April 4-7, 2016 | Silicon Valley

Y GPUDRIVEN RENDERING

hristoph Kubischsr. Developer Technology Engineer, NVIDIA

Pierre Boudier Quadro Software Architect, NVIDIA
4/4/2016

EEEEEEEEEEE

<ANVIDIA.

WHAT IS THIS TALK ABOUT?

Or should | sneak out of the room now

. . ENABLING GPU SCALABILITY
Latest of a series of presentations Y %

Data stored once, referenced multiple times

)

Rendering heterogenous scenes with many

T) IEEEm
Issuing drawcalls and state changes can be a real bottleneck
N CPU GPU
Improving the overall system, rather than e I HH D
R el 1 | EEEN
l tuning individual shader ; CLL L D
N LN
. g
USIng knOWIedge Of hOW the hardware * 650,000 Triangles = 3,700,000 Triangles . 1.4,;'438,2;5Triangles/lines l
iImplements the graphics pipeline A e NEe

http://on _-demand.gputechconf.com/gtc/2013/presentations/S3032 -Advanced ScenegraphRendering-Pipeline.pdf
http://on _-demand.gputechconf.com/siggraph/2014/presentation/SG4117 -OpenGl-Scene Rendering-Technigues.pdf
http://on _-demand.gputechconf.com/gtc/2015/presentation/S5135 -Christoph-KubischPierre-Boudier.pdf

2 SANVIDIA.

http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3032-Advanced-Scenegraph-Rendering-Pipeline.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf

PAST, PRESENT, FUTURE

Dawn of GPU CPU was fast enough to feed GPU

Past Increase in scene complexity challenged CPUto feed
GPU fast enough

Present. Modern APIs and datadriven design methods provide
efficient ways to render scenes

U OpenGL's Multi Draw Indirect, NVIDIA'sbhindless and
NV_command_listtechnology

U Vulkan's native support for command -buffers and general
design that allows re -use and much better control over
validation costs

glBegin (GL_TRIANGLES
glVertex3f

gIMultiDrawElementsindirect
glIDrawCommandsStatesNV

VkSubmitinfo info ={...};
info.pCommandBuffers = ...
vkQueueSubmit (queue,l1, &info..)

3 SANVIDIA.

PAST, PRESENT, FUTURE

model courtesy of PTC

Future: Decouple CPU and GPU further as GPU becomes
more capable to drive decision making

Occlusion Culling, Level of Detail (geometry and
shading), Animation...

Easyaccess to practical information like depth -buffer,
past frames...

Minimizes latency, keeps data where it is used, produce
and consume directly

Geometry and visual effect generation beyond basic
tessellation

feas
Distance Field Rendering d1fiigo Quilez, ShaderToy
4 <ANVIDIA.

PAST, PRESENT, FUTURE

How do we leverage the hardware well?

How does the hardware actually work?

5 SANVIDIA.

Hardware design overview

Life of a triangle, a trip through the GPU
graphics pipeline

Practical Consequences

HARDWARE DESIGN =

Wide Chips

Wider chips with more units favor large work:

U Everycycle, if a unit does not have work to do,
then efficiency is lost

U A typical applications goes over a series of tasks
(shadows, object shading, post -fxe)
each task is likely limited by a subset of units

Increased programmability allows for more data
"generated" on chip

The trend is add more programmable units than fixed
function ones

GM200 (launchedin 2015)

6 Graphics Processing Clusters (GPC)
24 Streaming Multiprocessors (SM)
3072 CUDAcores

96 Raster Output Units (ROP)

192 Texture Units

384 bit memory interface

Changing bindings, model
small object draw - courtesy of
Ca||S... PTC 7 @n\ﬂblA.

HARDWARBESIGN

Fixed Function Units

Pipeline needs to scale with data expansion & reduction

U drawcalls (1..N primitives) A [tessellation] A visible triangle (0..M screen pixels)
Not efficient to do all I N 0gen Guemtmssst S
Rasterization Unit
‘ Any fixed function unitin the pipeline:
U Is afree resource to get useful work done Texture Unit

‘ U But can potentially become a bottleneck if it is overloaded

U The number of units will vary for each GPUbased on workload & cost

8 ANVIDIA.

HARDWARE DESIGN

Distribution and Queueing of Work

- . . eqvebeuages .

