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Overview

“How will Deep Learning Change Internet Video Delivery?”
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1. Observation/Limitation of Current Video Delivery

2. Recent research: DL-based adaptive streaming [OSDI 18]

3. Vision of DL-based Video Delivery
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Internet video traffic has exponentially grown over last decade!

1TB
1,260,000,000

1: CISCO Visual Networking Index, 16 data was interpolated
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(Peak period in North America - 2014)

2: https://digitalbusinessblog.wordpress.com/2014/11/25/who-are-the-biggest-bandwidth-hogs/



Observation on Current Video Ecosystem
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To handle bandwidth heterogeneity over space and time,
Adaptive streaming has been widely deployed
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Goal: Find how to best utilize the network resource

Traditional Approaches
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Optimizing ABR algorithms
Pensieve [SIGCOMM 17], MPC [SIGCOMM 15]

Choosing better servers, CDNs
Content Multihoming [SIGCOMM 12], VDN [SIGCOMM 15]

Leveraging centralized control plan
Video Control Plane [SIGCOMM 12], Pythease [NSDI 17]



Limitation of Current Video Delivery
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Video server Client

Low Quality Network 
Congestion

Directly affect

Video quality heavily depends on available bandwidth



Limitation of Current Video Delivery
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Client computing power is scarcely utilized other than for decoding
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Standard codecs efficiently reduce redundancy only inside GOP

Observation on Current Video Ecosystem
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Video

Group of Pictures (GOP)

: Intra-frame coding
: Inter-frame coding

Standard codecs (H.26x, VPx, AV1)

Compressed

I-frame I-frameP,B-frames

Time

Video 
Quality

: 2—10 seconds

[Adaptive streaming]

Seamless switching

GOP



Limitation of Current Video Delivery
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Video

Time

Redundancy (large timescales)

: 2—10 secondsGroup of Pictures (GOP)

I-frame I-frame I-frameI-frame

Standard codecs lack any mechanisms for exploiting redundancy 
that occurs at large timescales



What Deep Neural Network (DNN) Can Do?
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1.  Utilize client computation to enhance video quality

Video server
Network 

Congestion

Client

Low quality High qualityDNN

Client computing device



What Deep Neural Network (DNN) Can Do?
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Network 
Congestion

Client

Low resolution High resolutionSuper-resolution DNN

Client computing device

Video server

1.  Utilize client computation to enhance video quality



What Deep Neural Network (DNN) Can Do?
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Standard codecs

GOP
Redundancy

2. Trained and operate in large timescales (video)

GOP

DNN

GOP GOP
Redundancy



What Deep Learning (DL) can Do?
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Can we overcome the current limitations via DNN?

How much quality improvement can we achieve?

To answer these, let’s move to our recent research, NAS [OSDI18]



Super-resolution

NAS: DL-based Adaptive Streaming
Apply super-resolution DNN on top of bitrate adaptation
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240p

360p

1080p

480p

1080p

1080p

1080p

Bandwidth

: Client computation
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NAS: System Target
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2.  Computing device: NVIDIA GTX 10 series

1. Content: Video on demand (VOD)

GTX 1050 Ti (Entry-level) Titan Xp (High-end)

Price
$139 $1,200

Example

Example



NAS: Two Initial Challenges
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NAS utilizes DNN and client computation, but …



For the real-world deployment, DNN accuracy should be guaranteed

NAS: Two Initial Challenges
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1. DNN testing accuracy is unreliable for unseen/new content
• Even worse, degradation can occur (below figure)

EDSR [CVPRW 17]
(Trained on DIV2K dataset)

Unseen content ↓Quality

SSIM = 0.86 SSIM = 0.84

NAS utilizes DNN and client computation, but …



NAS: Two Initial Challenges
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2. Client must process DNN at real-time,
but computing power varies across space and time

Client A: Entry-level GPU
(1.98 TFLOPS – 1050 Ti)

Client B: High-end GPU
(10.79 TFLOPS – Titan Xp)

GPU GPU> x5 slower!

