IMPROVING GPU UTILIZATION WITHA
MULTI-PROCESS SERVICE (MPS)

A

A

STRONG SCALING OF MPI APPLICATION

BN GPU parallelizable part

B CPU parallel part
"1 Serial part

With Hyper-Q/MPS
Available in K20, K40, K80

N=1 N=2 N=4

Multicore CPU only GPU accelerated CPU

WHAT YOU WILL LEARN

> Multi-Process Server

\4

Architecture change (HyperQ - MPS)

\4

MPS implication on Performance

\4

Efficiently utilization of GPU under MPS

\4

Profile and Timeline

v

Example

WHAT IS MPS

> CUDA MPS is a feature that allows multiple CUDA processes to share a single GPU
context. each process receive some subset of the available connections to that
GPU.

> MPS allows overlapping of kernel and memcopy operations from different
processes on the GPU to achieve maximum utilization.

> Hardware Changes - Hyper-Q which allows CUDA kernels to be processed
concurrently on the same GPU

REQUIREMENT

\4

Supported on Linux

\4

Unified Virtual Addressing

\4

Tesla with compute capability version 3.5 or higher, Toolkit - CUDA 5.5 or higher

\4

Exclusive-mode restrictions are applied to the MPS server, not MPS clients

ARCHITECTURAL CHANGE TO ALLOW THIS
FEATURE

CONCURRENT KERNELS

> GPU can run multiple independent kernels concurrently
> Fermi and later (CC 2.0)
> Kernels must be launched to different streams

> Must be enough resources remaining while one kernel is running

> While kernel A runs, GPU can launch blocks from kernel B if there are sufficient
free resources on any SM for at least one B block

» Registers, shared memory, thread block slots, etc.

> Max concurrency: 16 kernels on Fermi, 32 on Kepler

> Fermi further limited by narrow stream pipe...

KEPLER IMPROVED CONCURRENCY
g

Stream 1

Stream 2

Stream 3

Multiple Hardware Work Queues

Kepler allows 32-way concurrency
> One work queue per stream
> Concurrency at full-stream level
> No inter-stream dependencies

CONCURRENCY UNDER MPS

Stream 2

Stream 1

Stream 2 Multiple Hardware Work Queues/Channel

Kepler allows 32-way concurrency
> One work queue per stream, 2 work queue per MPS Client
> Concurrency at 2 stream level per MPS client, total 32
> Case 1: N_stream per MPS Client< N_channel (i.e. 2), - no serialization

SERIALIZATION/FALSE DEPEDENCY UNDER MPS

Stream 3

X-Y--Z = X--Y--Z
Stream 1
MPS Client/ X-Y -2’
Process 2 X’=yY?-7".... X’=Y’-7’
Stream 2
R — /

Stream 3 Multiple Hardware Work Queues/Channel

Kepler allows 32-way concurrency
> One work queue per stream, 2 work queue per MPS Client

> Concurrency at 2 stream level per MPS client, total 32
» Case 2: N stream>N channel - False dependencyv/serialization

HYPER Q/MPI (MPS): SINGLE/MULTIPLE GPUS PER
NODE

MPS Server efficiently overlaps work from multiple MPS Server efficiently overlaps work from multiple
ranks to single GPU ranks to each GPU

Note : MPS does not automatically distribute work across the different GPUs.
Inside the application user has to take care of GPU affinity for different mpi
rank .

HOW MPS WORK

All MPS Client Process
started after starting
MPS server will
communicate through
MPS server only

Allows multiple CUDA
processes to share a single
GPU context

HOW TO USE MPS ON SINGLE GPU

* No application modifications necessary
» Proxy process between user processes and GPU

* MPS control daemon
Spawn MPS server upon CUDA application startup

« Setting
export CUDA_VISIBLE_DEVICES=0
nvidia-smi -i 0 -c EXCLUSIVE_PROCESS
nvidia-cuda-mps-control -d

« Enabled via environment variable (for CRAY)
export CRAY_CUDA_PROXY=1

USING MPS ON MULTI-GPU SYSTEMS

Step 1 : Set the GPU in exclusive mode

sudo nvidia-smi -c 3 -i 0,1

Step 2 : Start the mps deamon (In first window) & Adjust pipe/log directory

export CUDA_VISIBLE_DEVICES= ${DEVICE}
export CUDA_MPS_PIPE_DIRECTORY=S{HOME}/mpsS{DEVICE}/pipe
export CUDA_MPS_LOG_DIRECTORY=S${HOME}/ mpsS{DEVICE}/log

nvidia-cuda-mps-control -d

Step 3 : Run the application (In second window)