Distribution of

work to units can Unit Work i Back pressure
be across entire Queue from queue load status
chip (xbar)

" bedFuncientnis | (@i RaSIeizZerS] upper s nnord

in production
Er
Units
consume & produce
data atvariable | wuimecesos | | €.Pixel [Shaders
. . .

rates

9 ANVIDIA.

HARDWARE DESIGN

Ramp up/down time

Large number of units and system latencies cause

' efficiency loss before & after a GPU owai t ,for idl eo
Utilization
Rampup/down time depends on the actual workload
. Task
Barriers may be caused b)
‘ / Y Execution
U Hardware internal state >
Time
U Application (as in YOU) Barrier
glMemoryBarrier, RenderPasses..
I ensure prior work has finished computation Empty GPU

‘ 10 <ANVIDIA.

HARDWARE DESIGN

Memory Hierarchy

The closer the memory Off-Chip
to the execution units Memory
the faster the access

Off-Chip memory takes Chip
a loooong time to get Global L2 Cache
to the execution unit
(avoid cache miss) Processor :
Local

|

11 <ANVIDIA

Fetching from pushbuffer:
~1000 cycles (PCIE latency

, Processing of one simple
state:
1 cycle

Latencies

Fetching vertices:
~300 cycles

Simple transformation:
~200 cycles

HARDWARE DESIGN

Fetching texture from L1.:
~100 cycles

Fetching texture from L2:
~200 cycles

Fetching texture from DRAM:
~500 cycles

12 <ANVIDIA.

LIFE OF A TRIANGLE

LIFE OF A TRIANGLE

Overview

LIFE OF A TRIANGLE

Work Distribution

g .1‘ =7 ,-".F‘l

The color-coded renderings illustrate the work = #!h Colored by fragment gl_SMID

distribution across the hardware (not frame-coherent). r
'!n' 5 ﬁi ‘#HH'III‘1

g e -
it Ll 3% ﬂ'
f S5 Vsl AN 1&

- : 1 1
Pk L REL
’) . B ——ml x -
" . 1 ' » 1
= v - : g WA e \m Tl
Y 5 i (1l
A L

.) Colored by vertex gl_SMID Colored by fragment gl_WarpID

Shaders executed as Warps:Group of 32 threads, sharing instruction state

15 <ANVIDIA.

LIFE OF A TRIANGLE

From Api to GPU

VKAPI_ATTRvoid VKAPI_CALLvkCmdDraw(

VkCommandBuffer commandBuffer,

uint32_t vertexCount , uint32_t instanceCount , uint32_t firstVertex , uint32_t
firstinstance)

{
‘ checkAvailableSpace (commandBuffer- >pushBuffer ,5);

commandBuffer- >pushBuffer
commandBuffer- >pushBuffer
commandBuffer- >pushBuffer
. commandBuffer - >pushBuffer
commandBuffer - >pushBuffer
commandBuffer - >pushBuffer

DRAW_ HEADER
vertexCount ;
instanceCount ;
firstVertex
firstinstance :

EISIENE

=

+
1l
a

I 16 <ANVIDIA.

LIFE OF A TRIANGLE

From Api to GPU

VKAPI_ATTRVkResult VKAPI_CALLvkQueueSubmit(
VkQueue queue, uint32_t submitCount , const VkSubmitinfo * pSubmits, VkFence fence)
{
for (uint32_t 1=0;i< submitCount ; ++i) {
/[submit wait for pSubmitinfo - >pWaitSemaphores
‘ /[submit pSubmitinfo ->pCommandBuffers to the GPU, typically by the kernel mode driver
/[submit signal for pSubmitinfo - >pSignalSemaphores
/[submit fence signal

I 17 <ANVIDIA.

LIFE OF A TRIANGLE A
Top of GPU Pipeline

Fetch the pushbuffer over PCIE into a FIFO to —

hide latency \ J
o Fetch into J
Decode resource bindings & state changes, and Decoder
update the HW state EIFO
Decode initiator (draws)
Decode

Send token to track when all the work is
finished (at the end of the pipeline) |

Add Token for
Completion -_

18 ANVIDIA.

LIFE OF A TRIANGLE A

State Management

States can be processedimmediately

FrontEnd State State Draw
Or can be bundled to be decoded later when
the world space operation is finished Applied State Bundled State
Redundant states are filtered when possible 1

l (but it may still take 1 clock to reject each | \

one) WorldSpace State ScreenSpace

Some states are complex and can take many
cycles (like a shader switch) State decoded in pipeline

19 <ANVIDIA

LIFE OF A TRIANGLE

Work Distributor

The main unit starting the

Collect indices (or auto generate them for non -
Indexed operation)

Manage vertex reuse to reduce the number of
vertex threads

Create a batch of up to 32 triangles and 32
vertices (all vertices of a primitive always in
same batch)

Select the GPC which will launch the next VS
warp (1 warp = 32 threads)

IndexBuffer A

PP TR PP

-+

Pack for vertex re -use
max 32 vertices/triangles

Send to any avalaible GPC

GPC GPC gpc

20 <ANVIDIA.

