High-Productivity CUDA Programming

Cliff Woolley, Sr. Developer Technology Engineer, NVIDIA
HIGH-PRODUCTIVITY PROGRAMMING
High-Productivity Programming

What does this mean? What’s the goal?

- Do Less Work (Expend Less Effort)
- Get Information Faster
- Make Fewer Mistakes
High-Productivity Programming

- Do Less Work (Expend Less Effort)
 - Use a specialized programming language
 - Reuse existing code
- Get Information Faster
- Make Fewer Mistakes
High-Productivity Programming

Do Less Work (Expend Less Effort)

Get Information Faster
- Debugging and profiling tools
- Rapid links to documentation
- Code outlining
- Type introspection/reflection

Make Fewer Mistakes
High-Productivity Programming

- Do Less Work (Expend Less Effort)
- Get Information Faster
- Make Fewer Mistakes
 - Syntax highlighting
 - Code completion
 - Type checking
 - Correctness checking
High-Productivity Programming

What kinds of tools exist to meet those goals?

- Specialized programming languages, smart compilers
- Libraries of common routines
- Integrated development environments (IDEs)
- Profiling, correctness-checking, and debugging tools
HIGH-PRODUCTIVITY CUDA PROGRAMMING
High-Productivity CUDA Programming

What’s the goal?
- Port existing code quickly
- Develop new code quickly
- Debug and tune code quickly
- …Leveraging as many tools as possible

This is really the same thing as before!
What kinds of tools exist to meet those goals?

- Specialized programming languages, smart compilers
- Libraries of common routines
- Integrated development environments (IDEs)
- Profiling, correctness-checking, and debugging tools
HIGH-PRODUCTIVITY CUDA:
Programming Languages, Compilers
GPU Programming Languages

Numerical analytics
MATLAB, Mathematica, LabVIEW

Fortran
OpenACC, CUDA Fortran

C
OpenACC, CUDA C

C++
CUDA C++, Thrust, Hemi, ArrayFire

Python
Anaconda Accelerate, PyCUDA, Copperhead

.NET
CUDAfy.NET, Alea.cuBase

developer.nvidia.com/language-solutions
Opening the CUDA Platform with LLVM

CUDA compiler source contributed to open source LLVM compiler project

SDK includes specification documentation, examples, and verifier

Anyone can add CUDA support to new languages and processors

Learn more at developer.nvidia.com/cuda-llvm-compiler
HIGH-PRODUCTIVITY CUDA:

GPU-Accelerated Libraries
GPU Accelerated Libraries
“Drop-in” Acceleration for your Applications

- NVIDIA cuBLAS
- NVIDIA cuSPARSE
- NVIDIA NPP
- NVIDIA cuFFT
- MAGMA
- CULA|tools
- GPU VSIPL
- NVIDIA cuRAND
- Rogue Wave Software
- CenterSpace NMath
- ArrayFire
- Thrust

Matrix Algebra on GPU and Multicore
GPU Accelerated Linear Algebra
Vector Signal Image Processing
Building-block Algorithms
C++ Templated Parallel Algorithms

© NVIDIA 2013
HIGH-PRODUCTIVITY CUDA:
Integrated Development Environments
NVIDIA® Nsight™ Eclipse Edition for Linux and MacOS

CUDA-Aware Editor
- Automated CPU to GPU code refactoring
- Semantic highlighting of CUDA code
- Integrated code samples & docs

Nsight Debugger
- Simultaneously debug CPU and GPU
- Inspect variables across CUDA threads
- Use breakpoints & single-step debugging

Nsight Profiler
- Quickly identifies performance issues
- Integrated expert system
- Source line correlation

developer.nvidia.com/nsight
NVIDIA® Nsight™ Visual Studio Edition

CUDA Debugger
- Debug CUDA kernels directly on GPU hardware
- Examine thousands of threads executing in parallel
- Use on-target conditional breakpoints to locate errors

CUDA Memory Checker
- Enables precise error detection

System Trace
- Review CUDA activities across CPU and GPU
- Perform deep kernel analysis to detect factors limiting maximum performance

CUDA Profiler
- Advanced experiments to measure memory utilization, instruction throughput and stalls

© NVIDIA 2013
HIGH-PRODUCTIVITY CUDA:
Profiling and Debugging Tools
Debugging Solutions
Command Line to Cluster-Wide

