Data Center and Cloud Computing Market Landscape and Challenges

Manoj Roge,
Director – Wired & Data Center Solutions
Xilinx Inc.
Outline

- Data Center Trends
- Technology Challenges
- Solution Options
- Xilinx Focus
- OpenPOWER Developments
Data Center Trends

- Software Defined Data Center
 - Physical
 - Virtual
 - Cloud

- Evolving Architectures & Standards
 - openstack
 - OpenPOWER
 - OpenCL
 - OPNFV
 - OpenFlow
 - IEEE
 - OPEN DAYLIGHT
 - ETSI

- Need for Workload Acceleration
 - Baidu
 - Microsoft
 - JPMorgan Chase & Co.
 - Others..
Exponential Growth

Compute

100K → Millions

2010 → 2014

Storage

10s of PB → Exabytes

2010 → 2014

Network Capacity

10s of Tbps → Pbps

2010 → 2014

Source: ONS2014 Keynote, Microsoft / Azure
Technology Challenges

- Power/thermal density is limiting Fmax scaling
 - End of Dennard scaling ⇒ End of Moore’s law

- CPU performance scaling problematic
 - Difficulties in exploiting task-level parallelism with multi-core ⇒ Dark silicon

- Heterogeneous computing ⇒ Best of both worlds
 - Higher performance and lower power
 - Increased compute density

Join the conversation at #OpenPOWERSummit
Need for New Data Center Architecture

- Think beyond traditional architecture
 - Need scalable architecture to boost system performance & reduce latency

- Design for application acceleration & processor offload
 - Heterogeneous processing for specialized workloads

- Need to improve customer CAPEX and OPEX
 - Performance/Watt must be key consideration

Join the conversation at #OpenPOWERSummit
How can FPGAs help Acceleration?

COMPUTER
- **Image Search**
 - 8x throughput
- **Video Transcode**
 - 20x throughput
- **Image Processing**
 - 50x throughput

STORAGE
- **Hybrid memory**
 - Latency hiding
 - 10x power saving
- **Key-Value Stores**
 - 36x RPS/Watt
 - 10x-100x latency reduction
- **Compression/Encryption**
 - Customize algorithms
 - Latency sub 5us
 - Encryption rate 10x

NETWORKING
- **Secure socket**
 - Latency sub 5us
 - Encryption rate 10x
- **TCP endpoint**
 - Latency sub 2us
 - 10x virtual circuits
- **Packet switch**
 - Latency sub 100ns
 - Protocol choices

FPGA Architecture
- (Conceptual)

Join the conversation at #OpenPOWERSummit
Barriers to Adoption: Ease of Programming

<table>
<thead>
<tr>
<th>Need</th>
<th>Solution Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Performance / Watt</td>
<td>Architecturally Optimizing Compilation</td>
</tr>
<tr>
<td></td>
<td>- Compiler needs to be fast and efficiently utilize resources</td>
</tr>
<tr>
<td></td>
<td>- Can develop accelerators with high performance/watt</td>
</tr>
<tr>
<td>Complete SW Development Environment</td>
<td>Software Development Flow for FPGA Hardware</td>
</tr>
<tr>
<td></td>
<td>- Single Environment for software workflows</td>
</tr>
<tr>
<td></td>
<td>- CPU/GPU like development environment</td>
</tr>
<tr>
<td>Easily Upgradeable</td>
<td>Reconfigurable Optimized Accelerators</td>
</tr>
<tr>
<td></td>
<td>- Need accelerator flexibility for different applications</td>
</tr>
<tr>
<td></td>
<td>- Require always on IO and networking interfaces</td>
</tr>
</tbody>
</table>

Xilinx Has Complete Hardware and Software Solutions

Join the conversation at #OpenPOWERSummit
Software Defined Development Environments

- SDAccel for OpenCL, C, C++ enables up to 25x better performance per watt
- SDSoC provides greatly simplified ASSP-like C, C++ programming experience
- SDNet allows creation of ‘Softly’ Defined Networks

Expand Users to Broad Community of Software and Systems Engineers

Join the conversation at #OpenPOWERSummit
First Complete CPU/GPU Development Experience on FPGAs

Only FPGA Vendor with C, C++, OpenCL

SDAccel Environment

- **CPU/GPU-Like Development Experience**
 - Complete software workflow for developers with little to no prior FPGA experience
 - CPU emulation, co-simulation and native hardware
 - Automatic instrumentation of compiled accelerators with profiling visibility across host and kernels

Leverage Existing C & C++ Code Base

Join the conversation at #OpenPOWERSummit
OpenPOWER and Xilinx Driving Heterogeneous Computing

- Open Innovation required to innovate across full HW & SW stack
 - OpenPOWER has setup impressive ecosystem for collaboration

- FPGAs are a natural fit in rapidly evolving markets
 - Parallel architecture, flexibility and configurability are its strengths

- Power8 + FPGA with CAPI (Coherent Accelerator Processor Interface)
 - Custom acceleration engine on coherent fabric of the POWER8

- CAPI removes overhead & complexity of IO subsystem
 - Allows FPGA accelerator to operate as part of an application

Join the conversation at #OpenPOWERSummit
Convey CAPI Developer Kit for Xilinx FPGAs

- CAPI Developer Kit enables application specific acceleration on IBM Power 8 systems
- Convey's Eagle coprocessor delivers high density FPGA acceleration and large, high bandwidth on-board memory in a PCIe form factor
- Xilinx XC7VX980T FPGA provides capacity and bandwidth for complex, highly parallel designs
Xilinx Key-Value-Store with CAPI

- Power8 + FPGA connectivity with CAPI
 - Enables seamless application acceleration
- Acceleration
 - 35x performance per watt improvement
- 10x latency reduction
 - Enables hybrid memory system
- Combines DRAM & SSD
 - Integration with OpenCL

Join the conversation at #OpenPOWERSummit
Summary

- Rethink data center architecture to address scaling
- Need for workload acceleration – FPGA acceptance
- SDAccel offers CPU/GPU development experience on FPGAs
- Xilinx demonstrating CAPI-based acceleration solutions
- Excited to drive Innovation through OpenPOWER
- Visit Xilinx Booth #913

Follow Xilinx on:

facebook.com/XilinxInc
twitter.com/XilinxInc
youtube.com/XilinxInc

Join the conversation at #OpenPOWERSummit
Q&A