Mellanox In-Network Computing For AI and The Development With NVIDIA (SHARP – NCCL)

Qingchun Song, Mellanox

July 2, 2019
Data Processing Revolution – Data Centric

Compute-Centric

Data-Centric

Von Neumann Machine

DataFlow Machine
CPU-Centric HPC/AI Center

- Everything
- CPU
- Network
- Storage
Data-Centric HPC/AI Center

- Workload
 - Communication Framework (MPI)
 - Network Functions
- CPU Functions
 - In-CPU Computing
- Storage Functions
 - In-Storage Computing

In-Network Computing
In-Network Computing Architecture

CPU-Centric (Onload)

Data-Centric (Offload)

Communications Latencies of 30-40us

Communications Latencies of 3-4us
In-Network Computing to Enable Data-Centric Data Centers

- **MPI**
- **GPUDirect**
- **NVMe Over Fabrics**
- **SHARP**
- **SHIELD**
- **Scalable Hierarchical Aggregation and Reduction Protocol**
- **MultiHOST SocketDirect**
In-Network Computing Connects the World’s Fastest HPC and AI Supercomputer

- Summit CORAL System, World’s Fastest HPC / AI System
- Nvidia V100 GPU + InfiniBand HCA + In-Network Computing Fabric
GPUDirect RDMA Technology and Advantages

With GPUDirect

Without GPU Direct - Same Data Copied 3 Times
Scalable Hierarchical Aggregation And Reduction Protocol (SHARP)
Accelerating HPC and AI Applications

Accelerating HPC Applications
- Significantly reduce MPI collective runtime
- Increase CPU availability and efficiency
- Enable communication and computation overlap

Enabling Artificial Intelligence Solutions to Perform Critical and Timely Decision Making
- Accelerating distributed machine learning
AllReduce Example – Trees

- Many2One and One2Many traffic patterns – possible network congestion
- Probably not a good solution for large data
- Large scale requires higher tree / larger radix
- Result distribution – over the tree / MC
AllReduce (Example) - Recursive Doubling

- The data is recursively divided, processed by CPUs and distributed
- The rank’s CPUs are occupied performing the reduce algorithm
- The data is sent at least 2x times, consumes at least twice the BW
Scalable Hierarchical Aggregation Protocol

Reliable Scalable General Purpose Primitive, Applicable to Multiple Use-cases
- In-network Tree based aggregation mechanism
- Large number of groups
- Multiple simultaneous outstanding operations
- Streaming aggregation

Accelerating HPC applications
- Scalable High Performance Collective Offload
 - Barrier, Reduce, All-Reduce, Broadcast
 - Sum, Min, Max, Min-loc, max-loc, OR, XOR, AND
 - Integer and Floating-Point, 16 / 32 / 64 bit
 - Up to 1KB payload size (in Quantum)
- Significantly reduce MPI collective runtime
- Increase CPU availability and efficiency
- Enable communication and computation overlap

Accelerating Machine Learning applications
- Proven the many-to-one Traffic Pattern
- CUDA, GPUDirect RDMA
Scalable Hierarchical Aggregation Protocol

- **SHARP Tree is a Logical Construct**
 - Nodes in the SHArP Tree are IB Endnodes
 - Logical tree defined on top of the physical underlying fabric
 - SHArP Tree Links are implemented on top of the IB transport (Reliable Connection)
 - Expected to follow the physical topology for performance but not required

- **SHARP Operations are Executed by a SHARP Tree**
 - Multiple SHArP Trees are Supported
 - Each SHArP Tree can handle Multiple Outstanding SHArP Operations
 - Within a SHArP Tree, each Operation is Uniquely Identified by a SHArP-Tuple
 - GroupID
 - SequenceNumber
SHARP Principles of Operation - Request

Aggregation Request

SHARP Tree Root
SHARP Principles of Operation – Response

Aggregation Response

SHARP Tree Root
NCCL Ring

- Simple
- Linear Latency
- Support in NCCL-2.3 & previous version
- Multiple rings
NCCL Tree

- Support added in NCCL-2.4
- Keep Intra-node chain
- Node leaders participate in tree
- Binary double tree
- Multiple rings -> Multiple trees
NCCL SHARP
NCCL SHARP

- Collective network Plugin
- Replace Inter-node tree with SHARP Tree
- Keeps Intra-node ring
- Aggregation in network switch
- Streaming from GPU memory with GPU Direct RDMA
- 2x BW compared to NCCL-TREE

SHARP Enables 2X Higher Data Throughput for NCCL
SHARP AllReduce Performance Advantages (128 Nodes)

SHARP enables 75% Reduction in Latency
Providing Scalable Flat Latency
SHARP AllReduce Performance Advantages
1500 Nodes, 60K MPI Ranks, Dragonfly+ Topology

SHARP Enables Highest Performance
SHARP Performance – Application (OSU)

Mesh Refinement Time of MiniAMR

Source: Prof. DK Panda, Ohio State University

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/
SHARP Performance Advantage for AI

- SHARP provides 16% Performance Increase for deep learning, initial results
- TensorFlow with Horovod running ResNet50 benchmark, HDR InfiniBand (ConnectX-6, Quantum)

P100 NVIDIA GPUs, RH 7.5, Mellanox OFED 4.4, HPC-X v2.3, TensorFlow v1.11, Horovod 0.15.0
NCCL-SHARP Performance – DL Training

System Configuration: (4) HPE Apollo 6500 systems configured with (8) NVIDIA Tesla V100 SXM2 16GB, (2) HPE DL360 Gen10 Intel Xeon-Gold 6134 (3.2 GHz/8-core/130 W) CPUs, (24) DDR4-2666 CAS-19-19-19 Registered Memory Modules, HPE 1.6 TB NVMe SFF (2.5") SSD, ConnectX-6 HCA, IB Quantum Switch (EDR speed), Ubuntu 16.04
Accelerating All Levels of HPC / AI Frameworks

Application
- Data Analysis
- Real Time
- Deep Learning

Communication
- Mellanox SHARP In-Network Computing
- MPI Tag Matching
- MPI Rendezvous
- Software Defined Virtual Devices

Network
- Network Transport Offload
- RDMA and GPU-Direct RDMA
- SHIELD (Self-Healing Network)
- Enhanced Adaptive Routing and Congestion Control

Connectivity
- Multi-Host Technology
- Socket-Direct Technology
- Enhanced Topologies
Thank You