Efficient Volume Segmentation
on the GPU

San Jose (CA)| September 23, 2010
Gernot Ziegler, Devtech -Compute, NVIDIA UK
Allan Rasmusson, University of Aarhus (Denmark)

I

eresenrener o MVIDIA.

Agenda

Alntroduction / Problem Task

N Input and Expected Output, Connectivity
AAlgorithm

N Label Setup and Label Propagation

A Acceleration concepts (Links, Master/Slave)

Almplementation

N Algorithm mapping to CUDA C
N Tradeoff comparison for different strategies

Ve

AResults
AConclusion

PRESENTED BY @ NVIDIA.

Introduction / Problem Task

Alnput AExample Input

i 2D array / 3D array of i 2D RGB image
data (typical image/
volume data)

N Connectivity Criterion
(when are two elements
connected?)

N Connectivity Criterion:

Equal colors, 8-connectivity
rresenreosy <24 MVIDIA.,

Introduction / Problem Task

AOutput AExample
N Uniquely labelled regions: n 2D array of labels
2D Array / 3D Array

with all connected regions
having the same "label"
(usually a 32bit integer value)

LEGEND

Labels: White outline
eresenenay o8 MVIDIA.,

Connectivity Criterion

AWhen are neighboring cells "connected", become a region?

AExample criterion: Equal RGB values

A Linked (= 1): .. symbolized as: ==
i Notlinked (= 0): [[EEN

AMore useful criterions for noisy input:
Color gradient thresholding
e.g. Sum(abs(p0.rgbdpl.rgh)) < 0.1

AOthers: Motiondata,n-edged graphs, é

PRESENTED BY @ n\"DlA.

2D: 4- and 8-connectivity

AAre diagonal neighbors regarded as "connected" ?

4-connectivity: 8-connectivity:
Look at vertical and Also look at
horizontal neighbors Diagonal Neighbors

PRESENTED BY @Z nVIDlA.

4- and 8-connectivity

AAffects label propagation!
ALabelling results can differ substantially:

EMIE 8-connectivity labelling:

.E. 4-connectivity labelling:
sl Upper and lower part
separate

Eesed Upper and lower part

¥ & v] connected

Algorithm;
Label Setup and Propagation

eresenenay o8 MVIDIA.,

Label setup

AEach cell has its own label (p.rgb =f(p.x, p.y))
ALabels are comparable in a strict linear order, e.g . L=y*width+x

AAlso, (x,y) can be recovered from label - e.g. Red=X, Green=Y

eresenenay o8 MVIDIA.,

Simple Label Propagation: 1 -gather

ALarger labels propagate to connected cells with smaller labels

ACells gather from their neighbours: 1-gather
ACompletely data -parallel with double -buffering and gather

AFinish: When no more updates occur! I —

Algorithm Optimization:
Links and max -gather

eresenenay o8 MVIDIA.,

Links: Motivation

AProblem of 1-gather algorithm: SLOW
(Each pass, labels propagate only one cell further)

ACan we make labels propagate faster?
AObservation: Connectivity between cells is static !

APrecompute the furthest connected cell along
each connectivity direction (e.g. x,y,2)

ALog2(width|height|depth) steps

A(Similarities with Horn's data -parallel algorithm
for prefix sum, GPU Gems 1)

EEEEEEEEEEE

&ANVIDIA.

Links: Precomputation Algorithm

Alnitialize with local

connectivity.
ARepeatedly add cell value W re

_ | 11100 10
that link points to .
AExample shown: t oty y
Computing furthest 2 2 1 0 o\ 1 o\
connected cell
to the right A m

PRESENTED BY @ NVIDIA.

Links: Directions

AOne entry for each cell and each direction
AExample: 4-connectivity links for a cross of connected cells:

eresevrener 8 MVIDIA.,

Labels: Faster Gathering

ALink Precomputation stage permits far-away label gathering

Al-gather AMax-gather (via Links)

Nl

"Black" :/7
Irrelevant
Label

Links result in
faster label propagation

eresenenay o8 MVIDIA.,

Max-gather doesn't suffice

AOne might assume that 1-gather is not necessary anymore.
ABUT: there are cases where max-gather doesn't fill all cells!

Black label color =

0 0 0 A Smaller/Irrelevant
2 2 Label
1

0 21 12 0
0 1 0

2

0 O
0

Links Data: Green Label is largest - Label result (incomplete)

Cross of connected cells Attempted max-gathering presenteo sy <24 MVIDIA.

Max-gather doesn't suffice

A1l-gather is still necessary to fill in the unlabelled holes!

Green Label is largest - Label result (complete)

Attempted 1-gathering SANVIDIA

Algorithm Optimization:
Master/Slave

eresenenay o8 MVIDIA.,

Master cells

Aln each region, one cell keeps its original label

AAIll other cells: Their label originates from this one cell

AThus, each labelled region has a master cel

Label Init: Lower/Right Label Init: Lower/Right Labelled result
values are larger values are larger M = master cell

Master cells: Label propagation

Alf master cell changes label, all slave cells can change label
AHence: Always gather current label from master cell!

7z

APur pose: Commonly | abell ed r

S0 SO ISO SO

S0 SO SO SO SO SO SO
S0 SO SO SO SO SO

S0 SO SO

B so so [Jjf so

S0 SO MO S0 SO SO MO

Pass 0: Three regions: Pass 1. Region MO Pass 2: Master cell lookup
Masters Mn, Slaves Sn “"captures" Masters M1, M2 makes S0's and S1's flip!

