AST(RON

Netherlands Institute for Radio Astronomy

Efficient Imaging in Radio Astronomy using GPUs

Bram Veenboer, Matthias Petschow and John W. Romein Tuesday 9th May, 2017, GTC 2017, San Jose, USA ASTBON is part of the Netherlands Organisation for Scientific Research (NWO)

Radio Astronomy

AST(RON

- Array of antennas and/or dishes
- Radio frequencies (30-240 Mhz)
- Map of radio sources

LOFAR, The Netherlands

Boötes field, > 1000 Megapixel

Image credits: Wendy Williams, Reinout van Weeren and Huub Rottgering

Square Kilometre Array

SKA1 Mid, Africa

SKA1 Low, Australia

Square Kilometre Array

AST(RON

Imaging in Radio Astronomy

• Convert measurements (visibilities) into a sky-image:

• Measurement equation:

$$V_{pq} = \int_{l} \int_{m} A_{p}(l,m) \times B(l,m) \times e^{-2\pi i (u_{pq}l + v_{pq}m + w_{pq}n)} dl dm$$
visibility sky coordinates source brightness visibility coordinate u, v, w

Fourier sampling

'earth rotation synthesis'

every baseline contributes one point (visibility)

'Gridding' visibilities

• Place visibilities onto a regular Fourier grid:

Traditional approach: apply 'convolution' to each visibility

Imaging example

• Simulated three point sources, observed by 30 stations for 4 hours:

2D FFT

gridded visibilities

Efficient Imaging in Radio Astronomy

Problem: The 'gridding' and 'degridding' steps are computationally very expensive Solution: Use the novel Image-Domain Gridding (IDG) algorithm on accelerators

Placing visibilities onto a regular Fourier grid

AST(RON

Image domain gridding: subgrids

A subset $(\tilde{\mathcal{T}} \times \tilde{\mathcal{C}})$ of visibilities from baseline j are placed onto a subgrid

Image domain gridding: work distribution

Optimizations

- General:
 - Coarse-grained parallelism, vectorization, libraries
 - Double buffering, shared memory
- Application specific:
 - Fine-grained parallelism
 - Data transpose (visibilities)
 - Data alignment (uvw coordinates)
- Architecture specific:
 - Computation of phasor term $(e^{-i\phi})$
 - Nvidia: one special function unit (SFU) for every four/six cores
 - GCN: one transcendental operation per SIMD per four clock cycles

GPU implementation

Results: throughput/runtime

- Most time spent in gridder/degridder
- $\bullet~{\rm GPUs}~{\rm perform}>{\rm order}~{\rm of}$ magnitude better than CPU

Roofline analysis: overview

Performance for FMA/sincos instruction mix

Roofline analysis: instruction mix

Roofline analysis: shared memory

Results: energy consumption/efficiency

- Most energy spent in gridder/degridder
- GPUs perform > order of magnitude better than CPU

Conclusion

- First implementations of the IDG algorithm on CPUs and GPUs
- First efficient degridding implementation on GPUs ever
- A thorough (roofline) analysis of the achieved performance
- An assessment of energy efficiency

IDG on GPUs is a candidate to meet the demanding computational and energy efficiency constraints imposed by future telescopes such as the Square Kilometre Array (SKA).

> Image-Domain Gridding on Graphics Processors, Bram Veenboer, Matthias Petschow and John. W Romein, IPDPS 2017