
NumbaPro

● Enables parallel programming in Python
● Support various entry points:

○ Low-level (CUDA-C like) programming language
○ High-level array oriented interface
○ CUDA library bindings

● Also support multicore CPU
○ And more hardware architectures in the future.



NumbaPro “CUDA Python”

Square matrix 
multiplication



NumbaPro “CUDA Python”

Determine 
thread Identity



NumbaPro “CUDA Python”

Map threads to 
matrix coordinate



NumbaPro “CUDA Python”

Thread inside 
matrix?



NumbaPro “CUDA Python”

Compute one 
element.

Launch NxN 
threads for NxN 
matrix



Launch CUDA Kernel

Launch (100 x 32)^2 = 3200^2 threads
for 3200 x 3200 matrix



Equivalent CUDA-C



Higher-level Entry Points

So far, the API is quite low-level.

We will go through some higher-level entry 
points in the lessons.



Lesson 1
SAXPY with Vectorize



@vectorize

● Creates elementwise operation from a scalar 
function

● Produces a NumPy universal function 
(ufunc).

● numpy.add is a ufunc
● Eliminate most of CUDA specific info

○ griddim, blockdim are computed for you



The Scalar Function Core

● All arguments are scalar
● Returns a scalar value as the output



Writing a SAXPY function

SAXPY computes
a X + Y

where X and Y are vectors of equal length.



@vectorize

List of function type signatures



Code generation target:
“cpu”, “parallel”, “gpu”

@vectorize



A scalar function

Args: a, x, y are float32
Returns a float32

@vectorize



Calling a vectorize function

● Use as regular NumPy ufunc
○ Applies to regular NumPy arrays
○ Auto host->device and device->host transfer
○ Auto calculate griddim and blockdim



SAXPY in CUDA Python



Memory transfer

Explicit memory transfer is optional.
Host->Device:
device_array = cuda.to_device(host_array)

Device Allocation:
device_array =   
                 cuda.device_array_like(device_or_host_array)

Note: behaves like numpy.empty_like

Device->Host:
host_array = device_array.copy_to_host()



Controlling Memory Transfer

host -> device

device -> host



Controlling Memory Transfer

device -> host



Controlling Memory Transfer



Why manual transfer?

● As an optimization
● Control device memory usage
● Allow reusing of memory



Lesson 2
cuFFT convolution



FFT Convolution

Image filter using FFT convolution with cuFFT.

convolved = IFFT(FFT(image) * FFT
(response))



cuFFT API

The cuFFT object (`cufft` in the code) has:

Forward FFT
cufft.fft(in_array, out_array)
cufft.fft_inplace(inout_array)

Inverse FFT
cufft.ifft(in_array, out_array)
cufft.ifft_inplace(inout_array)



Doing a Inplace Convolution

Forward FFT of image and response arrays

Elementwise image and response arrays in frequency domain

Inverse FFT the product



Doing a Inplace Convolution

Elementwise image and response arrays in frequency domain

Inverse FFT the product



Doing a Inplace Convolution

Inverse FFT the product



Doing a Inplace Convolution



Lesson 3
JIT Linking



CUDA JIT Linking

● Use CUDA-C code inside NumbaPro
● Compile CUDA-C code into relocatable 

device code
● NumbaPro use CUDA JIT Linker to combine 

its generated code with a precompiled library



Use of JIT Linking

● Connect to missing features
○ NumbaPro is still young

● Connect to CUDA-C only features
● Reusing existing CUDA-C code



NumbaPro Python code



NumbaPro Python code

Declare external device function in Python



NumbaPro Python code

Precompiled object file



NumbaPro Python code

Add library dependencies to 
the CUDA kernel



NumbaPro Python code

Use external function



CUDA-C code



CUDA-C code

NumbaPro expects return value to 
be passed as the first argument



CUDA-C code

Actual arguments follows



CUDA-C code

Return value indicates status.

Return 0 for success.

Other return codes are possible to 
indicate builtin errors.



How to compile

nvcc -arch=sm_20 -dc yourcode.cu

● Support only CC 2.0 or above
● -dc flag triggers relocatable device code



Example



Q & A



Thank You

NumbaPro is Part of 
Anaconda Accelerate.

Visit continuum.io


