Abstract

The security of block ciphers depends on the design and the length of the key that is used for encryption and decryption processes. For a k-bit key, exhaustively checking every possible key to find the correct one requires 2^k encryptions. Since $k \ge 80$ for modern ciphers, 2^k encryptions required for the exhaustive search is beyond our computational power. However, finding weaknesses in the cipher can provide a better attack with time complexity less than 2^k. Yet we need to experimentally verify this theoretically obtained statistical observations.

For the block cipher PRESENT, in this project we show that GPUs can provide more than 9.1x speed up for verifying theoretically obtained statistical weaknesses of ciphers. Moreover, we show that an agency having 2²⁰ Tesla k20s can capture 80-bit keys that consist of 95 printable ASCII characters in a day on average and an agency with a budget of 250 billion dollars can capture any 80-bit PRESENT key in a month by performing exhaustive search using Geforce GPUs.

PROBLEMS

Problem 1: A differential path $\alpha \rightarrow \beta$ with probability p_1 is a statistical weakness saying that two plaintexts P_1 and P_2 with $P_1 XOR P_2 = \alpha$ provides the ciphertexts C_1 and C_2 with probability p_1 where C_1 XOR $C_2 = \beta$. To verify the correctness of such a theoretical observation, we need to perform experiments on many plaintexts, whose difference is α , by encrypting them and checking whether the corresponding ciphertext difference is β . In [1], Tezcan provided a 13-round attack on PRESENT that uses an improbable differential of probability $p_1 = 2^{-13.002}$ and in [2] Blondeau, due to other experiments on the cipher, claimed that this probability should be higher and thus the attack should not wok. In order to verify the correctness of the attack, we need to distinguish this differential from a random permutation which has probability $p=2^{-13}$. Thus, we need to experiment using 2^{36.86} plaintext pairs for 100 different keys, which requires 2^{44.5} 8-round PRESENT encryptions and that would take days on a CPU.

Problem 2: Lightweight block cipher PRESENT is designed to be used with either 80-bit keys or 128-bit keys. Exhaustive search on 80-bit keyed PRESENT requires one plaintext P and corresponding ciphertext C. Hence the attacker encrypts P with every possible 80-bit key and stops when a key provides the ciphertext C.

In this work, PRESENT [3] block cipher, which is an ISO/IEC standard for lightweight cryptography [4], is implemented to perform exhaustive key search and differential path verification.

- bits. performance.

- shared memory).

Present is a 31-round Substitution Permutation Network type block cipher with block size of 64 bits that supports 80 and 128-bit secret key. The round function of PRESENT, which is depicted in Fig. 1, is the same for both versions of PRESENT and consists of 3 steps:

- 1. XORing the state with the 64-bit round key
- 2. dividing the state into 16 nibbles and perform four bit substitutions using the S-box
- 3. Permutation of 64 bits of the state

Key Schedule: 80-bit secret key is stored in a key register K and represented as $k_{79}k_{78} \dots k_0$. The round keys K_i ($0 \le i \le i$ 31) consist of 64 leftmost bits of the actual content of register K. After round key K_i is extracted, the key register K is rotated by 61 bit positions to the left, then S-box is applied to the left-most four bits of the key register and finally the round counter value, which is constant, is XORed with bits $k_{19}k_{18}k_{17}k_{16}k_{15}$.

CRYPTANALYSIS of PRESENT via CUDA DEVICES

Cihangir Tezcan^{1,2}

Alptekin Temizel³ atemizel@metu.edu.tr

cihangir@metu.edu.tr ¹Institute of Applied Mathematics, Department of Cryptography, Middle East Technical University, Ankara, Turkey ²Department of Mathematics, Middle East Technical University, Ankara, Turkey ³Graduate School of Informatics, Middle East Technical University, Ankara, Turkey

Geforce GT 540M	Million encryptions per second
First Approach	15.33
Second Approach	27.92

Tesla k20 Shared memory bank size	Million encryptions per second
32 bits	279.50
64 bits	340.93

Fig. 2: 4 x 4 S-box of PRESENT

GPU TECHNOLOGY CONFERENCE

[3] A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, Y. Seurin, C. Vikkelsoe, PRESENT: An ultra-lightweight block cipher, in: P. Paillier, I. Verbauwhede (Eds.), CHES, in: Lecture Notes in Computer Science, vol. 4727, Springer, 2007, pp. 450–466. [4] ISO/IEC 29192-2:2012, Information technology — security techniques — lightweight cryptography — part 2: block ciphers, 2011.

930,02 Tesla k20 (**) 340,90 Tesla k20