PANOPTES: A BINARY
TRANSLATION
FRAMEWORK FOR CUDA

Chris Kennelly
D. E. Shaw Research

Outline

- The Motivating Problems

- Binary Translation as a Solution
- Results of Panoptes

- Future Work

=111l -
My Story: Buffer Ping-Ponging

Buffer 1

Compute Screen

Buffer 2

=111l -
My Story: Buffer Ping-Ponging

Buffer 1

Compute Screen

Buffer 2

=111l -
My Story: Buffer Ping-Ponging

Buffer 1

Compute Screen

Buffer 2

=111l -
My Story: Buffer Ping-Ponging

Buffer 1

Compute Screen

Buffer 2

=111l -
My Story: Buffer Ping-Ponging

Buffer 1

Compute Screen

Buffer 2

= i HZF-
Memory Overruns

k simple(int * d, int n) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
for (int 1 = tid; 1 <= n;
1 += blockDim.x * gridDim.x) {
dli1] = 1;
}
}

..., R s I
Oops

- We didn't meantouse 1 <= n.

- cuda-memcheck runs successfully.
- cudaMalloc may have overallocated a buffer.

- We used our own buffer management and overran an unrelated
memory location

= i HZF-
Inserting Bounds Checks

- Tedious
- Correctness
- Maintainability

e
Uninitialized Values

- Even more tedious
- Harder to maintain

=111l -
When To Worry...

- Upon allocation? No.
- Upon access? No.

Worry when it affects program behavior.

..., R s I
Uninitialized Variable Example

k simple(int * out, int * in, 1nt * mask,
int n) {
int sum = 0;
1 = threadIdx.x; 1 < n; 1++){
1f (mask[1]) { sum += in[1]; }
}

out [threadIlIdx.x] = sum;

for (int

J

L
Sentinel Values

- Fill memory regions after allocation with a sentinel value
to indicate it is not initialized.

- The chosen value must have no legitimate use.
- Every possible use point must check for the sentinel.

__global wvoid

k sum(int * sum, const 1Int * 1In, int n) {

int tsum = 0;
int tid = threadIdx.x + blockIdx.x * blockDim.x;
for (int i = tid; i1 < n; i += blockDim.x * gridDim.x) {

tsum += in[i];

}

sum|[threadlIdx.x] = tsum;

__global wvoid
k scale(int * out, const iInt * in, int n) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
for (int i = tid; i1 < n; i += blockDim.x * gridDim.x) {
out = in[n] >> 1;

Checks for sentinel values are now lost.

L
Emulation?

- Compile
- Emulate CUDA device with GPU Ocelot
- Use Valgrind to track validity bits

e
The Pitfalls of Emulation

- Imperfect emulation

- Performance
- GPUs brought us massive parallelism
- Emulation drags us back to the CPU
- Valgrind hampers performance further

L
Source Translation

- Automatically instrument source code
- Requires hooking into the build process
- Obvious to compiler optimization level

- Creates a new compilation artifact to test

=111l -
Binary Translation as a Solution

- Rewrite existing, compiled CUDA programs on the fly for
the GPU.

- Retain the parallelism that necessitated GPUs in the first
place.

..., R s I
Panoptes

- Provides a framework for capturing calls to the CUDA
library and translating device code on the fly

- Demonstrates this capability with a CUDA-centric version
of Valgrind’s memcheck

e
The Translation Process

- Use library interposition to intercept calls to the CUDA
Runtime API

- Startup
- Parse compiled PTX
- Instrument
- Pass into CUDA Driver API

- Execution: Track further calls into the runtime

= i HZF-
Library Interposition

malloc, free

Program

cudaMalloc,

cudalLaunch CUDA

Runtime

= i HZF-
Library Interposition

malloc, free

Program cudaMalloc,
cudalLaunch

CUDA

Panoptes Runtime

$ LD PRELOAD="./libpanoptes.so” ./my cuda program

lllustrative Examples

- Logical Errors (APl Misuse)
- Buffer overruns
- Uninitialized memory

e
API| Misuse

- Since Panoptes sees every API call, it keeps a copy of the
state of various resources

- It needs to know the size given to cudaMalloc (for addressability
purposes)

- ...but we can also warn when cudaBindTexture spills over the
allocated region.
- The library may return cudaSuccess, but errors can
appear downstream.

L
|dentical Behavior

- Program behavior under Panoptes should be nearly
identical to behavior without Panoptes.

- Most of the test suite is built around verifying this property.

- There are a number of places where the CUDA Runtime
segfaults; Panoptes deliberately does so as well.

Asynchronous Memory Copy

int * device;

cudaMalloc ((void **) &device, sizeof (*device)):;

int host;

cudaMemcpyAsync (&host, device, sizeof (host),

cudaMemcpyDeviceToHost) ;

==12703== cudaMemcpyAsync must use pinned host memory: Ox7fefffaf4 is
not pinned at offset O.

==12703==
==12703== at 0x4f56fe7: cudaMemcpyAsync+0x29 (../libpanoptes.so)
==12703== by 0x4047f9: ./vtest_memcpyasync

L
Texture Overrun

const textureReference * texref;

cudaChannelFormatDesc desc;

vold * p;

cudaMalloc (&p, 1 << 22 /* 4MB */);

cudaBindTexture (NULL, texref, p, &desc,
1 << 23 /* 8MB */);

==10988== Texture bound 4194304 bytes beyond allocation.

