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WHAT IS THIS TALK ABOUT? 
Or should I sneak out of the room now  

Latest of a series of presentations  

Rendering heterogenous scenes with many 
distinct objects  

Improving the overall system, rather than 
tuning individual shader  

Using knowledge of how the hardware 
implements the graphics pipeline  

http://on -demand.gputechconf.com/gtc/2013/presentations/S3032 -Advanced-Scenegraph-Rendering-Pipeline.pdf  

http://on -demand.gputechconf.com/siggraph/2014/presentation/SG4117 -OpenGL-Scene-Rendering-Techniques.pdf 

http://on -demand.gputechconf.com/gtc/2015/presentation/S5135 -Christoph-Kubisch-Pierre-Boudier.pdf  
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glBegin  ( GL_TRIANGLES)  
glVertex3f  
...  
 
 
glMultiDrawElementsIndirect  
glDrawCommandsStatesNV 
 
 
 
 
 
 
 
 
VkSubmitInfo info = {...};  
info.pCommandBuffers = ...  
vkQueueSubmit (queue,1, &info..)  
 

PAST, PRESENT, FUTURE 

Dawn of GPU: CPU was fast enough to feed GPU 

Past: Increase in scene complexity challenged CPU to feed 
GPU fast enough 

Present: Modern APIs and data-driven design methods provide 
efficient ways to render scenes  

ü OpenGL's Multi Draw Indirect, NVIDIA's bindless and 
NV_command_list technology 

ü Vulkan's native support for command -buffers and general 
design that allows re -use and much better control over 
validation costs 
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PAST, PRESENT, FUTURE 

Future: Decouple CPU and GPU further as GPU becomes 
more capable to drive decision making  

Occlusion Culling, Level of Detail (geometry and 
shading), Animation...  

Easy access to practical information like depth -buffer, 
past frames...  

Minimizes latency, keeps data where it is used, produce 
and consume directly  

Geometry and visual effect generation beyond basic 
tessellation  

 

model courtesy of PTC 

Distance Field Rendering ð Iñigo Quilez, ShaderToy 
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How do we leverage the hardware well?  

How does the hardware actually work?  

PAST, PRESENT, FUTURE 
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AGENDA 

Hardware design overview 

Life of a triangle, a trip through the GPU 
graphics pipeline  

Practical Consequences 
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HARDWARE DESIGN 
Wide Chips 

Wider chips with more units favor large work:  

ü Every cycle, if a unit does not have work to do, 
then efficiency is lost  

ü A typical applications goes over a series of tasks 
(shadows, object shading, post -fxé), 
each task is likely limited by a subset of units  

Increased programmability allows for more data 
"generated" on chip 

The trend is add more programmable units than fixed 
function ones 

 

GM200 (launched in 2015) 

6 Graphics Processing Clusters (GPC) 

24 Streaming Multiprocessors (SM) 

3072 CUDA cores 

96 Raster Output Units (ROP) 

192 Texture Units 

384 bit memory interface  

model 

courtesy of 

PTC 

Changing bindings, 
small object draw -
calls...  
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HARDWARE DESIGN 
Fixed Function Units 

Pipeline needs to scale with data expansion & reduction  

ü drawcalls (1..N primitives) Ą [ tessellation  ]  Ą visible triangle (0..M screen pixels) 

Not efficient to do all in ògeneric unitsó, put code into metal 

Any fixed function unit in the pipeline:  

ü Is a free resource to get useful work done  

ü But can potentially become a bottleneck if it is overloaded  

ü The number of units will vary for each GPU based on workload & cost 

 

Rasterization Unit  

Texture Unit  
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HARDWARE DESIGN 
Distribution and Queueing of Work  

Work Item e.g. Visible triangles  ...  

Units 
consume & produce 

data at variable 
rates 

...  

Streaming 

Multiprocessors e.g. Pixel  Shaders 

...  

