
April 4 -7, 2016 | Silicon Valley

Christoph Kubisch Sr. Developer Technology Engineer, NVIDIA

Pierre Boudier Quadro Software Architect, NVIDIA

4/4/2016

GPU-DRIVEN RENDERING

2

WHAT IS THIS TALK ABOUT?
Or should I sneak out of the room now

Latest of a series of presentations

Rendering heterogenous scenes with many
distinct objects

Improving the overall system, rather than
tuning individual shader

Using knowledge of how the hardware
implements the graphics pipeline

http://on -demand.gputechconf.com/gtc/2013/presentations/S3032 -Advanced-Scenegraph-Rendering-Pipeline.pdf

http://on -demand.gputechconf.com/siggraph/2014/presentation/SG4117 -OpenGL-Scene-Rendering-Techniques.pdf

http://on -demand.gputechconf.com/gtc/2015/presentation/S5135 -Christoph-Kubisch-Pierre-Boudier.pdf

http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf

3

glBegin (GL_TRIANGLES)
glVertex3f
...

glMultiDrawElementsIndirect
glDrawCommandsStatesNV

VkSubmitInfo info = {...};
info.pCommandBuffers = ...
vkQueueSubmit (queue,1, &info..)

PAST, PRESENT, FUTURE

Dawn of GPU: CPU was fast enough to feed GPU

Past: Increase in scene complexity challenged CPU to feed
GPU fast enough

Present: Modern APIs and data-driven design methods provide
efficient ways to render scenes

ü OpenGL's Multi Draw Indirect, NVIDIA's bindless and
NV_command_list technology

ü Vulkan's native support for command -buffers and general
design that allows re -use and much better control over
validation costs

4

PAST, PRESENT, FUTURE

Future: Decouple CPU and GPU further as GPU becomes
more capable to drive decision making

Occlusion Culling, Level of Detail (geometry and
shading), Animation...

Easy access to practical information like depth -buffer,
past frames...

Minimizes latency, keeps data where it is used, produce
and consume directly

Geometry and visual effect generation beyond basic
tessellation

model courtesy of PTC

Distance Field Rendering ð Iñigo Quilez, ShaderToy

5

How do we leverage the hardware well?

How does the hardware actually work?

PAST, PRESENT, FUTURE

6

AGENDA

Hardware design overview

Life of a triangle, a trip through the GPU
graphics pipeline

Practical Consequences

7

HARDWARE DESIGN
Wide Chips

Wider chips with more units favor large work:

ü Every cycle, if a unit does not have work to do,
then efficiency is lost

ü A typical applications goes over a series of tasks
(shadows, object shading, post -fxé),
each task is likely limited by a subset of units

Increased programmability allows for more data
"generated" on chip

The trend is add more programmable units than fixed
function ones

GM200 (launched in 2015)

6 Graphics Processing Clusters (GPC)

24 Streaming Multiprocessors (SM)

3072 CUDA cores

96 Raster Output Units (ROP)

192 Texture Units

384 bit memory interface

model

courtesy of

PTC

Changing bindings,
small object draw -
calls...

8

HARDWARE DESIGN
Fixed Function Units

Pipeline needs to scale with data expansion & reduction

ü drawcalls (1..N primitives) Ą [tessellation] Ą visible triangle (0..M screen pixels)

Not efficient to do all in ògeneric unitsó, put code into metal

Any fixed function unit in the pipeline:

ü Is a free resource to get useful work done

ü But can potentially become a bottleneck if it is overloaded

ü The number of units will vary for each GPU based on workload & cost

Rasterization Unit

Texture Unit

9

HARDWARE DESIGN
Distribution and Queueing of Work

Work Item e.g. Visible triangles ...

Units
consume & produce

data at variable
rates

...

Streaming

Multiprocessors e.g. Pixel Shaders

...

Back pressure
from queue load status

Upper units hindered

in production

Distribution of
work to units can
be across entire

chip (xbar)
Fixed Function Units e.g Rasterizers

Unit Work
Queue

...

