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STRONG SCALING OF MPI APPLICATION
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WHAT IS MPS

> CUDA MPS is a feature that allows multiple CUDA processes to share a single GPU
context. each process receive some subset of the available connections to that
GPU.

> MPS allows overlapping of kernel and memcopy operations from different
processes on the GPU to achieve maximum utilization.

> Hardware Changes - Hyper-Q which allows CUDA kernels to be processed
concurrently on the same GPU



REQUIREMENT

\4

Supported on Linux

\4

Unified Virtual Addressing

\4

Tesla with compute capability version 3.5 or higher, Toolkit - CUDA 5.5 or higher

\4

Exclusive-mode restrictions are applied to the MPS server, not MPS clients



ARCHITECTURAL CHANGE TO ALLOW THIS
FEATURE



CONCURRENT KERNELS

> GPU can run multiple independent kernels concurrently
> Fermi and later (CC 2.0)
> Kernels must be launched to different streams

> Must be enough resources remaining while one kernel is running

> While kernel A runs, GPU can launch blocks from kernel B if there are sufficient
free resources on any SM for at least one B block

» Registers, shared memory, thread block slots, etc.

> Max concurrency: 16 kernels on Fermi, 32 on Kepler

> Fermi further limited by narrow stream pipe...



KEPLER IMPROVED CONCURRENCY
g

Stream 1

Stream 2

Stream 3

Multiple Hardware Work Queues

Kepler allows 32-way concurrency
> One work queue per stream
> Concurrency at full-stream level
> No inter-stream dependencies



CONCURRENCY UNDER MPS

Stream 2

Stream 1

Stream 2 Multiple Hardware Work Queues/Channel

Kepler allows 32-way concurrency
> One work queue per stream, 2 work queue per MPS Client
> Concurrency at 2 stream level per MPS client, total 32
> Case 1: N_stream per MPS Client< N_channel (i.e. 2), - no serialization



SERIALIZATION/FALSE DEPEDENCY UNDER MPS

Stream 3

X-Y--Z = X--Y--Z
Stream 1
MPS Client/ X-Y -2’
Process 2 X’=yY?-7".... X’=Y’-7’
Stream 2
R — /

Stream 3 Multiple Hardware Work Queues/Channel

Kepler allows 32-way concurrency
> One work queue per stream, 2 work queue per MPS Client

> Concurrency at 2 stream level per MPS client, total 32
» Case 2: N stream>N channel - False dependencyv/serialization



HYPER Q/MPI (MPS): SINGLE/MULTIPLE GPUS PER
NODE

MPS Server efficiently overlaps work from multiple MPS Server efficiently overlaps work from multiple
ranks to single GPU ranks to each GPU

Note : MPS does not automatically distribute work across the different GPUs.
Inside the application user has to take care of GPU affinity for different mpi
rank .



HOW MPS WORK

All MPS Client Process
started after starting
MPS server will
communicate  through
MPS server only

Allows multiple CUDA
processes to share a single
GPU context




HOW TO USE MPS ON SINGLE GPU

* No application modifications necessary
» Proxy process between user processes and GPU

* MPS control daemon
Spawn MPS server upon CUDA application startup

« Setting
export CUDA_VISIBLE_DEVICES=0
nvidia-smi -i 0 -c EXCLUSIVE_PROCESS
nvidia-cuda-mps-control -d

« Enabled via environment variable (for CRAY)
export CRAY_CUDA_PROXY=1



USING MPS ON MULTI-GPU SYSTEMS

Step 1 : Set the GPU in exclusive mode

sudo nvidia-smi -c 3 -i 0,1

Step 2 : Start the mps deamon (In first window) & Adjust pipe/log directory

export CUDA_VISIBLE_DEVICES= ${DEVICE}
export CUDA_MPS_PIPE_DIRECTORY=S{HOME}/mpsS{DEVICE}/pipe
export CUDA_MPS_LOG_DIRECTORY=S${HOME}/ mpsS{DEVICE}/log

nvidia-cuda-mps-control -d

Step 3 : Run the application (In second window)