NAS utilizes DNN and client computation, but …

Adaptation to computing power is required



Key Design 1: Content-aware DNN 
Challenge: Providing reliable DNN quality

Content-aware DNN delivers the reliable (over-fitted) training accuracy
instead of the unpredictable testing accuracy.

21

Video server

Video 2

Video 1

1. New video admission

Content-aware DNN 2

Content-aware DNN 1

2. Generates a content-aware 3. Provide (video, DNN)



Training a content-aware super-resolution

Raw high-resolution
(1080p)

Compressed low-resolutions
(240p—720p)

Input
Output

Updates parameters

Targetframes

1. Prepares training data
2. Updates the DNN parameters

DNN

22



Content-agnostic vs. Content-aware
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“PSNR 2~4 dB gain over content-agnostic”



Bicubic vs. Content-aware DNN
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Average PSNR: 28.28dB Average PSNR: 34.40dB



Bicubic vs. Content-aware DNN
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Average PSNR: 26.15dB Average PSNR: 30.42dB



Key Design 2: Multiple Quality DNNs
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ClientVideo server
Downloads several MBs?
 Delay video streaming

1. Provides multiple quality DNN options

Size:
Compute:

Quality: Low High
Small (93KB) Large (2,143KB)
Low High

Challenge: Enabling real-time super-resolution on heterogeneous clients



Key Design 2: Multiple Quality DNNs
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ClientVideo server

Manifest file

1. Provides multiple quality DNN options

Quality: Low High
Size: Small (93KB) Large (2,143KB)

Compute: Low High

2. Delivers DNN description
(#Layer, #Channel)

Challenge: Enabling real-time super-resolution on heterogeneous clients

MPD (Media Presentation Description)
Period

Adaptation Set (Video)

Adaptation Set (DNN) (#layer, #filter)

1080p
4.8Mb/s

720p
2.4Mb/s

480p
1.2Mb/s

Low-240p
(20, 9)

Med.-240p
(20, 21)

High-240p
(20, 32)



Key Design 2: Multiple Quality DNNs
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ClientVideo server

Manifest file

Computing device
(GTX 1080)

Mock DNNs

Selected

3. Test-runs and selects the 
highest-quality running at real-time

1. Provides multiple quality DNN options

Quality: Low High
Size: Small (93KB) Large (2,143KB)

Compute: Low High

2. Delivers DNN description
(#Layer, #Channel)

Challenge: Enabling real-time super-resolution on heterogeneous clients

53 fps 52 fps

38 fps 21 fps



NAS: Two Additional Challenges
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NAS streams video with a content-aware DNN, but …

ClientVideo server
: DNN data : Video data



NAS: Two Additional Challenges
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NAS streams video with a content-aware DNN, but …

1. Takes long time to download and utilize a DNN

Ultra-high (2,145KB) 360p video (400Kbps)
1 x 21 seconds x 

Need to provide incremental benefit during downloading a DNN

ClientVideo server
: DNN data : Video data



NAS: Two Additional Challenges
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NAS streams video with a content-aware DNN, but …

2.  A DNN competes bandwidth with video

Need to carefully decide how/when to download a DNN model

ClientVideo server
: DNN data : Video data

(-) Aggressive download: rebuffering, low video quality
(-) Conservative download:   low DNN benefit



Key Design 3: Scalable DNN
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Challenge: Takes a long time to utilize a DNN

ClientVideo server
: Required : Optional

additional by-passing paths
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rInput Output
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1. Implement a scalable DNN 2. Download/Apply a partial DNN
Time 

No DNN

1st chunk 5th chunk2nd chunk

(+ divide into similar-size chunks)



By-passing paths
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Residual paths

480p image 1080p image

360p

360p
1080p

480p
540p

1080p

480p

NAS-MDSR (     : Bicubic interpolation)

Input: 240p

240p
1080p

270p
# Channel

NAS DNN Architecture

MDSR [1]

Shared

1. Per-resolution DNN: enable real-time processing

2. Additional bypassing paths: enable anytime prediction

[1] Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW, 2017



Key Design 4: Integrated ABR
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Challenge: How to decide when to download a DNN

[1]: Mao, Hongzi, Ravi Netravali, and Mohammad Alizadeh. “Neural adaptive video streaming with pensieve.”, SIGCOMM, 2017.
[2]: Upper right figure is from the slide of“Neural adaptive video streaming with pensieve.”, 

with existing RL-based ABR (Pensieve [1])

ABR already handles unpredictable bandwidth variations
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But, non-trivial!