S0 SO SO S0 SO SO MO

Pseudo-Code: Simple Algorithm

/[Step | - Label Init
for (all pixels) {
pixel.label = encodeLabel(pixel.x, pixel.y);

}

/[Step Il - Propagate Labels
while (AnyLabelChanges) {
for (all pixels) {
for (all directions) {
neighborLabel = gather(neighbor, direction);
pixel.label = max(pixel.label, neighborLabel);

Pseudo-Code: Optimized Algorithm

I/ Step | - Label Init
for (all pixels)
pixel.label = encodelLabel(pixel.x, pixel.y);
Il Precalculate links
precomputeLinks();
I/l Step Il - Propagate Labels
while (AnyLabelChanges) {
for (all pixels) {
for (all directions) {
Il Use max-gather
neighborLabell = gather(neighbor, direction);
neighborLabelMax = gather(neighbor, pixel.maxgather(direction));
pixel.label = max(pixel.label, neighborLabell, neighborLabelMax);
I/l Master/Slave
if (pixel.label != pixel.originalLabel) {
masterRef = decodeLabel(pixel.label);
pixel.label = max(pixel.label, masterRef.label); }}}}

eresenenay o8 MVIDIA.,

-
O
e

qv
e

-

D

&
@

Q.
=

Implementation: Image Storage
8 bit
AlB|G|R Alnput: RGBA, 8 bit

32 bi

Height

Width presentensy €8 MVIDIA.

Implementation: Label Storage

K

16 bit

X

Y

N\

32 bit”

Height

A32 bit for x and y
AMax width: 65535
AMax height: 65535

ALabel ordering:
upper left <<
lower right

AL=x*width+y (!)

A3D version:
8/10 bit for x, y and z

EEEEEEEEEEE <A NVIDIA.

Implementation: Links Storage

K

32 bit

3

Dir 0

Dir 1

/

Dir n

Heightx n

Width

AAIl directions stored
In global memory

ALine-interleaving
ensures memory
coalescing during
links precomputation
& label propagation

PRESENTED BY @ NVIDIA.

Implementation: Execution Configuration

ABlock Size =
(multiple of 32, 1)

AExtra horizontal block
for odd -width images

AExact number of
vertical blocks

AThread config fits
Image, label and links
processing

PRESENTED BY @ NVIDIA.

Results: Simple 1 - gather

e.U) el ULIE-.-.-.-E-'
| | [I l

3|
N

N N
m..Ill.[l
)
l
)
| ||
|
H E N

iy
i
N

1

Il BN BN .
i

H BN E =N .

il
u
111

LEEEREE
I-.-- Il N
I.------

l"_
l | |
:I
]

AOnly 1-gather
ASimple and works,

but: SLOW!

Alnteresting:

"Tug-of-war" in lower part
of Image, until a much
larger label from right
(large x component)
comes along

PRESENTED BY @ NVIDIA.

Results: Master/Slave Principle

; = = S
2 U) Bl N . -.- | -.- ATAN Y eTe | .
| [i508 £ T = 75 5 e = B i

-f | ..g Fl Bl BN BN N m -. i
Il & N 'S N B BN BN Bm N a
]

[5| |

Y
m
'
) |
[

= - o =]
Vi .

7|
||
|
]
||
BB u
||
||

" === = AAlready-connected
e e e e regions switch at once,

e === See e.g.video's ending

Il

é-ll
Ilﬂ
@

i N

] 3
Al BN ' B Em 'm =
| W |
@ EE . Il BE =
! 3 | RIS
| B B B B B B
H Il BN BN E B Em
e &%
Il BN BN Il BE Bm am
i1}
Il BN BN BN Bm
Il BN BN BE =

N ﬁI-
H BE = ---
Il BN BN =

eresevrener 8 MVIDIA.,

)
||
||
)

leps apel Us

g

Results: Links & Master/Slave

|

|

2 _ . _F ~ I

l']iiL...’JL‘I 117 b= -.-.-

Il Il BN . N
mmom . —

o el e i, = APre-linked regions
| e switch a lot faster

H_B

H B 8

l Il N 'S 'E UE BE =
I] |
| 5l BN B Im BE =
IEEE N .
- N | ||
B B B FE B B B |

BN =N ™™™ .

o &
Il IE . -..

|

PRESENTED BY @ NVIDIA.

Example of 8 -connectivity

ClieMafzaNic o0 g

3

B MeE P o
PulSize4080x640

A8-connectivity:
Links in 8 directions are
generated and used.

H B N

N EEE

e
)

PRESENTED BY @ NVIDIA.

Results: Input Images

AUsed in CUDA TopCoder challenge

1Kby768
4Kby4K

100 by300 PRESENTED BY @ NVIDIA.

Iterations

Impact of Links & max -gather

lterations

3000 100x300 ——
2500 1Kx768
2000 4Kx4K
1500 !
1000 1
500 |

5 e ’ .

0 100 200 300 400 500 6(

Gather Lengths (pixels)

Time (ms)

25000

20000 |
15000 |

10000
2000

0.

Time

"~ 100x300 ——
1Kx768
4Kx4K

0 100 200 300 400 500 600
Gather Lengths (pixels)

PRESENTED BY @ NVIDIA.