- NVIDIA Nsight
 Eclipse & Visual Studio Editions
- NVIDIA CUDA-GDB
 for Linux & Mac
- NVIDIA CUDA-MEMCHECK
 for Linux & Mac
- Allinea DDT with CUDA
 Distributed Debugging Tool
- TotalView for CUDA
 for Linux Clusters

developer.nvidia.com/debugging-solutions
Performance Analysis Tools
Single Node to Hybrid Cluster Solutions

NVIDIA Nsight
Eclipse & Visual Studio Editions

NVIDIA Visual Profiler

Vampir Trace Collector

TAU Performance System

PAPI CUDA Component

Under Development

developer.nvidia.com/performance-analysis-tools
Want to know more? Visit DeveloperZone

developer.nvidia.com/cuda-tools-ecosystem
High-Productivity CUDA Programming

- Know the tools at our disposal
- Use them wisely
- Develop systematically
SYSTEMATIC CUDA DEVELOPMENT
A POD: A Systematic Path to Performance

- Assess
- Parallelize
- Optimize
- Deploy
Assess

- Profile the code, find the hotspot(s)
- Focus your attention where it will give the most benefit
Optimize

Profile-driven optimization

Tools:
- **nsight** NVIDIA Nsight IDE
- **nvvp** NVIDIA Visual Profiler
- **nvprof** Command-line profiling
Deploy

Productize

- Check API return values
- Run cuda-memcheck tools
- Library distribution
- Cluster management

Early gains
Subsequent changes are evolutionary
SYSTEMATIC CUDA DEVELOPMENT

APOD Case Study
APOD CASE STUDY

Round 1: Assess
Profile the code, find the hotspot(s)
Focus your attention where it will give the most benefit
Assess

We’ve found a hotspot to work on!
- What percent of our **total time** does this represent?
- How much can we improve it? What is the “speed of light”?

© NVIDIA 2013
What percent of total time does our hotspot represent?

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Module ID</th>
<th>Function ID</th>
<th>Device Time (μs)</th>
<th>Device Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>smpy_kernel_v0<int=256></td>
<td>1</td>
<td>3</td>
<td>7.647.257</td>
<td>7.647.257</td>
</tr>
<tr>
<td>jaccobi_smooth_kernel_v0<int=256></td>
<td>1</td>
<td>3</td>
<td>11.869.352</td>
<td>11.869.352</td>
</tr>
<tr>
<td>axbypcz_kernel<int=256></td>
<td>1</td>
<td>3</td>
<td>653.224</td>
<td>653.224</td>
</tr>
<tr>
<td>i2_norm_kernel_v0<int=256></td>
<td>1</td>
<td>3</td>
<td>51.011</td>
<td>51.011</td>
</tr>
<tr>
<td>axbyp_kernel<int=256></td>
<td>1</td>
<td>3</td>
<td>119.394</td>
<td>119.394</td>
</tr>
<tr>
<td>Jacobia_invert_dig_kernel_v0<int=256></td>
<td>1</td>
<td>3</td>
<td>781.209</td>
<td>781.209</td>
</tr>
<tr>
<td>reduce_kernel<int=256></td>
<td>1</td>
<td>3</td>
<td>7.168</td>
<td>7.168</td>
</tr>
<tr>
<td>reduce_id_norm_kernel<int=256></td>
<td>1</td>
<td>3</td>
<td>10.560</td>
<td>10.560</td>
</tr>
</tbody>
</table>

~36%?

~93%
We’ve found a hotspot to work on!

- It’s 93% of GPU compute time, but only 36% of total time

What’s going on during that other ~60% of time?

- Maybe it’s one-time startup overhead not worth looking at
- Or maybe it’s significant – we should check
This is the kind of case we would be concerned about

- Found the top kernel, but the GPU is mostly idle – *that* is our bottleneck
- Need to overlap CPU/GPU computation and PCIe transfers
Asynchronicity = Overlap = Parallelism

- Heterogeneous system: overlap work and data movement
- Kepler/CUDA 5: Hyper-Q and CPU Callbacks make this fairly easy
APOD CASE STUDY

Round 1: Parallelize
What we want to see is maximum overlap of all engines

How to achieve it?