Back pressure 
from queue load status  

 
Upper units hindered  

in production  

Distribution of 
work to units can 
be across entire 

chip (xbar)  
Fixed Function Units e.g Rasterizers 

Unit Work  
Queue 

...  
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Large number of units and system latencies cause 
efficiency loss before & after a GPU òwait for idleó 

Ramp up/down time depends on the actual workload 

Barriers may be caused by 

ü Hardware internal state  

ü Application (as in YOU)  
glMemoryBarrier, RenderPasses...  
ensure prior work has finished computation  

 

 

Task 

Execution 

HARDWARE DESIGN 
Ramp up/down time  

Empty GPU 

Time 

Utilization  

Barrier 
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HARDWARE DESIGN 
Memory Hierarchy 

The closer the memory 
to the execution units 
the faster the access  

Off-Chip memory takes 
a loooong time to get 
to the execution unit 
(avoid cache miss)  

DRAM 

L2 Cache 

L1 Cache 

Register Files 

Execution Units 

Off-Chip 
Memory 

Processor 
Local 

Chip 
Global 
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HARDWARE DESIGN 
Latencies 

VERTEX SHADER FRONT-END 

Fetching from pushbuffer : 
~1000 cycles (PCIE latency) 

Processing of one simple 
state:  
1 cycle 

Fetching vertices:  
 ~300 cycles 

Simple transformation:  
~200 cycles 

PIXEL SHADER 

Fetching texture from L1:  
~100 cycles 

Fetching texture from L2:  
~200 cycles 

Fetching texture from DRAM: 
~500 cycles 
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LIFE OF A TRIANGLE 
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LIFE OF A TRIANGLE 
Overview 

API Driver PushBuffer Front-End 

Primitive Distribution  

Rasterizer 
Pixel Shader 

(PS) 

Blending 

LateZ 

Compress to 

Framebuffer  

Vertex 

Fetch 

Vertex 

Shader (VS) 

Viewport 

Processing 

Rasterization Distribution  

Tessellation 

Distribution  

World Space 

Screen Space 
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LIFE OF A TRIANGLE 
Work Distribution  

Shaders executed as Warps: Group of 32 threads, sharing instruction state  
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LIFE OF A TRIANGLE 
From Api to GPU 

VKAPI_ATTR void  VKAPI_CALL vkCmdDraw (  
  VkCommandBuffer commandBuffer,  
  uint32_t  vertexCount , uint32_t  instanceCount , uint32_t  firstVertex , uint32_t  
firstInstance )  
{  
  checkAvailableSpace ( commandBuffer- >pushBuffer , 5 );  
 
  commandBuffer- >pushBuffer [0] = DRAW_HEADER;  
  commandBuffer- >pushBuffer [1] = vertexCount ;  
  commandBuffer- >pushBuffer [2] = instanceCount ;  
  commandBuffer- >pushBuffer [3] = firstVertex ;  
  commandBuffer- >pushBuffer [4] = firstInstance ;  
  commandBuffer- >pushBuffer +=5;  
}  
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LIFE OF A TRIANGLE  
From Api to GPU 

VKAPI_ATTR VkResult  VKAPI_CALL vkQueueSubmit(  
  VkQueue queue, uint32_t submitCount , const  VkSubmitInfo * pSubmits , VkFence fence)  
{  
  for ( uint32_t i = 0; i < submitCount ; ++i) {  
    // submit wait for pSubmitInfo - >pWaitSemaphores 
    // submit pSubmitInfo - >pCommandBuffers to the GPU, typically by the kernel mode driver  
    // submit signal for pSubmitInfo - >pSignalSemaphores  
    // submit fence signal  
  }  
}  
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LIFE OF A TRIANGLE 
Top of GPU Pipeline 

Fetch the pushbuffer  over PCIE into a FIFO to 
hide latency  

Decode resource bindings & state changes, and 
update the HW state  

Decode initiator (draws)  

Send token to track when all the work is 
finished (at the end of the pipeline)  

 

PushBuffer 

State 

Fetch into  
Decoder  

FIFO 

Decode State Draw 

Draw Completed 
Add Token for 
Completion 
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LIFE OF A TRIANGLE 
State Management 

