
NumbaPro

● Enables parallel programming in Python
● Support various entry points:

○ Low-level (CUDA-C like) programming language
○ High-level array oriented interface
○ CUDA library bindings

● Also support multicore CPU
○ And more hardware architectures in the future.

NumbaPro “CUDA Python”

Square matrix
multiplication

NumbaPro “CUDA Python”

Determine
thread Identity

NumbaPro “CUDA Python”

Map threads to
matrix coordinate

NumbaPro “CUDA Python”

Thread inside
matrix?

NumbaPro “CUDA Python”

Compute one
element.

Launch NxN
threads for NxN
matrix

Launch CUDA Kernel

Launch (100 x 32)^2 = 3200^2 threads
for 3200 x 3200 matrix

Equivalent CUDA-C

Higher-level Entry Points

So far, the API is quite low-level.

We will go through some higher-level entry
points in the lessons.

Lesson 1
SAXPY with Vectorize

@vectorize

● Creates elementwise operation from a scalar
function

● Produces a NumPy universal function
(ufunc).

● numpy.add is a ufunc
● Eliminate most of CUDA specific info

○ griddim, blockdim are computed for you

The Scalar Function Core

● All arguments are scalar
● Returns a scalar value as the output

Writing a SAXPY function

SAXPY computes
a X + Y

where X and Y are vectors of equal length.

@vectorize

List of function type signatures

Code generation target:
“cpu”, “parallel”, “gpu”

@vectorize

A scalar function

Args: a, x, y are float32
Returns a float32

@vectorize

Calling a vectorize function

● Use as regular NumPy ufunc
○ Applies to regular NumPy arrays
○ Auto host->device and device->host transfer
○ Auto calculate griddim and blockdim

SAXPY in CUDA Python

Memory transfer

Explicit memory transfer is optional.
Host->Device:
device_array = cuda.to_device(host_array)

Device Allocation:
device_array =
 cuda.device_array_like(device_or_host_array)

Note: behaves like numpy.empty_like

Device->Host:
host_array = device_array.copy_to_host()

Controlling Memory Transfer

host -> device

device -> host

Controlling Memory Transfer

device -> host

Controlling Memory Transfer

Why manual transfer?

● As an optimization
● Control device memory usage
● Allow reusing of memory

Lesson 2
cuFFT convolution

FFT Convolution

Image filter using FFT convolution with cuFFT.

convolved = IFFT(FFT(image) * FFT
(response))

cuFFT API

The cuFFT object (`cufft` in the code) has:

Forward FFT
cufft.fft(in_array, out_array)
cufft.fft_inplace(inout_array)

Inverse FFT
cufft.ifft(in_array, out_array)
cufft.ifft_inplace(inout_array)

Doing a Inplace Convolution

Forward FFT of image and response arrays

Elementwise image and response arrays in frequency domain

Inverse FFT the product

Doing a Inplace Convolution

Elementwise image and response arrays in frequency domain

Inverse FFT the product

Doing a Inplace Convolution

Inverse FFT the product

Doing a Inplace Convolution

Lesson 3
JIT Linking

CUDA JIT Linking

● Use CUDA-C code inside NumbaPro
● Compile CUDA-C code into relocatable

device code
● NumbaPro use CUDA JIT Linker to combine

its generated code with a precompiled library

Use of JIT Linking

● Connect to missing features
○ NumbaPro is still young

● Connect to CUDA-C only features
● Reusing existing CUDA-C code

NumbaPro Python code

NumbaPro Python code

Declare external device function in Python

NumbaPro Python code

Precompiled object file

NumbaPro Python code

Add library dependencies to
the CUDA kernel

NumbaPro Python code

Use external function

CUDA-C code

CUDA-C code

NumbaPro expects return value to
be passed as the first argument

CUDA-C code

Actual arguments follows

CUDA-C code

Return value indicates status.

Return 0 for success.

Other return codes are possible to
indicate builtin errors.

How to compile

nvcc -arch=sm_20 -dc yourcode.cu

● Support only CC 2.0 or above
● -dc flag triggers relocatable device code

Example

Q & A

Thank You

NumbaPro is Part of
Anaconda Accelerate.

Visit continuum.io