- Use the CUDA APIs for asynchronous copies, stream callbacks
- Or use CUDA Proxy and multiple tasks/node to approximate this
Even after we fixed overlap, we still have some pipeline bubbles

- CPU time per iteration is the limiting factor here
- So our next step should be to parallelize more
Parallelize Further or Move On?

Here’s what we know so far:
- We found the (by far) top kernel
- But we also found that GPU was idle most of the time
- We fixed this by making CPU/GPU/memcpy work asynchronous
- We’ll need to parallelize more (CPU work is the new bottleneck)
- …And that’s before we even think about optimizing the top kernel
- But we’ve already sped up the app by a significant margin!
- **Skip ahead to Deploy.**
APOD CASE STUDY

Round 1: Deploy
Deploy

- We’ve already sped up our app by a large margin
- Functionality remains the same as before
 - We’re just keeping as many units busy at once as we can
- Let’s reap the benefits of this sooner rather than later!

Subsequent changes will continue to be evolutionary rather than revolutionary
APOD CASE STUDY

Round 2: Assess
Our first round already gave us a glimpse at what’s next:

- CPU compute time is now dominating
- No matter how well we tune our kernels or reduce our PCIe traffic at this point, it won’t reduce total time even a little
We need to tune our CPU code somehow

- Maybe that part was never the bottleneck before and just needs to be cleaned up
- Or maybe it could benefit by further improving asynchronicity (use idle CPU cores, if any; or if it’s MPI traffic, focus on that)
- We could attempt to vectorize this code if it’s not already
- This may come down to offloading more work to the GPU
 - If so, which approach will work best?

Notice that these basically say “parallelize”
Assess: Offloading Work to GPU

Applications

Libraries
OpenACC Directives
Programming Languages

Pick the best tool for the job
APOD CASE STUDY

Round 2: Parallelize
Parallelize: e.g., with OpenACC

Simple Compiler hints

Compiler Parallelizes code

Works on many-core GPUs & multicore CPUs

Your original Fortran or C code

Program myscience
... serial code ...
!$acc kernels
do k = 1,n1
do i = 1,n2
... parallel code ...
enddo
enddo
!$acc end kernels
...
End Program myscience

OpenACC Compiler Hint

CPU
GPU

© NVIDIA 2013

www.nvidia.com/gpudirectives
Parallelize: e.g., with Thrust

- Similar to C++ STL
- High-level interface
 - Enhances developer productivity
 - Enables performance portability between GPUs and multicore CPUs
- Flexible
 - Backends for CUDA, OpenMP, TBB
 - Extensible and customizable
 - Integrates with existing software
- Open source

// generate 32M random numbers on host
thrust::host_vector<int> h_vec(32 << 20);
thrust::generate(h_vec.begin(), h_vec.end(), rand);

// transfer data to device (GPU)
thrust::device_vector<int> d_vec = h_vec;

// sort data on device
thrust::sort(d_vec.begin(), d_vec.end());

// transfer data back to host
thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());

thrust.github.com or developer.nvidia.com/thrust
Parallelize: e.g., with CUDA C

Standard C Code

```c
void saxpy_serial(int n,
    float a,
    float *x,
    float *y)
{
    for (int i = 0; i < n; ++i)
        y[i] = a*x[i] + y[i];
}
```

// Perform SAXPY on 1M elements
saxpy_serial(4096*256, 2.0, x, y);

Parallel C Code

```c
__global__
void saxpy_parallel(int n,
    float a,
    float *x,
    float *y)
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < n) y[i] = a*x[i] + y[i];
}
```

// Perform SAXPY on 1M elements
saxpy_parallel<<<4096,256>>>(n, 2.0, x, y);

© NVIDIA 2013
developer.nvidia.com/cuda-toolkit
APOD CASE STUDY

Round 2: Optimize
Optimizing OpenACC

Usually this means adding some extra directives to give the compiler more information.

This is an entire session:

- **S3019** - Optimizing OpenACC Codes
- **S3533** - Hands-on Lab: OpenACC Optimization

```c
 ACC
 data copy(u, v)
 do t = 1, 1000
   ACC
   kernels
   u(:, :) = u(:, :) + dt * v(:, :)
   do y = 2, ny - 1
     do x = 2, nx - 1
       v(x, y) = v(x, y) + dt * c * ...
     end do
   end do
 end do
 ACC
 end kernels
 ACC
 update host(u(1:nx/4, 1:2))
 call BoundaryCondition(u)
 ACC
 update device(u(1:nx/4, 1:2)
 end do
 ACC
 end data
```
APOS CASE STUDY

Round 2: Deploy
Deploy

- We’ve removed (or reduced) a bottleneck
- Our app is now faster while remaining fully functional*
- Let’s take advantage of that!

