
PRIYANKA,

COMPUTE DEVTECH, NVIDIA

IMPROVING GPU UTILIZATION WITH
MULTI-PROCESS SERVICE (MPS)

GPU parallelizable part

CPU parallel part

Serial part

N=4 N=2 N=1 N=8

Multicore CPU only GPU accelerated CPU

With Hyper-Q/MPS
Available in K20, K40, K80

N=4 N=2 N=1 N=8

STRONG SCALING OF MPI APPLICATION

WHAT YOU WILL LEARN

Multi-Process Server

Architecture change (HyperQ - MPS)

MPS implication on Performance

Efficiently utilization of GPU under MPS

Profile and Timeline

Example

WHAT IS MPS

CUDA MPS is a feature that allows multiple CUDA processes to share a single GPU
context. each process receive some subset of the available connections to that
GPU.

MPS allows overlapping of kernel and memcopy operations from different
processes on the GPU to achieve maximum utilization.

Hardware Changes - Hyper-Q which allows CUDA kernels to be processed
concurrently on the same GPU

REQUIREMENT

Supported on Linux

Unified Virtual Addressing

Tesla with compute capability version 3.5 or higher, Toolkit - CUDA 5.5 or higher

Exclusive-mode restrictions are applied to the MPS server, not MPS clients

ARCHITECTURAL CHANGE TO ALLOW THIS
FEATURE

GPU can run multiple independent kernels concurrently

Fermi and later (CC 2.0)

Kernels must be launched to different streams

Must be enough resources remaining while one kernel is running

While kernel A runs, GPU can launch blocks from kernel B if there are sufficient
free resources on any SM for at least one B block

Registers, shared memory, thread block slots, etc.

Max concurrency: 16 kernels on Fermi, 32 on Kepler

Fermi further limited by narrow stream pipe…

CONCURRENT KERNELS

KEPLER IMPROVED CONCURRENCY

Kepler allows 32-way concurrency

One work queue per stream

Concurrency at full-stream level

No inter-stream dependencies

Multiple Hardware Work Queues

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

A--B--C

P--Q--R

X--Y--Z

CONCURRENCY UNDER MPS

Multiple Hardware Work Queues/Channel

A’—B’—C’

X--Y--Z

A’ – B’ – C’

A -- B -- C

X -- Y -- Z

Stream 2

Stream 2

X’ – Y’ – Z’

Stream 1

Stream 1

X’—Y’—Z’

Kepler allows 32-way concurrency

One work queue per stream, 2 work queue per MPS Client

Concurrency at 2 stream level per MPS client, total 32

Case 1: N_stream per MPS Client< N_channel (i.e. 2), - no serialization

MPS Client/

Process 1

MPS Client/

Process 2

A—B—C

SERIALIZATION/FALSE DEPEDENCY UNDER MPS

Kepler allows 32-way concurrency

One work queue per stream, 2 work queue per MPS Client

Concurrency at 2 stream level per MPS client, total 32

Case 2: N_stream>N_channel - False dependency/serialization

X’’—Y’’—Z’’….. X’—Y’—Z’

Multiple Hardware Work Queues/Channel

A—B—C

X--Y--Z

A’ – B’ – C’

A -- B -- C

X -- Y -- Z

Stream 2

Stream 2

X’ – Y’ – Z’

Stream 1

Stream 1

MPS Client/

Process 1

MPS Client/

Process 2

X’’ – Y’’ – Z’’

Stream 3

A’’ – B’’ – C’’

A’’—B’’—C’’….. A’—B’—C’

Stream 3

HYPER Q/MPI (MPS): SINGLE/MULTIPLE GPUS PER
NODE

MPS Server efficiently overlaps work from multiple
ranks to single GPU

GPU 0

CUDA

MPI

Rank 0

CUDA

MPI

Rank 1

CUDA

MPI

Rank 2

CUDA

MPI

Rank 3

MPS Server

GPU 0 GPU 1

CUDA

MPI

Rank 0

CUDA

MPI

Rank 1

CUDA

MPI

Rank 2

CUDA

MPI

Rank 3

MPS Server

MPS Server efficiently overlaps work from multiple
ranks to each GPU

Note : MPS does not automatically distribute work across the different GPUs.
Inside the application user has to take care of GPU affinity for different mpi
rank .

 HOW MPS WORK

Process 1 initiated before
MPS Server started

MPS Server

 MPS Client

MPI Process 2 -

Create CUDA context

MPI Process 2 –

Create CUDA context
All MPS Client Process

started after starting

MPS server will

communicate through

MPS server only
Allows multiple CUDA

processes to share a single

GPU context

Many to one context

mapping

HOW TO USE MPS ON SINGLE GPU

• No application modifications necessary

• Proxy process between user processes and GPU

• MPS control daemon

• Spawn MPS server upon CUDA application startup

• Setting

• export CUDA_VISIBLE_DEVICES=0

• nvidia-smi –i 0 –c EXCLUSIVE_PROCESS

• nvidia-cuda-mps-control –d

• Enabled via environment variable (for CRAY)

 export CRAY_CUDA_PROXY=1

Step 1 : Set the GPU in exclusive mode

• sudo nvidia-smi –c 3 –i 0,1

Step 2 : Start the mps deamon (In first window) & Adjust pipe/log directory

• export CUDA_VISIBLE_DEVICES= ${DEVICE}

• export CUDA_MPS_PIPE_DIRECTORY=${HOME}/mps${DEVICE}/pipe

• export CUDA_MPS_LOG_DIRECTORY=${HOME}/mps${DEVICE}/log

• nvidia-cuda-mps-control -d

Step 3 : Run the application (In second window)

