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STAC-A2™ BENCHMARK 
 STAC-A2™ Benchmark 

— Developed by banks 

— Macro and micro, performance and accuracy 

— Pricing and Greeks for American exercise basket option, correlated Heston dynamics, 
Longstaff Schwartz Monte Carlo 

 

 Independently audited results 

 GPU Solution 

— “Over 9x the average speed of a system with the same class of CPUs but no GPUs” 

— “The first system to handle the baseline problem size in ‘real time’ (less than a second)” 

 

Please see http://www.stacresearch.com/a2 for more details of the STAC-A2 Benchmark 

Also see http://devblogs.nvidia.com/parallelforall/american-option-pricing-monte-carlo-simulation for more 
details on Longstaff-Schwartz Monte Carlo on GPUs 



AMERICAN OPTIONS 
 American put option on a stock 

— Alice buys a put option on a stock from Bob 

— Strike price K 

— Time to expiry T 

— Between now and time T, Alice can sell the stock to Bob at a price K 

 

 Is today the right day to sell? How long should Alice wait? 

 

 The option pays off if K is higher than the stock price S 

 
payoff = max(K – S[i], 0) 



LONGSTAFF-SCHWARTZ ALGORITHM 
 Generate random prices for the stock 

— Split the time to expiry T into N time steps: t0, t1, t2, … 

— Use M independent paths 

 

 

 

 

 

 Different schemes to generate the stock prices: 

— Euler scheme  

— Andersen QE (used in STAC-A2) 



LONGSTAFF-SCHWARTZ ALGORITHM 
 Compute the payoff at time T along each path 

 

 Walk back in time 

 

 

 For each time step ti  

— Fit a model to predict the payoffs at ti+1 from the stock prices at ti 

 Using the payoffs and stock prices from all the paths (in the money) 

— For each path 

 Predict the payoff for the path 

 Decide whether to exercise or continue on that path 

for( int ti = T-1 ; ti > 0 ; --ti ) 
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LINEAR REGRESSION 
 Linear model to fit 

 

 

 We want to find beta which minimizes 

 

 

 A is the matrix of powers of stock prices, P vector of payoffs 

 

 

 

beta[0] + beta[1]*x + beta[2]*x^2 

    | 1  S[0]  S[0]^2 | 
A = | 1  S[1]  S[1]^2 | 
    | 1  S[2]  S[2]^2 | 
    | …    …      …   | 

|| A*beta – P ||^2 

    | max(K-S[0], 0) | 
P = | max(K-S[1], 0) | 
    | max(K-S[2], 0) | 
    |        …       | 



LINEAR REGRESSION 
 We use the Singular Value Decomposition (SVD) 

 

 To build the (Moore-Penrose) pseudoinverse 

 

 And compute 

 

 

 

 How can we efficiently build the pseudoinverse? 

 

A = U * Sigma * V^T 

V * Sigma^-1 * U^T 

beta = V * Sigma^-1 * U^T * P 



KEY DESIGN POINTS 
 Expose as much parallelism as possible 

— Eliminate unneeded synchronization points  

 E.g. move computations outside of the main loop 

— Inside kernels, maximize the amount of independent work 

 E.g. threads do sequential work in parallel before a parallel reduction 

 

 Reduce memory transfers to a minimum 

— Have coalesced memory accesses 

 E.g. map on thread per Monte Carlo path 

— Recompute rather than store intermediate results  

 E.g. do not store the square of S[i] 

 



BUILD THE PSEUDOINVERSE 
 Each A is a long-and-thin matrix with 32,000 rows x 3 columns 

— One matrix A per time step 

— It takes too much time and space to compute the SVD of A as-is 

 

 A well-known approach: Build the QR decomposition of A 

 

 R is much smaller. Compute the SVD of R to build the SVD of A 

 

 

 Since R is 3x3, we can compute its SVD on a multiprocessor 

 

A = QR 

R = UR * SigmaR * VR^T  =>  A = Q * UR * SigmaR * VR^T  



COMPUTE THE QR DECOMPOSITION 
 Householder-based algorithm to build the QR decomposition 

— 3x dot products over ~32,000 elements 

— 3x 32,000x32,000 rank updates 

 

 There are too many memory accesses!!! 