==10988== Address 0x801a00000 is 0 bytes after a block of
size 0 alloc'd

==10988==
==10988==

==10988== at 0x4f5572e: cudaBindTexture+0x2a
(../libpanoptes.so)

==10988== by 0x4048f5: ./vtest bindtexture

=111l -
Memory Check Instrumentation

- How do we instrument a memory load?

unsigned 1 = *p;

1d.u32 %rl, [5rdl];

| Offset withi
uint8 t addressable[l << 30]; SeB\;/the :

I Offset into addressable i

00000000111100101011010111100000

=111l -
Shadow Every Byte

uint8 t addressable[l << 32];
uint8 t a = (addressable[p >> 3]
>> (p & 0x7)) & O0xOF;

unsigned 1i;
if (a == O0x0F) { 1 = *p; }

else { /* invalid */ }

= i HZF-
Shadow Every Byte

uint8 t addressable[l << 32];
uint8 t a = (addressable[p >> 3]
>> (p & 0x7)) & O0xOF;

unsigned 1i;
if (a == O0x0F) { 1 = *p; }

else { /* invalid */ }

- addressable Is quite large!

=111l -
Shadow Every Byte

uint8 t addressable[l << 32];
uint8 t a = (addressable[p >> 3]
>> (p & 0x7)) & O0xOF;

unsigned 1i;
if (a == O0x0F) { 1 = *p; }

else { /* invalid */ }

- Introduces a branch on every load.

=111l -
Improvements

- Chunk memory regions into smaller (64K) blocks
- Eliminates need to allocate 1GB of contiguous memory on startup

- Permits reuse of identical chunks: All 64K blocks of RAM with no
allocations have the same, all-zero chunk.

struct chunk { uint8 t a datall << 13]; };

Offset withi
chunk * master[l << 17]; “Eg;"1

00000000111100101011010111100000

Default
Chunk

Chunk #1 Chunk #2 Chunk #3

L
Branch Elimination

- Branching on the value of a is expensive

- Panoptes always performs a memory load
- For invalid dereferences, we load from a chosen, known-to-be-valid
memory location.
- Selecting a pointer and always loading is faster than conditionally
loading.

=111l -
Validity Tracking Instrumentation

- Validity bits shadow real memory allocations

- Comparatively costly
- Validity bits should have a 1 to 1 mapping to actual data
- Compression and packing schemes increase complexity

- Addressability bits are paired with validity bits.
- We have a pointer to the chunk from our address lookup.

struct metadata chunk {
uint8 t a datal[l << 13];
uint8 t v datal[l << 16];

by

Panoptes in Action

__global void ksum(int * out, const int * in, int n) {
int sum = 0;
for (int 1 = 0, 1 < n; 1i++) { sum += inf[1i]; }
1f (sum == 0) {
out[1l] = sum;
} else {

out[0] = sum;

e
Generated PTX

(%r5 is the value of sum after the loop)
mov.u32 %r8, O0;
setp.ne.s32 %p3, %r5, 5%r8;
@%p3 bra SLt 1 3330;
ld.param.u64 %rd2, [cudaparm Z5k sumPiPKii out];
st.global.s32 [%$rd2+4], %r5;
bra.uni SLt 1 3074;
$Lt 1 3330:
ld.param.u64 %rd2, [cudaparm Z5k sumPiPKii out];
st.global.s32 [%rd2+0], %rb5;
SLt 1 3074:

e
Host Code

int n = 64;

int *out;

cudaMalloc ((void **) &out, sizeof (*out) * 2);
int * in;

cudaMalloc ((void **) &in, sizeof (*in) * n);
cudaMemset (in, 0x01, sizeof(*in) * (n - 1));
ksum<<<1l, 1, O0>>>(out, 1in, n);
cudaDeviceSynchronize () ;

int sum;

cudaMemcpy (&sum, out, sizeof (sum), cudaMemcpyDeviceToHost) ;

e
Wild Branch

==12805== Encountered 1 errors in ‘k sum(int*, int const*, int)"'.
==12805== Error 0: Wild branch at @%p3 bra SLt 1 3330;
==12805==

==12805== at 0x4f57b3e: cudaStreamSynchronize+0x19
(../libpanoptes.so)

==12805== by 0x40398d: ./vtest k validity

==12805==

==12805== Kernel launched by:
==12805==
==12805== at 0x4f577da: cudalLaunch+0x19 (../libpanoptes.so)

==12805== by 0x404ce6: ./vtest k validity

= i HZF-
Device to Host Validity Transfer

- If run under Valgrind and Panoptes, we see the invalid bits
on the host as well:

==12805== Conditional jump or move depends on
uninitialised value(s)

==12805== at 0x403CCE:
ValildityTransfer Summation Test::TestBody ()
(vtest k validity.cu:162)

L
Performance

Fermi Memcpy Execution Times
12

=
o

[ee)

Relative Execution Time
D

| om wm B

Original Panoptes: Addressability Panoptes: Full CUDA Memcheck

e
Future Work

- Optimized Instrumentation
- Reduced memory requirements

= i HZF-
Optimized Instrumentation

- Current implementation aims to be unobtrusive, but some
operations can be redundant.

- Mapping instructions at a higher level than single PTX
operations would enable constant propagation and
simplifications.

= i HZF-
Reduced Memory Requirements

- Panoptes currently imposes steep memory requirements
- Addressability checks (12.5% overhead)
- Validity tracking (100% overhead)

- Reducing memory requirements broadens applications
that can be run with Panoptes.

Alternative Instrumentation

- Virtual CUDA Devices
- Data Race Detection

- Source Code: http://www.qgithub.com/ckennelly/panoptes
- Open Sourced under the GPLVS3.

- Email: chris@ckennelly.com

http://www.github.com/ckennelly/panoptes