10

Large number of units and system latencies cause
efficiency loss before & after a GPU òwait for idleó

Ramp up/down time depends on the actual workload

Barriers may be caused by

ü Hardware internal state

ü Application (as in YOU)
glMemoryBarrier, RenderPasses...
ensure prior work has finished computation

Task

Execution

HARDWARE DESIGN
Ramp up/down time

Empty GPU

Time

Utilization

Barrier

11

HARDWARE DESIGN
Memory Hierarchy

The closer the memory
to the execution units
the faster the access

Off-Chip memory takes
a loooong time to get
to the execution unit
(avoid cache miss)

DRAM

L2 Cache

L1 Cache

Register Files

Execution Units

Off-Chip
Memory

Processor
Local

Chip
Global

12

HARDWARE DESIGN
Latencies

VERTEX SHADER FRONT-END

Fetching from pushbuffer :
~1000 cycles (PCIE latency)

Processing of one simple
state:
1 cycle

Fetching vertices:
 ~300 cycles

Simple transformation:
~200 cycles

PIXEL SHADER

Fetching texture from L1:
~100 cycles

Fetching texture from L2:
~200 cycles

Fetching texture from DRAM:
~500 cycles

13

LIFE OF A TRIANGLE

14

LIFE OF A TRIANGLE
Overview

API Driver PushBuffer Front-End

Primitive Distribution

Rasterizer
Pixel Shader

(PS)

Blending

LateZ

Compress to

Framebuffer

Vertex

Fetch

Vertex

Shader (VS)

Viewport

Processing

Rasterization Distribution

Tessellation

Distribution

World Space

Screen Space

15

LIFE OF A TRIANGLE
Work Distribution

Shaders executed as Warps: Group of 32 threads, sharing instruction state

16

LIFE OF A TRIANGLE
From Api to GPU

VKAPI_ATTR void VKAPI_CALL vkCmdDraw (
 VkCommandBuffer commandBuffer,
 uint32_t vertexCount , uint32_t instanceCount , uint32_t firstVertex , uint32_t
firstInstance)
{
 checkAvailableSpace (commandBuffer- >pushBuffer , 5);

 commandBuffer- >pushBuffer [0] = DRAW_HEADER;
 commandBuffer- >pushBuffer [1] = vertexCount ;
 commandBuffer- >pushBuffer [2] = instanceCount ;
 commandBuffer- >pushBuffer [3] = firstVertex ;
 commandBuffer- >pushBuffer [4] = firstInstance ;
 commandBuffer- >pushBuffer +=5;
}

17

LIFE OF A TRIANGLE
From Api to GPU

VKAPI_ATTR VkResult VKAPI_CALL vkQueueSubmit(
 VkQueue queue, uint32_t submitCount , const VkSubmitInfo * pSubmits , VkFence fence)
{
 for (uint32_t i = 0; i < submitCount ; ++i) {
 // submit wait for pSubmitInfo - >pWaitSemaphores
 // submit pSubmitInfo - >pCommandBuffers to the GPU, typically by the kernel mode driver
 // submit signal for pSubmitInfo - >pSignalSemaphores
 // submit fence signal
 }
}

18

LIFE OF A TRIANGLE
Top of GPU Pipeline

Fetch the pushbuffer over PCIE into a FIFO to
hide latency

Decode resource bindings & state changes, and
update the HW state

Decode initiator (draws)

Send token to track when all the work is
finished (at the end of the pipeline)

PushBuffer

State

Fetch into
Decoder

FIFO

Decode State Draw

Draw Completed
Add Token for
Completion

19

LIFE OF A TRIANGLE
State Management

States can be processed immediately

Or can be bundled to be decoded later when
the world space operation is finished

Redundant states are filtered when possible
(but it may still take 1 clock to reject each
one)

Some states are complex and can take many
cycles (like a shader switch)

State State Draw

WorldSpace State ScreenSpace

Applied State Bundled State

State decoded in pipeline

FrontEnd

20

LIFE OF A TRIANGLE
Work Distributor

The main unit starting the òdrawó operation

Collect indices (or auto generate them for non -
indexed operation)

Manage vertex reuse to reduce the number of
vertex threads

Create a batch of up to 32 triangles and 32
vertices (all vertices of a primitive always in
same batch)

Select the GPC which will launch the next VS
warp (1 warp = 32 threads)

Pack for vertex re -use
max 32 vertices/triangles

IndexBuffer

Send to any avalaible GPC

GPC GPC GPC

21

LIFE OF A TRIANGLE
World Space Processing

Dedicated HW unit pre -fetches the vertex attributes
into L1 (hides latency for VS startup)

The vertex shader runs in the SM, and outputs
attributes into L1

Viewport transform, Clipping, Culling in the
PolyMorph Engines

VertexBuffers

VertexAttributeFetch Unit

L1 Cache

Vertex Shader Warp

PolyMorph
Engine

Viewport ...