States can be processed immediately  

Or can be bundled to be decoded  later  when 
the world space operation is finished  

Redundant states are filtered when possible 
(but it may still take 1 clock to reject each 
one) 

Some states are complex and can take many 
cycles (like a shader switch)  

 

State State Draw 

WorldSpace State ScreenSpace 

Applied State Bundled State 

State decoded in pipeline  

FrontEnd 
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LIFE OF A TRIANGLE 
Work Distributor  

The main unit starting the òdrawó operation 

Collect indices (or auto generate them for non - 
indexed operation)  

Manage vertex reuse to reduce the number of 
vertex threads  

Create a batch of up to 32 triangles and 32 
vertices (all vertices of a primitive always in 
same batch) 

Select the GPC which will launch the next VS 
warp (1 warp = 32 threads)  

Pack for vertex re -use 
max 32 vertices/triangles  

IndexBuffer  

Send to any avalaible GPC 

GPC GPC GPC 
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LIFE OF A TRIANGLE 
World Space Processing 

 
Dedicated HW unit pre -fetches the vertex attributes 
into L1 (hides latency for VS startup)  

The vertex shader runs in the SM, and outputs 
attributes into L1  

Viewport transform, Clipping, Culling in the 
PolyMorph Engines 

VertexBuffers 

VertexAttributeFetch Unit  

L1 Cache 

Vertex Shader Warp 

PolyMorph  
Engine 

Viewport ...  
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LIFE OF A TRIANGLE 
Screen Space Processing 

A xbar will distribute the work to the raster units per 
GPC based on screen-space tiling  

Hierarchical Z unit can reject tiles  

Edge setup to evaluate sample coverage  

2x2 pixel quads (4 threads) are generated for the PS for 
any non-null coverage 

Optionally , early depth & stencil test can reject entire 
quad 

0 1 

2 3 

Triangle sent to 
Raster Engine(s) 

2x2 
pixel  
quads  

Sampling Grid 
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LIFE OF A TRIANGLE 
Screen Space Processing 

Pixel shader warp runs on multiple quads  

Fetches interpolated attributes  

Masks read/writes from zero coverage 
samples 

Texture filtering gradients(Mip -map 
levels, Aniso...) or ddx/ddy based on 
quad differencing  

Writes out color  

Can modify depth and coverage mask 

Max 8 quads merged into warp (32 threads) 

Mask out 
ăhelperò threads Easy access to 

quad values for 
gradients 

bool  gl_HelperInvocation  
// is true for helper threads  

Triangles overlap same tile  
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LIFE OF A TRIANGLE 
Color Blending / Depth Testing  

Raster Output (ROP) units maintain API primitive order  

ü Easy since the rasterization is screen mapped 

ü Each unit only needs to handle warp in order  

Fixed function or programmable blending of the color  

Optionally perform Late-Z rejection  
(triggered by discard or gl_FragDepth writes in PS) 

Discard needs Late-Z 

Only order within tile 
important for ROP 
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LIFE OF A TRIANGLE 
Compression 

The hardware employs a number of techniques to 
reduce memory traffic for both depth and color 
render targets in a transparent scheme to all units  

To benefit, avoid scatter writes , since algorithms 
prefer to look at a òtileó to find lossless 
compression opportunities  

 

Maxwell 
3rd Generation 

Delta Color Compresson 
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PRACTICAL CONSEQUENCES 
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UTILIZATION 

Front-End-limited: vkGraphicsPipeline switch can be  
 expensive 
Shader-limited:  the switch could be free,  
 allowing more specialized shaders 

At high resolutions, the pixel shader eventually dominates 
all other bottlenecks . 