LIFE OF A TRIANGLE

World Space Processing °

[o 2 J
Dedicated HW unit pre -fetches the vertex attributes vertexBufers

Into L1 (hides latency for VS startup)

The vertex shader runs in the SM, and outputs VertexAttributeFetch Unit

attributes into L1

: . : : PolyMorph
Viewport transform, Clipping, Culling in the Engine
PolyMorph Engines Viewport ...

L1 Cache

[1 1 4
Vertex Shader Warp ;TT

21 SANVIDIA.

LIFE OF A TRIANGLE qiange sentto

Screen Space Processing Raster Engine(s)

0 1
A xbar will distribute the work to the raster units per
GPC based on screeprspace tiling

2 3
Hierarchical Z unit can reject tiles
Edge setup to evaluate sample coverage Sampling Grid

2X2

F 2x2 pixel quads (4 threads) are generated for the PS for OFI)&);GSS

any non-null coverage

s

Optionally, early depth & stencil test can reject entire
guad

22 <ANVIDIA,

LIFE OF A TRIANGLE

Screen Space Processing

Pixel shader warp runs on multiple quads |V |

Fetches interpolated attributes

: Triang | il
Masks read/writes from zero coverage rlangies overiap same tie

samples Max 8 quads merged into warp (32 threads)

F Texture filtering gradients(Mip -map HE W I'IN W

levels, Aniso...) or ddx/ddy based on

quad differencing | ﬁl
Mask out
Writes out color ahel pero t hr eEmsyaccessto
bool gl_Helperinvocation quad values for
/I is true for helper threads gradients

Can modify depth and coverage mask

23 <ANVIDIA.

LIFE OF A TRIANGLE

Color Blending / Depth Testing

Raster Output (ROP)units maintain API primitive order
U Easy since the rasterization is screen mapped
U Each unit only needs to handle warp in order
Fixed function or programmable blending of the color

Optionally perform Late-Z rejection
(triggered by discard or gl_FragDepth writes in PS)

A

Only order within tile
important for ROP

Q
N

Discard needs Late-Z

24 SANVIDIA.

LIFE OF A TRIANGLE
Compression

The hardware employs a number of techniques to
reduce memory traffic for both depth and color
render targets in a transparent scheme to all units

CBBRLBULLY
n) EEEEEEEE

To benefit, avoid scatter writes , since algorithms
preferto |l ook at a otil eodo to
\ compression opportunities

0ssl ess

\EVOYEL
3rd Generation
. Delta Color Compresson

25 <ANVIDIA.

PRACTICAL CONSEQUENCES

UTILIZATION

Front-End-limited: vkGraphicsPipeline switch can be “EEE

expensive
' Shaderlimited: the switch could be free, vv—v
allowing more specialized shaders | m
CUnitTypeB

At high resolutions, the pixel shader eventually dominates

all other bottlenecks . Utlization
Avoiding idle barriers in Vulkan Time >
U Subpassallows the GPU to work on different render _ Dependent

SubPass

target in parallel _

0 Justensurethatyoudono6t create a fal ||EEEEP enden
with input attachments

27 <ANVIDIA,

UTILIZATION

Depth buffer rendering

Hierarchical depth buffer is cached on -chip for
Z-Cull

Fast rejection
based on
screen size

As a result, switching between depth buffers
often will needin&outcopy, 1 ncreasing
time

I Utilization
] I)

\ J Time l]

U Al ternati vealeytuhsoe SaurbdPm s s e s
inbetween to keep data on -chip

28 <ANVIDIA.

STATE MACHINE

Redundant State Changes

Redundant state less of a problem on CPU-side in modern 9'(Drigfgorgggps?]sftﬁteslvv
APIs with pre-validation

. VkSubmitinfo info = {...};
GPU still has to process the commands, hence state info.pGommandBuffers = cmdbuffers;

. . b) .. vkQueueSubmit (queue,1, &info..)
filtering and sorting remain beneficial

' Material UBO Draw Material UBO Draw Material UBO

CPU time: 5 us GPU time: 1.9 ms

Material UBO @ Draw @ Draw

CPU time: 5 us GPU time: 0.9 ms

Graphicscard model
68k drawcalls

29 SANVIDIA.

STATE MACHINE
Vulkan Bindings
VAN -

DescriptorSet

Be precise about stage resources, which Vertex Fragment Layouts
buffers/samplers are used in which
UniformBuffer }
Balance use of bindings/pushconstants to utilize UniformBufer
different hardware mechanisms -
exture
. Sampler
F Prefer single stage pushconstant
PushConstant
(e.g. Object
Matrix Index)
Organize DescriptorSetLayouts to keep them Biog T —
bound across pipeline changes PipelineA Sets PipelineB State
Set # 0: 5]

.
Set#l:AiAi O

30 <ANVIDIA.