*Don’t forget to check correctness at every step
A POD CASE STUDY

Round 3: Assess
Finally got rid of those other bottlenecks
Time to go dig in to that top kernel
What percent of our total time does this represent?

How much can we improve it? What is the “speed of light”?

How much will this improve our overall performance?
Let’s investigate…

- Strong scaling and Amdahl’s Law
- Weak scaling and Gustafson’s Law
Assess: Understanding Scaling

Strong Scaling
- A measure of how, for fixed overall problem size, the time to solution decreases as more processors are added to a system.
- Linear strong scaling: speedup achieved is equal to number of processors used.

Amdahl’s Law:

\[
S = \frac{1}{(1 - P) + \frac{P}{N}} \approx \frac{1}{1 - P}
\]
Assess: Understanding Scaling

Weak Scaling

- A measure of how time to solution changes as more processors are added with fixed problem size *per processor*
- Linear weak scaling: overall problem size increases as num. of processors increases, but execution time remains constant

Gustafson’s Law:

\[S = N + (1 - P)(1 - N) \]
Assess: Applying Strong and Weak Scaling

Understanding which type of scaling is most applicable is an important part of estimating speedup:

- Sometimes problem size will remain constant
- Other times problem size will grow to fill the available processors

Apply either Amdahl's or Gustafson's Law to determine an upper bound for the speedup
Recall that in this case we are wanting to optimize an existing kernel with a pre-determined workload.

That’s **strong scaling**, so Amdahl’s Law will determine the maximum speedup.
Assess: Applying Strong Scaling

Now that we’ve removed the other bottlenecks, our kernel is \(~93\%\) of total time

\[
\text{Speedup } S = \frac{1}{(1-P)+\frac{P}{S_P}} \quad (S_P = \text{speedup in parallel part})
\]

In the limit when \(S_P\) is huge, \(S\) will approach \(\frac{1}{1-0.93} \approx 14.3\times\)

In practice, it will be less than that depending on the \(S_P\) achieved.
Assess: Speed of Light

What’s the limiting factor?
- Memory bandwidth? Compute throughput? Latency?

For our example kernel, SpMV, we think it should be bandwidth.

We’re getting only ~38% of peak bandwidth. If we could get this to 65% of peak, that would mean $1.7\times$ for this kernel, $1.6\times$ overall.

$$S = \frac{1}{(1-0.93)+\frac{0.93}{1.7}} \approx 1.6\times$$
Assess: Limiting Factor

What’s the limiting factor?
- Memory bandwidth
- Compute throughput
- Latency

Not sure?
- Get a rough estimate by counting bytes per instruction, compare it to “balanced” peak ratio $\frac{\text{Bytes/sec}}{\text{Ginsns/sec}}$
- Profiler will help you determine this
Assess: Limiting Factor

Comparing bytes per instr. will give you a guess as to whether you’re likely to be bandwidth-bound or instruction-bound.

Comparing actual achieved GB/s vs. theory and achieved GInstr/s vs. theory will give you an idea of how well you’re doing.

- If both are low, then you’re probably latency-bound and need to expose more (concurrent) parallelism.
For our example kernel, our first discovery was that we’re latency-limited, not bandwidth, since utilization was so low.

This tells us our first “optimization” step actually needs to be related how we expose (memory-level) parallelism.
APOD CASE STUDY

Round 3: Optimize
Our optimization efforts should all be profiler-guided.

The tricks of the trade for this can fill an entire session.

- S3011 - Case Studies and Optimization Using Nsight VSE
- S3535 - Hands-on Lab: CUDA Application Optimization Using Nsight VSE
- S3046 - Performance Optimization Strategies for GPU Applications
- S3528 - Hands-on Lab: CUDA Application Optimization Using Nsight EE
APOD CASE STUDY

Round 3: Deploy
HIGH-PRODUCTIVITY CUDA:
Wrap-up
Recap:
- Know the tools at our disposal
- Use them wisely
- Develop systematically with APOD