22

LIFE OF A TRIANGLE
Screen Space Processing

A xbar will distribute the work to the raster units per
GPC based on screen-space tiling

Hierarchical Z unit can reject tiles

Edge setup to evaluate sample coverage

2x2 pixel quads (4 threads) are generated for the PS for
any non-null coverage

Optionally , early depth & stencil test can reject entire
quad

0 1

2 3

Triangle sent to
Raster Engine(s)

2x2
pixel
quads

Sampling Grid

23

LIFE OF A TRIANGLE
Screen Space Processing

Pixel shader warp runs on multiple quads

Fetches interpolated attributes

Masks read/writes from zero coverage
samples

Texture filtering gradients(Mip -map
levels, Aniso...) or ddx/ddy based on
quad differencing

Writes out color

Can modify depth and coverage mask

Max 8 quads merged into warp (32 threads)

Mask out
ăhelperò threads Easy access to

quad values for
gradients

bool gl_HelperInvocation
// is true for helper threads

Triangles overlap same tile

24

LIFE OF A TRIANGLE
Color Blending / Depth Testing

Raster Output (ROP) units maintain API primitive order

ü Easy since the rasterization is screen mapped

ü Each unit only needs to handle warp in order

Fixed function or programmable blending of the color

Optionally perform Late-Z rejection
(triggered by discard or gl_FragDepth writes in PS)

Discard needs Late-Z

Only order within tile
important for ROP

25

LIFE OF A TRIANGLE
Compression

The hardware employs a number of techniques to
reduce memory traffic for both depth and color
render targets in a transparent scheme to all units

To benefit, avoid scatter writes , since algorithms
prefer to look at a òtileó to find lossless
compression opportunities

Maxwell
3rd Generation

Delta Color Compresson

26

PRACTICAL CONSEQUENCES

27

UTILIZATION

Front-End-limited: vkGraphicsPipeline switch can be
 expensive
Shader-limited: the switch could be free,
 allowing more specialized shaders

At high resolutions, the pixel shader eventually dominates
all other bottlenecks .

Avoiding idle barriers in Vulkan

ü Subpass allows the GPU to work on different render
target in parallel

ü Just ensure that you donõt create a false dependency
with input attachments

Unit Type A

Unit Type B

SubPass Dependent

SubPass
SubPass

SubPass

Utilization

Time

28

UTILIZATION
Depth buffer rendering

Hierarchical depth buffer is cached on -chip for
Z-Cull

As a result, switching between depth buffers
often will need in & out copy, increasing òidleó
time

ü Alternatively use ănon-depthò SubPasses
inbetween to keep data on -chip

Fast rejection

based on

screen size

Depth A Depth B

Utilization

Time

Depth A

29

STATE MACHINE
Redundant State Changes

Redundant state less of a problem on CPU-side in modern
APIs with pre-validation

GPU still has to process the commands, hence state
filtering and sorting remain beneficial

glDrawCommandsStatesNV
 (... stateobjects[] ...);

VkSubmitInfo info = {...};
info.pCommandBuffers = cmdbuffers;
vkQueueSubmit (queue,1, &info..)

Material UBO Material UBO Draw Draw Material UBO

Material UBO Draw Draw

GPU time: 1.9 ms

GPU time: 0.9 ms
Graphicscard model

68k drawcalls

CPU time: 5 us

CPU time: 5 us

30

STATE MACHINE
Vulkan Bindings

Be precise about stage resources, which
buffers/samplers are used in which

Balance use of bindings/pushconstants to utilize
different hardware mechanisms

Prefer single stage pushconstant

Organize DescriptorSetLayouts to keep them
bound across pipeline changes

Vertex Fragment

UniformBuffer

Texture

Sampler

UniformBuffer

DescriptorSet
Layouts

PushConstant

(e.g. Object

Matrix Index)

Bind
Pipeline A

Bind
Sets

Bind
Pipeline B

Effective
State

Set # 0:

Set # 1:

31

REDUCING CPU TRANSFERS
Compact Updates

Updating memory from the CPU is serial:

ü Many smalls update will not get much overlap,
and suffer from PCIE latency

Instead

ü Collect updates via staging buffer in host
memory and scatter via shaders

ü For one-shot use, data can be fetched from CPU
resident buffer directly

ü Vulkan: Avoid VK_IMAGE_TILING_LINEAR for GPU
resident resources, large performance penalty

1 2 4 6 0

Target Buffer (GPU)

x x x

Update Data & Locations (CPU)

Shader scatters data

0 3 5

3 5

32

REDUCING CPU TRANSFERS
Incremental Changes

By computing data directly on the GPU, we need to
send less data

Sufficient to send time values for animation or
modified individual nodes

Hierarchical transform propagation on GPU

What if double is needed?