• Mpirun –np 4 ./mps_script.sh

• NGPU=2

• lrank=$MV2_COMM_WORLD_LOCAL_RANK

• GPUID=$(($lrank%$NGPU))

• export CUDA_MPS_PIPE_DIRECTORY=${HOME}/mps${DEVICE}/pipe

• Step 4 : Profile the application (if you want to profile your mps code)

• nvprof -o profiler_mps_mgpu$lrank.pdm ./application_exe

USING MPS ON MULTI-GPU SYSTEMS

Not required in CUDA 7.0

(for MV2_COMM_WORLD_LOCAL_RANK for mvapich2,

OMPI_COMM_WORLD_LOCAL_RANK for openmpi)

Step 1 : Set the GPU in exclusive mode

 sudo nvidia-smi –c 3 –i 0,1

Step 2 : Start the mps deamon (In first window) & Adjust pipe/log directory

 export CUDA_VISIBLE_DEVICES= ${DEVICE}

 nvidia-cuda-mps-control –d

Step 3 : Run the application (In second window)

lrank=$OMPI_COMM_WORLD_LOCAL_RANK

case ${lrank} in

[0]) export CUDA_VISIBLE_DEVICES=0; numactl —cpunodebind=0 ./executable;;

[1]) export CUDA_VISIBLE_DEVICES=1; numactl —cpunodebind=1 ./executable;;

[2]) export CUDA_VISIBLE_DEVICES=0; numactl —cpunodebind=0 ./executable;;

[3]) export CUDA_VISIBLE_DEVICES=1; numactl —cpunodebind=1 ./executable;

esac

NEW IN CUDA 7.0

GPU UTILIZATION AND MONITORING MPI PROCESS
RUNNING UNDER MPS OR WITHOUT MPS

GPU Utilization by

different MPI Rank

under MPS

GPU Utilization by

different MPI Rank

Without MPS

Two MPI Rank per

processor sharing

same GPU

Step 1: Launch MPS daemon

$ nvidia-cuda-mps-control -d

Step 2: Run nvprof with --profile-all-processes

$ nvprof --profile-all-processes -o apllication_exe_%p

======== Profiling all processes launched by user “user1"

======== Type "Ctrl-c" to exit

Step 3: Run application in different terminal normally

$ application_exe

Step 4: Exit nvprof by typing Ctrl+c

==5844== NVPROF is profiling process 5844, command: application_exe

==5840== NVPROF is profiling process 5840, command: application_exe…

==5844== Generated result file: /home/mps/r6.0/application_exe_5844

==5840== Generated result file: /home/mps/r6.0/application_exe_5840

MPS PROFILING WITH NVPROF

VIEW MPS TIMELINE IN VISUAL PROFILER

PROCESS SHARING SINGLE GPU WITHOUT MPS: NO
OVERLAP

Process 1 -

Create CUDA context

Process 2 –

 Create CUDA context

Allows multiple processes to create

their separate GPU context

Kernel from

Process 1

Kernel form

Process 2

Two context corresponding

to two different MPI Rank

are created

PROCESS SHARING SINGLE GPU WITHOUT MPS: NO
OVERLAP

Process 1 -

Create CUDA context

Process 2 –

 Create CUDA context

Allows multiple processes to

create their separate GPU

context

Kernel from

Process 1

Kernel from

Process 2

Two context corresponding

to two different MPI Rank

are created

Context Switching

time

PROCESS SHARING SINGLE GPU WITH MPS: OVERLAP

Process 2

Allows multiple processes to

share single CUDA Context

Process 1

MPS Server

Context -MPS

Kernel from

Process 1 Kernel from

Process 2

Two process launch kernel

in default stream.

PROCESS SHARING SINGLE GPU WITH MPS: OVERLAP

Process 2

Allows multiple processes to

share single CUDA Context

Process 1

MPS Server

Context -MPS

Kernel from

Process 1 Kernel from

Process 2

Two process launch kernel

in default stream.

CASE STUDY: HYPER-Q/MPS FOR ELPA

MULTIPLE PROCESS SHARING SINGLE GPU

Sharing the GPU

between multi MPI

ranks increases GPU

utilization

Enables overlap between

copy and compute of

different processes

EXAMPLE: HYPER-Q/PROXY FOR ELPA

0

10

20

30

4
10

16

A
p
p
ll
ic

a
ti

o
n
 T

im
in

g
 (

se
c
)

MPI Rank

Performance Improvement with MPS on single GPU

Without MPS

With MPS

Problem Size 10K , EV-50%

Hyper-Q with multiple MPI ranks on single node sharing

same GPU under MPS leads to 1.5X speedup over multiple

MPI rank per node without MPS

0

50

100

150

4 10 16

A
p
p
li
c
a
ti

o
n
 T

im
in

g

(s
e
c
)

MPI Rank

Performance Improvement with MPS on multiple GPU

Without MPS

With MPS

Problem Size 15K , EV-50%

Hyper-Q with half MPI ranks on single processor sharing

same GPU under MPS leads to nearly 1.4X speedup over MPI

rank per processor without MPS

CONCLUSION

 Best for GPU acceleration for legacy applications

 Enables overlapping of memory copies and compute between different MPI ranks

 Ideal for applications with

 MPI-everywhere

 Non-negligible CPU work

 Partially migrated to GPU

REFERENCE
S5117_JiriKraus_Multi_GPU_Programming_with_MPI

Blog post by Peter Messmer of NVIDIA -
http://blogs.nvidia.com/blog/2012/08/23/unleash-legacy-mpi-codes-with-
keplers-hyper-q/

Email : priyankas@nvidia.com

Please complete the Presenter Evaluation sent to you by email or through the

GTC Mobile App. Your feedback is important!

THANK YOU