Avoiding idle barriers in Vulkan  

ü Subpass allows the GPU to work on different render 
target in parallel  

ü Just ensure that you donõt create a false dependency 
with input attachments  

 

Unit Type A 

Unit Type B 

SubPass Dependent 

SubPass 
SubPass 

SubPass 

Utilization  

Time 
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UTILIZATION 
Depth buffer rendering  

Hierarchical depth buffer is cached on -chip for 
Z-Cull 

As a result, switching between depth buffers 
often will need in & out copy, increasing òidleó 
time  

 

 

 

ü Alternatively use ănon-depthò SubPasses 
inbetween to keep data on -chip 

 

Fast rejection 

based on 

screen size 

Depth A Depth B 

Utilization  

Time 

Depth A 
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STATE MACHINE  
Redundant State Changes 

Redundant state less of a problem on CPU-side in modern 
APIs with pre-validation  

GPU still has to process the commands, hence state 
filtering and sorting remain beneficial  

 
 

 
glDrawCommandsStatesNV  
 (... stateobjects[] ...);  
 
 
VkSubmitInfo info = {...};  
info.pCommandBuffers = cmdbuffers;  
vkQueueSubmit (queue,1, &info..)  
 

Material UBO Material UBO Draw Draw Material UBO 

Material UBO Draw Draw 

GPU time: 1.9 ms 

GPU time: 0.9 ms 
Graphicscard model 

68k drawcalls 

CPU time: 5 us 

CPU time: 5 us 
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STATE MACHINE 
Vulkan Bindings 

Be precise about stage resources, which 
buffers/samplers are used in which  

Balance use of bindings/pushconstants to utilize 
different hardware mechanisms  

Prefer single stage pushconstant  

 

Organize DescriptorSetLayouts to keep them 
bound across pipeline changes 

 

 

Vertex Fragment 

UniformBuffer  

Texture 

Sampler 

UniformBuffer  

DescriptorSet 
Layouts 

PushConstant 

(e.g. Object 

Matrix Index)  

Bind 
Pipeline A 

Bind 
Sets 

Bind 
Pipeline B 

Effective  
State 

Set # 0: 

Set # 1: 
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REDUCING CPU TRANSFERS 
Compact Updates  

Updating memory from the CPU is serial:  

ü Many smalls update will not get much overlap, 
and suffer from PCIE latency 

Instead 

ü Collect updates via staging buffer in host 
memory and scatter via shaders 

ü For one-shot use, data can be fetched from CPU 
resident buffer directly  

ü Vulkan: Avoid VK_IMAGE_TILING_LINEAR for GPU 
resident resources, large performance penalty  

1 2 4 6 0 

Target Buffer (GPU) 

x x x 

Update Data & Locations (CPU) 

Shader scatters data 

0 3 5 

3 5 
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REDUCING CPU TRANSFERS 
Incremental Changes 

By computing data directly on the GPU, we need to 
send less data 

Sufficient to send time values for animation or 
modified individual nodes  

Hierarchical transform propagation on GPU  

What if double is needed? 

ü Matrix updates in double  

ü Concat object & view matrix in double  

ü Store as float for vertex transforms  

PCIE Tansfer 

Computation 

Time 
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COMPUTING EFFICIENY 
Small Work 

Launch overhead of compute dispatch not 
negligable for < 10 000 threads 

Use Vertex-Shader to do compute work via 
GL_RASTERIZER_DISCARD and overlap with 
graphics (multi -invocation Geometry -Shaders are also fast) 

For many threads keep using compute. 

Use ARB_shader_ballot and 
NV_shader_thread_shuffle to pass data 
between threads, avoiding shared memory 

... Ƨ#ÏÍÐÕÔÅƨ ÁÌÔÅÒÎÁÔÉÖÅ ÆÏÒ ÆÅ× ÔÈÒÅÁÄÓ 
if  ( numThreads < FEW_THREADS){  
  glUseProgram ( vs );  
  glEnable    (  GL_RASTERIZER_DISCARD );  
  glDrawArrays ( GL_POINTS,  0,  numThreads );  
  glDisable   (  GL_RASTERIZER_DISCARD );  
}  
else  {  
  glUseProgram ( cs );  
  numGroups = (numThreads+GroupSize - 1)/ GroupSize;  
  glUniformi1  (0, numThreads);  
  glDispatchCompute  ( numGroups, 1, 1 );  
}  

