
MONTE-CARLO SIMULATION OF AMERICAN OPTIONS

WITH GPUS

Julien Demouth, NVIDIA

STAC-A2™ BENCHMARK
 STAC-A2™ Benchmark

— Developed by banks

— Macro and micro, performance and accuracy

— Pricing and Greeks for American exercise basket option, correlated Heston dynamics,
Longstaff Schwartz Monte Carlo

 Independently audited results

 GPU Solution

— “Over 9x the average speed of a system with the same class of CPUs but no GPUs”

— “The first system to handle the baseline problem size in ‘real time’ (less than a second)”

Please see http://www.stacresearch.com/a2 for more details of the STAC-A2 Benchmark

Also see http://devblogs.nvidia.com/parallelforall/american-option-pricing-monte-carlo-simulation for more
details on Longstaff-Schwartz Monte Carlo on GPUs

AMERICAN OPTIONS
 American put option on a stock

— Alice buys a put option on a stock from Bob

— Strike price K

— Time to expiry T

— Between now and time T, Alice can sell the stock to Bob at a price K

 Is today the right day to sell? How long should Alice wait?

 The option pays off if K is higher than the stock price S

payoff = max(K – S[i], 0)

LONGSTAFF-SCHWARTZ ALGORITHM
 Generate random prices for the stock

— Split the time to expiry T into N time steps: t0, t1, t2, …

— Use M independent paths

 Different schemes to generate the stock prices:

— Euler scheme

— Andersen QE (used in STAC-A2)

LONGSTAFF-SCHWARTZ ALGORITHM
 Compute the payoff at time T along each path

 Walk back in time

 For each time step ti

— Fit a model to predict the payoffs at ti+1 from the stock prices at ti

 Using the payoffs and stock prices from all the paths (in the money)

— For each path

 Predict the payoff for the path

 Decide whether to exercise or continue on that path

for(int ti = T-1 ; ti > 0 ; --ti)

LINEAR REGRESSION

Stock price

P
a
y
o
ff

1/ Find the

coefficients (beta)

defining the curve

2/ Predict the

payoff from

the stock price

LINEAR REGRESSION
 Linear model to fit

 We want to find beta which minimizes

 A is the matrix of powers of stock prices, P vector of payoffs

beta[0] + beta[1]*x + beta[2]*x^2

 | 1 S[0] S[0]^2 |
A = | 1 S[1] S[1]^2 |
 | 1 S[2] S[2]^2 |
 | … … … |

|| A*beta – P ||^2

 | max(K-S[0], 0) |
P = | max(K-S[1], 0) |
 | max(K-S[2], 0) |
 | … |

LINEAR REGRESSION
 We use the Singular Value Decomposition (SVD)

 To build the (Moore-Penrose) pseudoinverse

 And compute

 How can we efficiently build the pseudoinverse?

A = U * Sigma * V^T

V * Sigma^-1 * U^T

beta = V * Sigma^-1 * U^T * P

KEY DESIGN POINTS
 Expose as much parallelism as possible

— Eliminate unneeded synchronization points

 E.g. move computations outside of the main loop

— Inside kernels, maximize the amount of independent work

 E.g. threads do sequential work in parallel before a parallel reduction

 Reduce memory transfers to a minimum

— Have coalesced memory accesses

 E.g. map on thread per Monte Carlo path

— Recompute rather than store intermediate results

 E.g. do not store the square of S[i]

BUILD THE PSEUDOINVERSE
 Each A is a long-and-thin matrix with 32,000 rows x 3 columns

— One matrix A per time step

— It takes too much time and space to compute the SVD of A as-is

 A well-known approach: Build the QR decomposition of A

 R is much smaller. Compute the SVD of R to build the SVD of A

 Since R is 3x3, we can compute its SVD on a multiprocessor

A = QR

R = UR * SigmaR * VR^T => A = Q * UR * SigmaR * VR^T

COMPUTE THE QR DECOMPOSITION
 Householder-based algorithm to build the QR decomposition

— 3x dot products over ~32,000 elements

— 3x 32,000x32,000 rank updates

 There are too many memory accesses!!!