Mpirun -np 4 ./mps_script.sh

NGPU=2

lrank=SMV2_COMM_WORLD_LOCAL_RANK
GPUID=S((Slrank%SNGPU))

export CUDA_MPS_PIPE_DIRECTORY=S${HOME}/mpsS{DEVICE}/pipe

« Step 4 : Profile the application (if you want to profile your mps code)

nvprof -o profiler_mps_mgpuSlrank.pdm ./application_exe



NEW IN CUDA 7.0

Step 1 : Set the GPU in exclusive mode

sudo nvidia-smi -c 3 -i 0,1

Step 2 : Start the mps deamon (In first window) & Adjust pipe/log directory
export CUDA_VISIBLE_DEVICES= ${DEVICE}

nvidia-cuda-mps-control -d

Step 3 : Run the application (In second window)
lrank=SOMPI_COMM_WORLD_LOCAL_RANK
case S{lrank} in
[0]) export CUDA_VISIBLE_DEVICES=0; numactl —cpunodebind=0 ./executable;;
[1]) export CUDA_VISIBLE_DEVICES=1; numactl —cpunodebind=1 ./executable;;
[2]) export CUDA_VISIBLE_DEVICES=0; numactl —cpunodebind=0 ./executable;;
[3]) export CUDA_VISIBLE_DEVICES=1; numactl —cpunodebind=1 ./executable;

esac



GPU UTILIZATION AND MONITORING MPI PROCESS
RUNNING UNDER MPS OR WITHOUT MPS
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MPS PROFILING WITH NVPROF

Step 1: Launch MPS daemon
> S nvidia-cuda-mps-control -d
Step 2: Run nvprof with --profile-all-processes
S nvprof --profile-all-processes -o apllication_exe_%p
======== Profiling all processes launched by user “user1”
======== Type "Ctrl-c" to exit
Step 3: Run application in different terminal normally
S application_exe
Step 4: Exit nvprof by typing Ctrl+c
==5844== NVPROF is profiling process 5844, command: application_exe
==5840== NVPROF is profiling process 5840, command: application_exe...
==5844== Generated result file: /home/mps/r6.0/application_exe_5844
==5840== Generated result file: /home/mps/r6.0/application_exe_5840



IEW MPS TIMELINE IN VISUAL PROFILER

@ Import Nvprof Data

Nvprof profile files
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PROCESS SHARING SINGLE GPU WITHOUT MPS: NO
OVERLAP

1

Kernel from
Process 1

reduceSumfi...
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their separate GPU context are created Process 2




PROCESS SHARING SINGLE GPU WITHOUT MPS: NO
OVERLAP

‘ *single_gpu
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Context Switching
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Instrumentation
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PROCESS SHARING SINGLE GPU WITH MPS: OVERLAP
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PROCESS SHARING SINGLE GPU WITH MPS: OVERLAP
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CASE STUDY: HYPER-Q/MPS FOR ELPA



MULTIPLE PROCESS SHARING SINGLE GPU
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Runtime API
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Profiling Overhead
Process “test_real2 8192 4096 12...
=| Thread 1620567204
Runtime AFI
Driver API
Profiling Overhead

—| Streams
Default-16361
Default-16364
Default-16367
Default-16369




EXAMPLE: HYPER-Q/PROXY FOR ELPA

Problem Size 10K , EV-50% Problem Size 15K , EV-50%
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MPI Rank MPI Rank
Hyper-Q with multiple MPI ranks on single node sharing Hyper-Q with half MPI ranks on single processor sharing
same GPU under MPS leads to 1.5X speedup over multiple same GPU under MPS leads to nearly 1.4X speedup over MPI

MPI rank per node without MPS rank per processor without MPS



CONCLUSION

> Best for GPU acceleration for legacy applications
> Enables overlapping of memory copies and compute between different MPI ranks

> ldeal for applications with
> MPIl-everywhere
» Non-negligible CPU work
» Partially migrated to GPU



REFERENCE

> S5117_JiriKraus_Multi_GPU_Programming_with_MPI

- Blog post by Peter Messmer of NVIDIA -

http://blogs.nvidia. com/blog/2012/08/23/unleash legacy-mpi-codes-with-

keplers-hyper-q/

<A DEVELOPER
nvinoia ZONE

¥ White Papers

Floating Point and IEEE 754

Incomplete-LU and Cholesky
Preconditioned Iterative
Methods

¥ Compiler SDK

libNVVM API
libdevice User's Guide
NVVM IR

¥ Miscellaneous

CUPTI
Debugger API
RDMA for GPUDirect

Multi Process Service

CUDA TOOLKIT DOCUMENTA

The Release Notes for the
CUDA Toolkit from v4.0 to
today.

The End User License
Agreements for the NVIDIA
CUDA Toolkit, the NVIDIA
CUDA Samples, the NVIDIA

Display Driver, and NVIDIA
NSight (Visual Studio




Email : priyankas@nvidia.com

Please complete the Presenter Evaluation sent to you by email or through the
GTC Mobile App. Your feedback is important!



THANK YOU

#GTC15 ¥ f B

v