REDUCING CPU TRANSFERS

Compact Updates

Updating memory from the CPU is serial:

_ Target Buffer (GPU)
U Many smalls update will not get much overlap,

and suffer from PCIE latency o 1 2 3 4 6
Instead T
‘ X X Shader scatters data
U Collect updates via staging buffer in host 0 35
memory and scatter via shaders Update Data & Locations (CPU)
U For one-shot use, data can be fetched from CPU
. resident buffer directly

U Vulkan: Avoid VK_IMAGE_TILING_LINEAR for GPU
. resident resources, large performance penalty

31 <ANVIDIA.

REDUCIN@&PU TRANSFERS

Incremental Changes

send less data

By computing data directly on the GPU, we need to bCETanser -

Sufficient to send time values for animation or

dified individual nod .| EEEE
modified individual nodes -===>
I Hierarchical transform propagation on GPU EEEN

What if double is needed?

U Matrix updates in double
} U Concat object & view matrix in double

‘ U Store as float for vertex transforms

32 SANVIDIA.

COMPUTING EFFICIENY

Small Work
' .. e#1 i bOOA2 Al OAOT ACGEOCA AI O AAx (
Launch overhead of compute dispatch not i (mamiThrends < FEW_ THREADS
negligable for < 10 000 threads glUseProgram (Vs);

glEnable (GL_RASTERIZER_DISCARD
glDrawArrays (GL_POINTS 0, numThreads);

Use Vertex-Shader to do compute work via , gpsable (L GLRASTERIZER DISCARD
GL RASTERIZER_DISCARD and overlap with eise {

glUseProgram (cs);

graphlcs (multi -invocation Geometry -Shaders are also fast) numGroups = (numThreads+GroupSize - 1)/ GroupSize;
glUniformil (0, numThreads);
. glDispatchCompute (numGroups, 1, 1);
For many threads keep using compute. }
... Shader
Use ARB shader ballotand #Iflgysoi?c?ll\gngsEize X =GROUP_SIZE) in;
NV Shader thread Sthﬂe to passdata layout (location =0) uniform _int numThreads;
int threadlD = int | Globall tionID.x);
between threads, avoiding shared memory oy fhrea int (gl_GloballnvocationiD.x)
int threadlD = int (gl_VertexID);
#endif

vec3 posA = getPosition (gl _ThreadinWarpNV 1 A &
vec3 posB = shuffleUpNV (posA 1, gl_WarpSizeNV);

I

33 <ANVIDIA.

COMPUTING EFFICIENCY

Divergent Control Flow

SIMT (Single Instruction Multiple Threads) Thread: O ..

. Loo
Processes threads in lock-step, common Leng?h - - - -

instruction pointer (masks out inactive)

NVIDIA: 1 warp = 32 threads - @mwuroR3R2
e
.

Instruction
Pointer

Loop
Iterations

Longest for-loop will block progress on
other threads in warp

If / else may execute both branches
serially if condition was divergent

Positive: can communicate and access
within warp data (e.g. ddx/ddy)

Check aBlueprint Renderingo pt
for alternative solution 34 SANVIDIA

LATENCY HIDING

Throughput is what matters
throughput = occupancy / latency

Memory accesses are typically the
highest latency operations

If shadersuse too much on-chip
resources, then lower occupancy

U Registers
U CrossStage Data

U Vertex Input Attributes

Time ~ OnChipResources
---* waps [Effecive |

Wait for
memory

Warp scheduler switches

e Warp4 blocked by
| resource occupancy

between active warps

— Ramp up

Could
not fully
hide

. latency
1

35 <ANVIDIA.

Passing a lot of data across shader stages

negatively impacts number of threads run
(gl_ClipDistance also counts into this)

Prefer specialized shaders, over large
ubershaders, to minimize data

' Re-computing in the fragment shader can be
faster sometimes

Particularly high polygon scenes can suffer from
this, due to sheer amount of vertex data

LATENCY HIDING

CrossStage Data

in Interpolants {

vec3 oPos;
vec3 oNormal;
vec3 oTangent;
vec3 wPos; YY T pOl Uo
vec3 wNormal; YY [pOl Uo
vec3 wTangent; // | p Ol Uo
vec2 tex ;
vecsd color;

}IN;

/Il bad

if (ubo.hasNormalmap) {

... Using IN.oTangent ..,

}

/I better, let compiler remove unused data
#if HAS_NORMALMAP

... Using IN.oTangent ..