 Our solution: R can be built using 8 scalars (see the code):

 Where si is the stock price on the i-th path which pays off

s0, s1, s2, Sum si^0, Sum si^1, Sum si^2, Sum si^3, Sum si^4

COMPUTE THE QR DECOMPOSITION
 During the main loop, Q can be built on-the-fly using A and R

 In summary, we build all the W matrices before the main loop

 Each CUDA block computes a different W

 At each iteration of the main loop, we compute beta as

Q = AR^-1

W = VR * SigmaR^-1 * UR^T

beta = W * (R^-1)^T * A^T * P

Q^T

Pseudoinverse

BUILD THE PSEUDO-INVERSE
 Before the main loop, we build W (one block per time step)

int m = 0; double4 sums = {0.0};

// Iterate over the paths. Each thread computes its own partial sums.
for(int path = threadIdx.x ; path < num_paths ; path += THREADS_PER_BLOCK)
{
 // Load the asset price.
 double S = paths[offset + path];

 // Update the sums if the path pays off.
 if(payoff.is_in_the_money(S)) {
 ++m;
 double S2 = S*S;
 sums.x += S; sums.y += S2; sums.z += S2*S; sums.w += S2*S2;
 }
}
m = cub::BlockReduce<...>(...).Sum(m); sums = cub::BlockReduce<...>(...).Sum(sums);

// Build and store W. See the code.

MAIN LOOP
 W is a 3x3 matrix and R has only 6 non-zero values

 We map one CUDA thread per path (or more)

 if(threadIdx.x < 15) // Load W for the block.
 smem_W[threadIdx.x] = W[threadIdx.x];
__syncthreads();

double3 beta = {0.0}; // Each thread computes a partial sum of beta.

// Iterate over the paths.
for(int path = tidx ; path < num_paths ; path += blockDim.x*gridDim.x)
{
 double S = stock[path]; double S2 = S*S; // Rebuild A on the fly

 ... // Update beta. No global memory access!!!
}

beta = cub::BlockReduce<...>(...).Sum(beta); // Parallel reduction

... // Store beta

PERFORMANCE RESULTS
 Tesla K40 (875MHz, 3004MHz), runtime in milliseconds

 NEQ: Linear regression using the Normal Equation

 Timings include the generation of paths

5.56
7.242

8.793

5.375
7.093

8.661 9.268

12.648

15.438

8.493

12.18

14.99

0

2

4

6

8

10

12

14

16

18

32K paths 64K paths 96K paths

100 timesteps

100 timesteps (NEQ)

200 timesteps

200 timesteps (NEQ)

Runtime (in ms). Lower is better.

PERFORMANCE RESULTS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32K/100 64K/100 96K/100 32K/200 64K/200 96K/200

compute_final_sum_kernel

compute_partial_sums_kernel

update_cashflow_kernel

compute_partial_beta_kernel

prepare_svd_kernel

generate_paths_kernel

gen_sequenced

generate_seed_pseudo_mrg

PERFORMANCE RESULTS
 The importance of the main loop (update_cashflow/compute_partial_beta)

— Increases with the number of time steps

— At 32K/64K paths, the two kernels are limited by latency

 High impact of instruction and constant cache misses

— The loop is impacted by launch latency of kernels (for #paths <= 32K)

 See how to reduce the impact in the companion code (#define WITH_FUSED_BETA)

 On 32K/64K paths, we have a limited number of CUDA blocks

— Tail effects (load balancing is not optimal)

— We need more paths or work on several problems in parallel

 Idea: Use several CPU threads and CUDA streams

 Keep it in mind when you design your infrastructure

CONCLUSION
 GPUs are good at American option pricing

— See our STAC-A2 results (compared to high-end CPUs/GPU-like)

 Robust algorithms like the SVD can be implemented

 Our blog post:

 http://devblogs.nvidia.com/parallelforall/american-option-pricing-monte-carlo-simulation/

 The companion code:

 https://github.com/parallel-forall/code-samples/tree/master/posts/american-options

 Our STAC-A2 results:

 http://www.stacresearch.com/nvidia/4dec13