Mpirun -np 4 ./mps_script.sh

NGPU=2

lrank=SMV2_COMM_WORLD_LOCAL_RANK
GPUID=S((Slrank%SNGPU))

export CUDA_MPS_PIPE_DIRECTORY=S${HOME}/mpsS{DEVICE}/pipe

« Step 4 : Profile the application (if you want to profile your mps code)

nvprof -o profiler_mps_mgpuSlrank.pdm ./application_exe

NEW IN CUDA 7.0

Step 1 : Set the GPU in exclusive mode

sudo nvidia-smi -c 3 -i 0,1

Step 2 : Start the mps deamon (In first window) & Adjust pipe/log directory
export CUDA_VISIBLE_DEVICES= ${DEVICE}

nvidia-cuda-mps-control -d

Step 3 : Run the application (In second window)
lrank=SOMPI_COMM_WORLD_LOCAL_RANK
case S{lrank} in
[0]) export CUDA_VISIBLE_DEVICES=0; numactl —cpunodebind=0 ./executable;;
[1]) export CUDA_VISIBLE_DEVICES=1; numactl —cpunodebind=1 ./executable;;
[2]) export CUDA_VISIBLE_DEVICES=0; numactl —cpunodebind=0 ./executable;;
[3]) export CUDA_VISIBLE_DEVICES=1; numactl —cpunodebind=1 ./executable;

esac

GPU UTILIZATION AND MONITORING MPI PROCESS
RUNNING UNDER MPS OR WITHOUT MPS

e -) -)
[psah@ivbl1l ~]s nvidia-smi [psah@ivbl93 ~1% nvidia-smi
Thu Feb 26 0@:46:13 2015 Thu Feb 26 82:19:19 2015
Bt g
246.29 D v : - :
,,,,,,,,,,,,,,,,,,,,,,,, rrver versaen | NVIDIA-SMI 346.29 Driver Version: 346,29
Persistence-M| Bus-Id Disp.A | volatile Uncorr. ECC | [oo e e emm oo
Pwr:Usage/Cap| Memory—USBQEMM. | | GBU Name Persistence-M| Bus-Id DiSp.A
n | 000D:04:00.0 | I I Fan Temp Perf Pwr:Usage/Cap]| Memory-Usage
76W s 235W | 678MiB / 11519fliB +:
““““““““““““““ 5""7'[;[;55'5;5'5;&];""' | 8 Tesla K2om on | PEEE:84:06.0 off
n N : . - -
ew 7 295w | laaomn 115100 Jlr N/A 48C PB 114W / 2251.n.'J|r 1106MiB / 4799MiB
_______________________________ B e e e
on | eepe:68:80.8 ff | | | 1 Tesla K28m on | BREE:R5:00.P off
_______ B s 2zsw | semE v masieme | o% Pefeult | | N/a 4eC PO 116W / 225W | 1105MiB / 4793MiB
on | pepe:09:00.8 off | e | Rttt oo
31w / 235w | S6MiB / 11519MiB | a% pefault | | 2 Tesla K20m On | aBEA:83:00.0 off
""""""""" Fooooomo oo o oo oo | N/A 35C P2 26W / 225W | 14M1B / 4799MiB
on | eee@:s83:00.0 off | e |
32w s 235w | S6MiB f 11519MiB | a% pefault | F------- - Fo-eome e
7777777777777777777777777777777 S | 3 Tesla Kz2om on | eeee:84:00.0 off
on | ©0EE:84:00.0 off | e | | N/A 35C Pa 26W / 225W | 14M1B / 4799MiB
33w s 235W | 56MiB / 11519MiB | 0% pefault | T LT
------------------------------- o m e e e e e e e e}
——— + s 1
T GPU Memory | | Processes: GPU Memory |
ype Process name Usage |
| | GPu PID TWname \ Usage |
c ./test_real2 309MiB | | |
C ./test_real2 209M1E | . _ _ o
c teet reals soomip | | 2] 33825 nv;g;a cuga mps-server 1696MiB |
€ Jtest_realz zeoMiB | | 1 33824 nvidia-cuda-mps-server 1089M1B |
-- + Rt e I S — mmmm e e e m e e e e e s e mm oo - e s

MPS PROFILING WITH NVPROF

Step 1: Launch MPS daemon
> S nvidia-cuda-mps-control -d
Step 2: Run nvprof with --profile-all-processes
S nvprof --profile-all-processes -o apllication_exe_%p
======== Profiling all processes launched by user “user1”
======== Type "Ctrl-c" to exit
Step 3: Run application in different terminal normally
S application_exe
Step 4: Exit nvprof by typing Ctrl+c
==5844== NVPROF is profiling process 5844, command: application_exe
==5840== NVPROF is profiling process 5840, command: application_exe...
==5844== Generated result file: /home/mps/r6.0/application_exe_5844
==5840== Generated result file: /home/mps/r6.0/application_exe_5840

IEW MPS TIMELINE IN VISUAL PROFILER

@ Import Nvprof Data

Nvprof profile files

ta For multiple

Import pro

Browse...