... Shader  
#if USE_COMPUTE 
  layout  ( local_size_x =GROUP_SIZE) in;  
  layout  ( location =0)  uniform  int  numThreads;  
  int  threadID  = int ( gl_GlobalInvocationID.x );  
#else  
  int  threadID = int ( gl_VertexID );  
#endif  

vec3 posA = getPosition  ( gl_ThreadInWarpNV  ˩ ƛƾ 
vec3 posB = shuffleUpNV  ( posA, 1 , gl_WarpSizeNV);  
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COMPUTING EFFICIENCY 
Divergent Control Flow  

SIMT (Single Instruction Multiple Threads) 

Processes threads in lock-step, common 
instruction pointer (masks out inactive)  
NVIDIA: 1 warp = 32 threads 

Longest for -loop will  block progress on 
other threads in warp  

If / else may execute both branches 
serially  if condition was divergent  

Positive: can communicate and access 
within warp data (e.g. ddx/ddy)  
 

 

Thread: 0 ... 3  

3 2 4 8 
Loop 

Length 

Loop 
Iterations  

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Instruction  
Pointer 

Check ăBlueprint Renderingò presentation 
for alternative solution  

MUL R0, R3, R2  
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LATENCY HIDING 

Throughput is what matters  
throughput = occupancy / latency  

Memory accesses are typically the 
highest latency operations  

If shaders use too much on-chip 
resources, then lower occupancy  

ü Registers 

ü Cross-Stage Data 

ü Vertex Input Attributes  

 

Warp 0 Warp 1 Warp 2 Warp 3 Warp 4 

Request 

Wait for 

memory 

COMPUTE 

Effective  

On-Chip Resources 

Warp4 blocked by 
resource occupancy Ramp up 

Could 
not fully  

hide 
latency  

Time 
Warp scheduler switches 

between active warps  
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LATENCY HIDING 
Cross-Stage Data 

Passing a lot of data across shader stages 
negatively impacts number of threads run  
(gl_ClipDistance also counts into this)  

Prefer specialized shaders, over large 
übershaders, to minimize data  

Re-computing in the fragment shader can be 
faster sometimes 

Particularly high polygon scenes can suffer from 
this, due to sheer amount of vertex data  

in Interpolants  {  
  vec3     oPos;  
  vec3     oNormal;  
  vec3     oTangent;  
  vec3     wPos; 
  vec3     wNormal;  
  vec3     wTangent;  
  vec2     tex ;  
  vec4     color;  
} IN;  
 
...  
// bad  
if  ( ubo.hasNormalmap) {  
... Using IN.oTangent ..,  
}  
// better, let compiler remove unused data  
#if HAS_NORMALMAP 
... Using IN.oTangent ..  
#endif  
 
// could be bottleneck  
wLightDir = wPos Ƶ ubo.wLightPos;  
// recalculate from other data  
wLightDir = ubo.oMatrix * vec4 (oPos,1) Ƶ 
...  
 
 
 
 

ƳƳ ÏƥÒÌÙơ 
ƳƳ ÏƥÒÌÙơ 
// ÏƥÒÌÙơ 
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LATENCY HIDING 
Texturing  

In the pixel shader, favor batched memory access 
(many textures fetched at once)  

Lots of run-time branching & dynamic loops, 
hinders this compiler optimization  

Aid compiler by grouping fetches & organizing 
dependent reads  

Generate shaders with popular compile-time loop -
counts by making use of pre-processor or Vulkan 
specialization constants  

Use textureGatherOffsets  if possible  
(offset functions express locality, gather good for reading more data at once)  

Request 

Wait for 

memory 

COMPUTE 

dynamic 
if or for  

iterations  
 
 
 

cause 
multiple  
request 
phases 

Request 

Wait for 

memory 

COMPUTE 

Batched 
requests 
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MEMORY TYPES 
Fetching Buffer Data  

