
San Jose (CA)| September 23, 2010
Gernot Ziegler, Devtech -Compute, NVIDIA UK
Allan Rasmusson, University of Aarhus (Denmark)

Efficient Volume Segmentation
on the GPU

Agenda

ÁIntroduction / Problem Task

ñInput and Expected Output, Connectivity

ÁAlgorithm

ñLabel Setup and Label Propagation

ñAcceleration concepts (Links, Master/Slave)

ÁImplementation

ñAlgorithm mapping to CUDA C

ñTradeoff comparison for different strategies

ÁResults

ÁConclusion

ÁExample Input

ñ2D RGB image

ñConnectivity Criterion:

Equal colors, 8-connectivity

Introduction / Problem Task

ÁInput

ñ2D array / 3D array of

data (typical image/

volume data)

ñConnectivity Criterion

(when are two elements

connected?)

Introduction / Problem Task

ÁOutput

ñUniquely labelled regions:

2D Array / 3D Array

with all connected regions

having the same "label"

(usually a 32bit integer value)

ÁExample

ñ2D array of labels

LEGEND

Labels: White outline

Connectivity Criterion

ÁWhen are neighboring cells "connected", become a region?

ÁExample criterion: Equal RGB values

ñLinked (= 1): , symbolized as:

ñNot linked (= 0):

ÁMore useful criterions for noisy input:

Color gradient thresholding

e.g. Sum(abs(p0.rgb ðp1.rgb)) < 0.1

ÁOthers: Motion data, n -edged graphs,é

2D: 4- and 8-connectivity

ÁAre diagonal neighbors regarded as "connected" ?

4-connectivity:

Look at vertical and

horizontal neighbors

8-connectivity:

Also look at

Diagonal Neighbors

4- and 8-connectivity

ÁAffects label propagation!

ÁLabelling results can differ substantially:

4-connectivity labelling:

Upper and lower part

separate

8-connectivity labelling:

Upper and lower part

connected

Algorithm:
Label Setup and Propagation

Label setup

ÁEach cell has its own label (p.rgb = f(p.x, p.y))

ÁLabels are comparable in a strict linear order, e.g . L=y*width+x

ÁAlso, (x,y) can be recovered from label - e.g. Red=X, Green=Y

Simple Label Propagation: 1 -gather

ÁLarger labels propagate to connected cells with smaller labels

ÁCells gather from their neighbours: 1-gather

ÁCompletely data -parallel with double -buffering and gather

ÁFinish: When no more updates occur!

Algorithm Optimization:
Links and max -gather

Links: Motivation

ÁProblem of 1-gather algorithm: SLOW

(Each pass, labels propagate only one cell further)

ÁCan we make labels propagate faster?

ÁObservation: Connectivity between cells is static !

ÁPrecompute the furthest connected cell along

each connectivity direction (e.g. x,y,z)

ÁLog2(width|height|depth) steps

Á(Similarities with Horn's data -parallel algorithm

for prefix sum, GPU Gems 1)

Links: Precomputation Algorithm

ÁInitialize with local

connectivity.

ÁRepeatedly add cell value

that link points to .

ÁExample shown:

Computing furthest

connected cell

to the right

Links: Directions

ÁOne entry for each cell and each direction

ÁExample: 4-connectivity links for a cross of connected cells:

Labels: Faster Gathering

Á1-gather ÁMax-gather (via Links)

Links result in

faster label propagation

ÁLink Precomputation stage permits far-away label gathering

"Black" =

Irrelevant

Label

Max-gather doesn't suffice

ÁOne might assume that 1-gather is not necessary anymore.

ÁBUT: there are cases where max-gather doesn't fill all cells!

Links Data:

Cross of connected cells
Green Label is largest -

Attempted max-gathering

Label result (incomplete)

Black label color =

Smaller/Irrelevant

Label

Max-gather doesn't suffice

Á1-gather is still necessary to fill in the unlabelled holes!

Green Label is largest -

Attempted 1-gathering

Label result (complete)

Algorithm Optimization:
Master/Slave

Master cells

ÁIn each region, one cell keeps its original label

ÁAll other cells: Their label originates from this one cell

ÁThus, each labelled region has a master cell

Label Init: Lower/Right

values are larger

Labelled result

M = master cell

Label Init: Lower/Right

values are larger

Master cells: Label propagation

ÁIf master cell changes label, all slave cells can change label

ÁHence: Always gather current label from master cell!

ÁPurpose: Commonly labelled regions flip òat onceó.

Pass 0: Three regions:

Masters Mn, Slaves Sn
Pass 1: Region M0

"captures" Masters M1, M2

Pass 2: Master cell lookup

makes S0's and S1's flip!

Pseudo-Code: Simple Algorithm

// Step I - Label Init

for (all pixels) {

pixel.label = encodeLabel(pixel.x, pixel.y);

}

// Step II - Propagate Labels

while (AnyLabelChanges) {

for (all pixels) {

for (all directions) {

neighborLabel = gather(neighbor, direction);

pixel.label = max(pixel.label, neighborLabel);

}

}

}

Pseudo-Code: Optimized Algorithm

// Step I - Label Init

for (all pixels)

pixel.label = encodeLabel(pixel.x, pixel.y);

// Precalculate links

precomputeLinks();

// Step II - Propagate Labels

while (AnyLabelChanges) {

for (all pixels) {

for (all directions) {

// Use max-gather

neighborLabel1 = gather(neighbor, direction);

neighborLabelMax = gather(neighbor, pixel.maxgather(direction));

pixel.label = max(pixel.label, neighborLabel1, neighborLabelMax);

// Master/Slave

if (pixel.label != pixel.originalLabel) {

masterRef = decodeLabel(pixel.label);

pixel.label = max(pixel.label, masterRef.label); }}}}

Implementation

Implementation: Image Storage

ÁInput: RGBA, 8 bit

Implementation: Label Storage

Á32 bit for x and y

ÁMax width: 65535

ÁMax height: 65535

ÁLabel ordering:

upper left <<

lower right

ÁL=x*width+y (!)

Á3D version:

8/10 bit for x, y and z

Implementation: Links Storage

ÁAll directions stored

in global memory

ÁLine-interleaving

ensures memory

coalescing during

links precomputation

& label propagation

Implementation: Execution Configuration

ÁBlock Size =

(multiple of 32, 1)

ÁExtra horizontal block

for odd -width images

ÁExact number of

vertical blocks

ÁThread config fits

image, label and links

processing

Results: Simple 1 -gather

ÁOnly 1-gather

ÁSimple and works,

but: SLOW!

ÁInteresting:

"Tug-of-war" in lower part

of image, until a much

larger label from right

(large x component)

comes along

Results: Master/Slave Principle

ÁAlready-connected

regions switch at once,

see e.g. video's ending

Results: Links & Master/Slave

ÁPre-linked regions

switch a lot faster

Example of 8 -connectivity

Á8-connectivity:

Links in 8 directions are

generated and used.

Results: Input Images

ÁUsed in CUDA TopCoder challenge

100by300

1Kby768
4Kby4K

Impact of Links & max -gather