ü Matrix updates in double

ü Concat object & view matrix in double

ü Store as float for vertex transforms

PCIE Tansfer

Computation

Time

33

COMPUTING EFFICIENY
Small Work

Launch overhead of compute dispatch not
negligable for < 10 000 threads

Use Vertex-Shader to do compute work via
GL_RASTERIZER_DISCARD and overlap with
graphics (multi -invocation Geometry -Shaders are also fast)

For many threads keep using compute.

Use ARB_shader_ballot and
NV_shader_thread_shuffle to pass data
between threads, avoiding shared memory

... Ƨ#ÏÍÐÕÔÅƨ ÁÌÔÅÒÎÁÔÉÖÅ ÆÏÒ ÆÅ× ÔÈÒÅÁÄÓ
if (numThreads < FEW_THREADS){
 glUseProgram (vs);
 glEnable (GL_RASTERIZER_DISCARD);
 glDrawArrays (GL_POINTS, 0, numThreads);
 glDisable (GL_RASTERIZER_DISCARD);
}
else {
 glUseProgram (cs);
 numGroups = (numThreads+GroupSize - 1)/ GroupSize;
 glUniformi1 (0, numThreads);
 glDispatchCompute (numGroups, 1, 1);
}

... Shader
#if USE_COMPUTE
 layout (local_size_x =GROUP_SIZE) in;
 layout (location =0) uniform int numThreads;
 int threadID = int (gl_GlobalInvocationID.x);
#else
 int threadID = int (gl_VertexID);
#endif

vec3 posA = getPosition (gl_ThreadInWarpNV ˩ ƛƾ
vec3 posB = shuffleUpNV (posA, 1 , gl_WarpSizeNV);

34

COMPUTING EFFICIENCY
Divergent Control Flow

SIMT (Single Instruction Multiple Threads)

Processes threads in lock-step, common
instruction pointer (masks out inactive)
NVIDIA: 1 warp = 32 threads

Longest for -loop will block progress on
other threads in warp

If / else may execute both branches
serially if condition was divergent

Positive: can communicate and access
within warp data (e.g. ddx/ddy)

Thread: 0 ... 3

3 2 4 8
Loop

Length

Loop
Iterations

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Instruction
Pointer

Check ăBlueprint Renderingò presentation
for alternative solution

MUL R0, R3, R2

35

LATENCY HIDING

Throughput is what matters
throughput = occupancy / latency

Memory accesses are typically the
highest latency operations

If shaders use too much on-chip
resources, then lower occupancy

ü Registers

ü Cross-Stage Data

ü Vertex Input Attributes

Warp 0 Warp 1 Warp 2 Warp 3 Warp 4

Request

Wait for

memory

COMPUTE

Effective

On-Chip Resources

Warp4 blocked by
resource occupancy Ramp up

Could
not fully

hide
latency

Time
Warp scheduler switches

between active warps

36

LATENCY HIDING
Cross-Stage Data

Passing a lot of data across shader stages
negatively impacts number of threads run
(gl_ClipDistance also counts into this)

Prefer specialized shaders, over large
übershaders, to minimize data

Re-computing in the fragment shader can be
faster sometimes

Particularly high polygon scenes can suffer from
this, due to sheer amount of vertex data

in Interpolants {
 vec3 oPos;
 vec3 oNormal;
 vec3 oTangent;
 vec3 wPos;
 vec3 wNormal;
 vec3 wTangent;
 vec2 tex ;
 vec4 color;
} IN;

...
// bad
if (ubo.hasNormalmap) {
... Using IN.oTangent ..,
}
// better, let compiler remove unused data
#if HAS_NORMALMAP
... Using IN.oTangent ..
#endif

// could be bottleneck
wLightDir = wPos Ƶ ubo.wLightPos;
// recalculate from other data
wLightDir = ubo.oMatrix * vec4 (oPos,1) Ƶ
...