TEXTURE 
BUFFER 

UNIFORM 
BUFFER 

SHADER STORAGE 
BUFFER 

Fastest for uniform, bad 
for divergent access 

Good for generic access 

Address math handled by 
texture unit  

Also handles format 
conversion 

Good for generic access, can 
be a tad slower than texture  

Address math in shader and 
64-bit registers  

Format conversion in shader 

Robust contexts add out-of-
bounds checking in shader 

uniform ubo {  
  bool  blah;  
  vec4 data[128];  
};  
 
// okay, single load for warp  
i f  (blah) ... = data[0];  
else       ... = data[1];  
 
// not good,  
// serializes loads within warp  
... = data[thread_specific];  

uniform samplerBuffer tbo;  
 
// tbo could be FP16 or FP32  
 texelFetch  (tbo,  
  thread_specific);  

buffer ssbo {  
  vec4 data[];  
};  

Constant  
Cache 

L1/L2 
Cache 

L1/L2 
Cache 

Can balance SSBO/TBO use to avoid hammering TextureUnits 
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WORK REDUCTION 
Multi Draw Indirect , NV command list 

When rendering lots of geometry, can become 
drawcall, overdraw and triangle limited again  

Remove unnecessary detail on the fly  

Multi Draw Indirect (Vulkan & GL) and 
NV_command_list provide ways to implement 
level of detail or efficient culling  

Prefer compact command buffers  

No CPU interaction means no frame-latency , 
great for VR  
(see demo in VR Village 52+ million triangle car model)  

 

https:// github.com/nvpro -

samples/gl_occlusion_culling  

 

DrawElements {  
  Gluint    count;  
  Gluint    instanceCount;  
  GLuint    firstIndex ;  
  GLuint    baseVertex ;  
  GLuint    baseInstance ;  
}  
 
buffer  commands { 
  DrawElements cmds[];  
}  

culled  

Compaction avoids 
pipeline bubbles  

https://github.com/nvpro-samples/gl_occlusion_culling
https://github.com/nvpro-samples/gl_occlusion_culling
https://github.com/nvpro-samples/gl_occlusion_culling
https://github.com/nvpro-samples/gl_occlusion_culling
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GEOMETRY CREATION 
Tessellation, Geometry Shader, Draw Indirect  

GEOMETRY 
SHADER 

TESSELLATION 

Hardware can allocate 
needed space on-demand 
and distribute Tess. Eval 
Shader work across SMs 

All data produced & 
consumed on chip 

Needs to pre-allocate 
worst-case output data in 
L1 

Therefore can negatively 
reduce amount of parallel 
threads 

FAST GEOMETRY 
SHADER 

Works on the Vertex-
Shader data directly  

No extra stage/storage  

Send same primitive to 
multiple viewports, or 
discard it  

layout( max_vertices =4)  out ;  
// avoid high counts  
// and low output ratios  

gl_ViewportMask [0 ] = 0;  
// culls primitive  
 

SM 1 

SM 2 

NV_geometry_shader_passthrough 
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GEOMETRY CREATION 
Tessellation, Geometry Shader, Draw Indirect  

DRAW INDIRECT VERTEX SHADER 

Generate geometry based 
purely on gl_VertexID 

May use custom fetching 
or even generate index-
buffer on the GPU 

Use ăshuffleò to access 
other vertices of same 
primitive  

Use Draw Indirect to 
generate variable amount 
of data 

Preferably avoid low 
primitive counts (risk of 
being FrontEnd-limited)  

PIXEL SHADER 

Use discard and distance 
fields to clip geometry  

Compute coverage 
analytically for MSAA 

DrawArrays  {  
  Gluint    count;  
  ...  
}  

gl_Position .x = gl_VertexID  * scale;  
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CONCLUSION 

Make use of all the power J 

Investigate where to put optimization effort in  

Balance different hardware units for optimal efficiency, 
avoiding pipeline ăbubblesò 

Generate & update data on the GPU itself  

Use modern API mechanisms! 

Makes a #HappyGPU and ideally a happy you 

Courtesy of Simon Trümpler 