#endif

// could be bottleneck

wLightDir = wPos Z ubo.wLightPos;

I recalculate from other data

wLightDir= ubo.oMatrix* vec4 (oPos,1) Z

36 <ANVIDIA.

LATENCY HIDING

Texturing
In the pixel shader, favor batched memory access Remen —_
(many textures fetched at once) %yé‘f‘{SF | waittor ' Batched
) ! memory Wait for requests
Lots of run-time branching & dynamic loops, erations memey
hinders this compiler optimization

cause

Aid compiler by grouping fetches & organizing multiple
l dependent reads fﬁgggé -

Generate shaders with popular compile-time loop -
counts by making use of pre-processor or Vulkan
specialization constants

UsetextureGatherOffsets if possible

(offset functions express locality, gather good for reading more data at once)

37 <ANVIDIA.

MEMORY TYPES

Fetching Buffer Data

Fastest for uniform, bad Good for generic access Good for generic access, can
for divergent access be a tad slower than texture
Address math handled by

texture unit Address math in shader and
' uniform ubo { 64-bit registers
voos oetiis) Also handles format
; conversion Format conversion in shader
/I okay, single load for warp
if (blah) ... = data[o]; _ _ Robust contexts add out-of-
else - = data[1]; uniform samplerufier - tho bounds checking in shader
// tbo could be FP16 or FP32
Z rs]g:igl?zogs, loads within warp texelFetch (tbo, buffer - ssbo {
... = datafthread_specific]; thread_specific); vecsd datall;

3

Can balance SSBO/TBO use to avoid hammering TextureUnits

38 <ANVIDIA.

WORK REDUCTION

Multli Draw Indirect , NV command list

When rendering lots of geometry, can become

drawcall, overdraw and triangle limited again DrawElements {

Gluint instan’ceCount;

. GLuint firstindex

Remove unnecessary detail on the fly GLuint baseVertex

GLuint baselnstance ;

}

Multi Draw Indirgct (Vu_Ikan & GL) and buffer commands {
NV _command_list provide ways to implement | Drawslements cmdsl;
level of detall or efficient culling
Prefer compact command buffers I i I .
No CPUinteraction meansno frame-latency, [|

great for VR

(see demo in VR Village 52+ million triangle car model) Compaction avoids

pipeline bubbles

https:// github.com/nvpro -

samples/gl occlusion culling

39 <ANVIDIA.

https://github.com/nvpro-samples/gl_occlusion_culling
https://github.com/nvpro-samples/gl_occlusion_culling
https://github.com/nvpro-samples/gl_occlusion_culling
https://github.com/nvpro-samples/gl_occlusion_culling

Hardware can allocate

needed space ondemand
and distribute Tess. Eval

' Shader work across SMs

All data produced &
consumed on chip

»
»

SM1

SM 2

Needs to pre-allocate
worst-case output data in
L1

Therefore can negatively
reduce amount of parallel
threads

layout(max_vertices =4) out;
// avoid high counts
// and low output ratios

GEOMETRY CREATION

Tessellation, Geometry Shader, Draw Indirect

NV_geometry shader_passthrough

Works on the Vertex-
Shader data directly

No extra stage/storage

Send same primitive to
multiple viewports, or
discard it

gl_ViewportMask [0]=0;
/I culls primitive

40 <ANVIDIA.

GEOMETRY CREATION

Tessellation, Geometry Shader, Draw Indirect

Generate geometry based
purely on gl_VertexID

May usecustom fetching
or even generate index-
buffer on the GPU

Use ashuffl eo
other vertices of same
primitive

gl_Position .x= gl VertexID *scale;

t

Use Draw Indirect to
generate variable amount
of data

Preferably avoid low
primitive counts (risk of
being FrontEnd-limited)
O access

DrawArrays {
Gluint count;

:

Use discard and distance
fields to clip geometry

Compute coverage
analytically for MSAA

TR
= »

41 <ANVIDIA.

CONCLUSION

Make use of all the power J
Investigate where to put optimization effort in

Balance different hardware units for optimal efficiency,
avoiding pipeline abubbl eso

Generate & update data on the GPU itself
Use modern APl mechanisms!

Makes a #HappyGPU and ideally a happy you

Courtesy of Simon Trumpler

42 <ANVIDIA.

