Accelerating Influence Spread Estimation on Social Networks in the Continuous-time Domain

Koushik Pal

Zissis Poulos
• Online social networks enable large scale word-of-mouth marketing
The Big Question: which individuals should we target initially, such that the expected number of follow-ups is maximized?

Identify influencers

Convince them to adopt the idea/product

These customers endorse the product among their friends
Influence Maximization in the Continuous-time Domain

- **Model:** Continuous-time Independent Cascade [Nan Du et al, NIPS 2013]
- **Infection:** a node adopts the opinion/product
- **Pairwise conditional density between nodes**
 \[f_{ji}(t_j|t_i) = f_{ji}(t_i - t_j) \text{ over time – “time it takes for node } i \text{ to infect node } j” \]

Sampling is required to generate weights

Slide Credit: Nan Du et al, NIPS 2013
Influence Maximization in the Continuous-time Domain

- **Model:** Continuous-time Independent Cascade [Nan Du et al, NIPS 2013]
- **Infection:** a node adopts the opinion/product
- **Pairwise conditional density between nodes**

\[f_{ji}(t_j|t_i) = f_{ji}(t_i - t_j) \]

over time – “time it takes for node i to infect node j”

Shortest Path Property

For a given sample, node 1 infects node 4 after time \(D_{14} \) = length of shortest path between nodes 1 and 4

\(D_{14} = 0.6 \)

1. Eddie to Jane
2. Jane to Mike
3. Shortest Path, Property
4. For a given sample, node 1 infects node 4 after time \(D_{14} \) = length of shortest path between nodes 1 and 4

\(D_{14} = 0.6 \)
Influence Maximization in the Continuous-time Domain

- In reality a campaign has a strict deadline T
- Role of T in spread

- Expected spread of node (set of nodes) = expected # nodes it infects

![Diagram showing nodes and edges with numbers indicating infection probabilities and expected spread D.]
Problem Statement

- “Find set S of k nodes that maximizes expected spread $\sigma(S)$”
- NP-hard...but there exists a greedy 63%-approximation algorithm (Kempe et al, 2003)

1: initialize $S = \emptyset$
2: for $i = 1$ to k do
3: select $u \leftarrow \arg \max_{w \in V \setminus S} [\sigma(S \cup \{w\}) - \sigma(S)]$
4: $S \leftarrow S \cup \{u\}$
5: end for
6: return S

1: for $j = 1$ to N do // N samples, $\approx 100,000$
2: for all nodes not in S do // $\#$ nodes, $|V|$
3: enumerate shortest paths $\leq T$
4: return $u \leftarrow$ node with max $\#$ of such paths on avg

#P-complete
Solution 1: Naïve Sampling

- Follows exactly the previous pseudo-code

\[\frac{\sum \sigma(w)}{N} \]
Solution 2: Cohen’s Estimator

- Proposed by Nan Du et al, NIPS 2013 (ConTinEst framework)
- Replace all-pairs shortest paths with Cohen’s randomized algorithm
- Estimates neighborhood size (spread) per node, per sample
- Faster by a $O(|V|/\log|V|)$ factor – fewer samples – speed vs. accuracy trade-off

1: for $j = 1$ to N do // N samples, $\approx 100,000$
2: for all nodes not in S do // # nodes, $|V|$
3: enumerate shortest paths $\leq T$
4: return u node with max # of such paths
Solution 2: Cohen’s Estimator

- Proposed by Nan Du et al, 2013 (ConTinEst framework)
Parallelization

• **Naïve Sampling:**
 – embarrassingly parallel
 – complete independence across samples
 – \([100,000 \ldots 1,000,000]\) samples for convergence, motivates acceleration

• **Cohen’s Estimator:**
 – fewer samples \([10,000 \ldots 50,000]\)
 – core randomized algorithm exhibits heavy sequential dependence

• **Concerns:** **space vs speed** trade-offs
 – need to pre-generate weights (on host vs on device)
 – balance data loads/unloads between host and device
 – batch sampling?
Data Allocation – Host Side

- G(V,E): adjacency list representation $O(|V|+|E|)$
- Edge weights: pre-generated and stored for all samples $O(N|E|)$
- Memory intensive (2GB for small 200-node network, 1M samples)
- Implement batch sampling/allocation
 - fix batch size to constant B such that N/B batches are passed to device
Batch Sampling with Batch Size B

- Batch 1:
 - Sample 1
 - Sample 2
 - Sample B
 - Spread

- Batch N/B:
 - Sample N-B
 - Sample N-B+1
 - Sample N
 - Spread

- Global Memory:
 - Device-to-host copy

- Network Graph:
 - Nodes: 1, 2, 3, 4, 5, 6, 7
 - Edges with weights: 0.3, 0.2, 0.7, 0.4, 0.8, 0.1, 0.1, 0.1

- T = 0.5
Latency Improvements for GPU

- Inherent semi-randomness causes poor memory coalescence
- Adjacent threads may need to access edge weights far apart in memory
- **Improvement #1:** Rearrange edge weight order on device memory

![Diagram showing sample i to all edges and all samples to edge k]

- **Improvement #2:** Use 1D texture memory for read-only data (weights, topology etc)
- **Improvement #3:** Disable L1 cache (fewer wasteful fetches)
Experimental Setup

- **System:**
 - AWS GRID K520
 - 3074 CUDA Cores
 - 8GB DDR5
 - Compute Capability 3.0
 - CPU: Intel Xeon E5 (Sandy Bridge)

- **Social Graphs:**
 - Twitter_small | 236 nodes | 2479 edges
 - Google_medium | 638 nodes | 16043 edges
 - Twitter_big | 1049 nodes | 54555 edges

- **Sampling range:** 100 – 100,000 samples
Results – Naïve Sampling

Performance gains when using texture pipeline / read-only data cache for read-only data
Results – Naïve Sampling

GPU vs. CPU for Naïve Sampling

- google_medium GPU
- google_medium CPU

x3.5

9 hrs
Results – Cohen’s Estimator

- Smaller gains
- Space complexity bottleneck

![Graph showing time versus number of samples for google_medium GPU and google_medium CPU with 38% difference marked]
Thank You!