ƳƳ ÏƥÒÌÙơ
ƳƳ ÏƥÒÌÙơ
// ÏƥÒÌÙơ

37

LATENCY HIDING
Texturing

In the pixel shader, favor batched memory access
(many textures fetched at once)

Lots of run-time branching & dynamic loops,
hinders this compiler optimization

Aid compiler by grouping fetches & organizing
dependent reads

Generate shaders with popular compile-time loop -
counts by making use of pre-processor or Vulkan
specialization constants

Use textureGatherOffsets if possible
(offset functions express locality, gather good for reading more data at once)

Request

Wait for

memory

COMPUTE

dynamic
if or for

iterations

cause
multiple
request
phases

Request

Wait for

memory

COMPUTE

Batched
requests

38

MEMORY TYPES
Fetching Buffer Data

TEXTURE
BUFFER

UNIFORM
BUFFER

SHADER STORAGE
BUFFER

Fastest for uniform, bad
for divergent access

Good for generic access

Address math handled by
texture unit

Also handles format
conversion

Good for generic access, can
be a tad slower than texture

Address math in shader and
64-bit registers

Format conversion in shader

Robust contexts add out-of-
bounds checking in shader

uniform ubo {
 bool blah;
 vec4 data[128];
};

// okay, single load for warp
i f (blah) ... = data[0];
else ... = data[1];

// not good,
// serializes loads within warp
... = data[thread_specific];

uniform samplerBuffer tbo;

// tbo could be FP16 or FP32
 texelFetch (tbo,
 thread_specific);

buffer ssbo {
 vec4 data[];
};

Constant
Cache

L1/L2
Cache

L1/L2
Cache

Can balance SSBO/TBO use to avoid hammering TextureUnits

39

WORK REDUCTION
Multi Draw Indirect , NV command list

When rendering lots of geometry, can become
drawcall, overdraw and triangle limited again

Remove unnecessary detail on the fly

Multi Draw Indirect (Vulkan & GL) and
NV_command_list provide ways to implement
level of detail or efficient culling

Prefer compact command buffers

No CPU interaction means no frame-latency ,
great for VR
(see demo in VR Village 52+ million triangle car model)

https:// github.com/nvpro -

samples/gl_occlusion_culling

DrawElements {
 Gluint count;
 Gluint instanceCount;
 GLuint firstIndex ;
 GLuint baseVertex ;
 GLuint baseInstance ;
}

buffer commands {
 DrawElements cmds[];
}

culled

Compaction avoids
pipeline bubbles

https://github.com/nvpro-samples/gl_occlusion_culling
https://github.com/nvpro-samples/gl_occlusion_culling
https://github.com/nvpro-samples/gl_occlusion_culling
https://github.com/nvpro-samples/gl_occlusion_culling

40

GEOMETRY CREATION
Tessellation, Geometry Shader, Draw Indirect

GEOMETRY
SHADER

TESSELLATION

Hardware can allocate
needed space on-demand
and distribute Tess. Eval
Shader work across SMs

All data produced &
consumed on chip

Needs to pre-allocate
worst-case output data in
L1

Therefore can negatively
reduce amount of parallel
threads

FAST GEOMETRY
SHADER

Works on the Vertex-
Shader data directly

No extra stage/storage

Send same primitive to
multiple viewports, or
discard it

layout(max_vertices =4) out ;
// avoid high counts
// and low output ratios

gl_ViewportMask [0] = 0;
// culls primitive

SM 1

SM 2

NV_geometry_shader_passthrough

41

GEOMETRY CREATION
Tessellation, Geometry Shader, Draw Indirect

DRAW INDIRECT VERTEX SHADER

Generate geometry based
purely on gl_VertexID

May use custom fetching
or even generate index-
buffer on the GPU

Use ăshuffleò to access
other vertices of same
primitive

Use Draw Indirect to
generate variable amount
of data

Preferably avoid low
primitive counts (risk of
being FrontEnd-limited)

PIXEL SHADER

Use discard and distance
fields to clip geometry

Compute coverage
analytically for MSAA

DrawArrays {
 Gluint count;
 ...
}

gl_Position .x = gl_VertexID * scale;

42

CONCLUSION

Make use of all the power J

Investigate where to put optimization effort in

Balance different hardware units for optimal efficiency,
avoiding pipeline ăbubblesò

Generate & update data on the GPU itself

Use modern API mechanisms!

Makes a #HappyGPU and ideally a happy you

Courtesy of Simon Trümpler

