTablePipelineEntryNVX entry = {VK_OBJECT_ENTRY_PIPELINE_NVX};
entry.pipeline = pipelines.usingShaderA;

vkRegisterObjectNVX(m_table.objectTable, (VkObjectTableEntryNVX*)&entry,
developerChosenIndex);

7474

INDIRECT COMMANDS

VkIndirectCommandsLayoutTokenNVX input;
input.type = VK_ INDIRECT_COMMANDS_TOKEN_PIPELINE_NVX;
input.bindingUnit = 0;
input.dynamicCount = 0;
input.divisor = 1;
inputInfos.push_back(input);

input.type = VK_OBJECT_ENTRY_DESCRIPTOR_SET_NVX;
input.bindingUnit = 0;
input.dynamicCount = 1;
input.divisor = 1;
inputInfos.push_back(input);
...
vkCreateIndirectCommandsLayoutNVX(m_device, genCreateInfo, NULL, &m_genLayout);

7575

GENERATION

vkCmdReserveSpaceForCommandsNVX(cmdSecondary,{resourceTable, indirectLayout, maxCount});

VkIndirectCommandsTokenNVX input;
input.buffer = inputBuffer;
input.type = VK_INDIRECT_COMMANDS_TOKEN_PIPELINE_NVX;
input.offset = pipeOffset;
inputs.push_back(input);

input.type = VK_INDIRECT_COMMANDS_TOKEN_DESCRIPTOR_SET_NVX;
input.offset = matrixOffset;
inputs.push_back(input);

...
vkCmdProcessCommandsNVX(cmdPrimary, {resourceTable, indirectLayout,

inputs.size(), inputs.data(), count, cmdTarget, NULL, 0});