 

 Our solution: R can be built using 8 scalars (see the code): 

 

 

 Where si is the stock price on the i-th path which pays off 

 

s0, s1, s2, Sum si^0, Sum si^1, Sum si^2, Sum si^3, Sum si^4 



COMPUTE THE QR DECOMPOSITION 
 During the main loop, Q can be built on-the-fly using A and R 

 

 In summary, we build all the W matrices before the main loop 

 

 Each CUDA block computes a different W 

 

 At each iteration of the main loop, we compute beta as 

Q = AR^-1 

W = VR * SigmaR^-1 * UR^T 

beta = W * (R^-1)^T * A^T  * P 

Q^T 

Pseudoinverse 



BUILD THE PSEUDO-INVERSE 
 Before the main loop, we build W (one block per time step) 

int m = 0; double4 sums = {0.0};  
 
// Iterate over the paths. Each thread computes its own partial sums.  
for( int path = threadIdx.x ; path < num_paths ; path += THREADS_PER_BLOCK )  
{  
  // Load the asset price.  
  double S = paths[offset + path];  
 
  // Update the sums if the path pays off.  
  if( payoff.is_in_the_money(S) ) { 
    ++m;  
    double S2 = S*S;  
    sums.x += S; sums.y += S2; sums.z += S2*S; sums.w += S2*S2;  
  } 
}  
m = cub::BlockReduce<...>(...).Sum(m); sums = cub::BlockReduce<...>(...).Sum(sums); 
 
// Build and store W. See the code. 



MAIN LOOP 
 W is a 3x3 matrix and R has only 6 non-zero values 

 We map one CUDA thread per path (or more) 

 if( threadIdx.x < 15 ) // Load W for the block. 
  smem_W[threadIdx.x] = W[threadIdx.x]; 
__syncthreads(); 
 
double3 beta = {0.0}; // Each thread computes a partial sum of beta. 
 
// Iterate over the paths. 
for( int path = tidx ; path < num_paths ; path += blockDim.x*gridDim.x ) 
{ 
  double S = stock[path]; double S2 = S*S; // Rebuild A on the fly 
 
  ... // Update beta. No global memory access!!! 
} 
 
beta = cub::BlockReduce<...>(...).Sum(beta); // Parallel reduction 
 
... // Store beta 



PERFORMANCE RESULTS 
 Tesla K40 (875MHz, 3004MHz), runtime in milliseconds 

 

 

 

 

 

 

 

 NEQ: Linear regression using the Normal Equation 

 Timings include the generation of paths 
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PERFORMANCE RESULTS 
 The importance of the main loop (update_cashflow/compute_partial_beta) 

— Increases with the number of time steps 

— At 32K/64K paths, the two kernels are limited by latency 

 High impact of instruction and constant cache misses 

— The loop is impacted by launch latency of kernels (for #paths <= 32K) 

 See how to reduce the impact in the companion code (#define WITH_FUSED_BETA) 

 

 On 32K/64K paths, we have a limited number of CUDA blocks 

— Tail effects (load balancing is not optimal) 

— We need more paths or work on several problems in parallel 

 Idea: Use several CPU threads and CUDA streams 

 Keep it in mind when you design your infrastructure 

 

 



CONCLUSION 
 GPUs are good at American option pricing  

— See our STAC-A2 results (compared to high-end CPUs/GPU-like) 

 Robust algorithms like the SVD can be implemented 

 

 

 

 Our blog post: 

 http://devblogs.nvidia.com/parallelforall/american-option-pricing-monte-carlo-simulation/ 

 The companion code: 

 https://github.com/parallel-forall/code-samples/tree/master/posts/american-options 

 Our STAC-A2 results: 

 http://www.stacresearch.com/nvidia/4dec13 