® Multipl

¥

< Back

Cancel

PROCESS SHARING SINGLE GPU WITHOUT MPS: NO
OVERLAP

1

Kernel from
Process 1

reduceSumfi...

—| Stream

Default

Allows multiple processes to create |ERER I R

to two different MPI Rank Kernel form

their separate GPU context are created Process 2

PROCESS SHARING SINGLE GPU WITHOUT MPS: NO
OVERLAP

‘ *single_gpu

041 0. 5 5 0.43 5 0435 04325
' i |

Context Switching
time

Instrumentation

Allows multiple processes to Co

e Two context corresponding
Create thelr Separate GPU to two different| MPI Rank

Kernel from

context are created Process 2

PROCESS SHARING SINGLE GPU WITH MPS: OVERLAP

‘ *single_gpu_with_mps_. pdm £

01ls 0125
i i

=| Compute

" 100.0¢ duceSumli...

—| Streams

Kernel from
Two process launch kernel Process 1
in default stream.

Kernel from
Process 2

PROCESS SHARING SINGLE GPU WITH MPS: OVERLAP

‘ *single_gpu_with_mps_. pdm £

01ls 0125
i i

=| Compute

" 100.0¢ duceSumli...

—| Streams

Kernel from
Two process launch kernel Process 1
in default stream.

Kernel from
Process 2

CASE STUDY: HYPER-Q/MPS FOR ELPA

MULTIPLE PROCESS SHARING SINGLE GPU

19.745 5 19755 5 . 19.765 5
' f '

Process “test_real2 8192 4096 12...
—| Thread 122754912
Runtime API
Driver APT
Profiling Overhead
Process “test_real2 5192 4096 12...
—| Thread 1039701856
Runtime APL
Driver AP
Profiling Overhead
Process “test_real2 3192 4096 12...
—| Thread 3353559936
Runtime API
Driver API
Profiling Overhead
Process “test_real2 8192 4096 12...
=| Thread 1620567204
Runtime AFI
Driver API
Profiling Overhead

—| Streams
Default-16361
Default-16364
Default-16367
Default-16369

EXAMPLE: HYPER-Q/PROXY FOR ELPA

Problem Size 10K , EV-50% Problem Size 15K , EV-50%

o
g{ 30 8 150 -
on <
£ -
£ % _ £ 100 - = Without MPS
c m Without MPS E = With MPS
2 10 m With MPS c
2 50|
3 0 S
3 a
a 0 . .
0 <
L 7 4 10 16
MPI Rank MPI Rank
Hyper-Q with multiple MPI ranks on single node sharing Hyper-Q with half MPI ranks on single processor sharing
same GPU under MPS leads to 1.5X speedup over multiple same GPU under MPS leads to nearly 1.4X speedup over MPI

MPI rank per node without MPS rank per processor without MPS

CONCLUSION

> Best for GPU acceleration for legacy applications
> Enables overlapping of memory copies and compute between different MPI ranks

> ldeal for applications with
> MPIl-everywhere
» Non-negligible CPU work
» Partially migrated to GPU

REFERENCE

> S5117_JiriKraus_Multi_GPU_Programming_with_MPI

- Blog post by Peter Messmer of NVIDIA -

http://blogs.nvidia. com/blog/2012/08/23/unleash legacy-mpi-codes-with-

keplers-hyper-q/

<A DEVELOPER
nvinoia ZONE

¥ White Papers

Floating Point and IEEE 754

Incomplete-LU and Cholesky
Preconditioned Iterative
Methods

¥ Compiler SDK

libNVVM API
libdevice User's Guide
NVVM IR

¥ Miscellaneous

CUPTI
Debugger API
RDMA for GPUDirect

Multi Process Service

CUDA TOOLKIT DOCUMENTA

The Release Notes for the
CUDA Toolkit from v4.0 to
today.

The End User License
Agreements for the NVIDIA
CUDA Toolkit, the NVIDIA
CUDA Samples, the NVIDIA

Display Driver, and NVIDIA
NSight (Visual Studio

Email : priyankas@nvidia.com

Please complete the Presenter Evaluation sent to you by email or through the
GTC Mobile App. Your feedback is important!

THANK YOU

#GTC15 ¥ f B

v

