Pronunciation Assistance Based on Automatic Speech and Facial Recognition

Dr. Maria Pantoja
Computer Engineering
Santa Clara University

Marie Bertola
Modern Language
Santa Clara University
Pronunciation Improvement

L2 learning assistance instructional tool.

Assessing student's pronunciation

Providing accurate corrective feed-back.

The model presented integrates speech and image recognition technology.

Providing feed-back and data to evaluate the model's performance.
Lip Segmentation

Location of Mouth:

- User will be front facing the camera so it relatively easy to locate the face.

- We are using OpenCV face detector Feature-based Cascade Classifier (Paul Viola and Michael J. Jones. Rapid Object Detection using a Boosted Cascade of Simple Features. IEEE CVPR, 2001)

- Using simple human face geometry to restrict the possible location of the mouth
 - 1/3 lower face
 - Between the eyes
Lip Segmentation

- Color Segmentation
- Median Blur Filter (preserves edges)
- Laplacian
- Dilate/erode
 Filling Gaps
- Dilate/erode
 Filling Gaps
- threshold
- findcontours
- Fit a snake/spline
Pseudo Code for Lip Segmentation

- Lip segmentation using color only creates a very noisy image
 - Red is prevalent in both skin and lips
 - The difference between Red and Green values is higher on lips
- Luminance changes. Light sources usually comes from above the speaker
 - The top lip contour is illuminated, the bottom contour is in shadow
- Mouth geometry
Lip Movement tracking

- Keypoints tracking
- Frame by frame we recalculate the 4 pints.
- Problems on the corners when mouth is wide open
 - Restrict search based on the mouth contour
 - Get minimal intensity for the contour
lip segmentation CPU vs GPU

<table>
<thead>
<tr>
<th></th>
<th>CPU</th>
<th>GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face Detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouth Detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erode/Delate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blur Filter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spline</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Audio analysis

Capture sound from video

Normalize

Denoise

Pre-Enphasis

Mel cepstral

Segmentation

Search Database for word

Mel cepstral “perfect” pronunciation

KNN

Get Recomendation
K-NN

- Supervised classification algorithm
- Training Phase: Storing the feature vectors (MFCC coefficients) and class labels of the training samples
- The centroids for the different pronunciation rules are calculated (represented as starts)
- Classification Step: the user audio is “classified” (assign a recommendation for correcting pronunciation) by assigning which is most frequent among the k training samples

Total Samples: 70
Pro. Rules:
- short a
- long a
- american a
- wrong vowel
- wrong consonant
- totally wrong

Number of samples identified correctly: 62
Audio Rate

- Compare rate for each of the letters in the word
- Recommended things likes:
 - Make the a longer/Shorter
 - Etc
Results Audio Vowels : A

- Train User first with just vowels.
- Vowels have a stronger signal and
- Also only 5 vowels in Italian
- Classification is easy:
 - Wrong vowel
 - Length too short/long
- High Success rate
 - 2 errors in 70 samples
 (due to background noise)
Results Audio: Ca

- Silabes
Results Audio: CASA
Results Audio: Word
Segmentation into phones
Database

- Around 5000 video/audio with "perfect" Italian pronunciation stored (right now only 100 hundred).
 - Using MariaDB Galera cluster in Amazon Web Services (AWS) by now
- Need to also store also videos from user, to replay. But this can be stored on user device
- Search and retrieval of the video is fast enough doesn’t seem too interesting to accelerate search on the GPU
Results

Image Analysis:

Audio Analysis:

Correctness: %0
Conclusion

- Database currently stores rules for each word
- Should be changed to automatically select rules that apply
- Combining Image and Audio help the pronunciation
- The more you gesticulate the better we will give feedback
- Automatic evaluation and grading for educational purposes
Questions