Pensieve agent
Environment

Key Design 4: Integrated ABR
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Challenge: How to decide when to download a DNN

240p

1080p

Action 𝑎𝑎𝑡𝑡
Bandwidth

Bitrate

Playback buffer

State 𝑠𝑠𝑡𝑡

QoE metric = bitrate - rebuffering – smoothness
Reward 𝑟𝑟𝑡𝑡

Goal: Maximize the total QoE over an entire video
[1]: Mao, Hongzi, Ravi Netravali, and Mohammad Alizadeh. "Neural adaptive video streaming with pensieve.“, SIGCOMM, 2017.

• Integrate DNN download decisions with existing RL-based ABR (Pensieve) [1]



NAS agent

QoE metric = DNN(bitrate) - rebuffering – smoothnessQoE metric = bitrate - rebuffering – smoothness

Key Design 4: Integrated ABR
36

240p

1080p
DNN# Remaining DNN

Bandwidth

Bitrate

Playback buffer

Reward 𝑟𝑟𝑡𝑡

Action 𝑎𝑎𝑡𝑡

Challenge: How to decide when to download a DNN

Environment
State 𝑠𝑠𝑡𝑡

Goal: Maximize the total QoE reflecting DNN-based quality enhancement

• Integrate DNN download decisions with existing RL-based ABR (Pensieve) [1]



Putting All Together: Implementation

NAS Player (dash.js)
∆1.7K LOC (8.8%)

DNN Processor
6.3K LOC

Server

DNN 

Video

Integrated ABR 
5.5K LOC



Evaluation

1) How much benefit does NAS deliver?

2) What are the cost and benefit of NAS ?

3) Does NAS effectively adapt to heterogeneous clients?

38



NAS vs. Existing Video Delivery : QoE 
39

• 17.8 hours real-world network traces: collected from 3G network and broadband
(average bandwidth: 1.31Mbps)

• 27 YouTube videos: 5-24 minutes, encoded at {400, 800, 1200, 2400, 4800}kbps 
• Computing device: NVIDIA Titan Xp, DNN quality: Ultra-high
• Video player: Chromium browser, Video server: Apache server



QoE Metric
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Quantify user experience of video streaming

Less rebufferingHigher quality

1080p

240p
vs.

Better experience

Generalized QoE model1,2,3 :

1: MPC-SIGCOMM15, Pensieve-SIGCOMM17, Oboe-SIGCOMM18

+(Quality) -(rebuffering) -(smoothness)𝑞𝑞 𝑅𝑅𝑛𝑛 − 𝜇𝜇𝑇𝑇𝑛𝑛 − 𝑞𝑞 𝑅𝑅𝑛𝑛 − 𝑞𝑞(𝑅𝑅𝑛𝑛−1)
+(Quality) -(rebuffering) -(smoothness)

• 𝑞𝑞 𝑅𝑅𝑛𝑛 :  Perceptual quality of nth  video chunk bitrate 𝑅𝑅𝑛𝑛
• 𝑇𝑇𝑛𝑛 :  Rebuffering time for downloading nth video chunk
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NAS vs. Existing Video Delivery : QoE 
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NAS improves user QoE by 43.08% compared to Pensieve
and 92.28% compared to BOLA using same amount of bandwidth.

BOLA
RobustMPC
Pensieve
NAS

better

• 17.8 hours real-world network traces: collected from 3G network and broadband
(average bandwidth: 1.31Mbps)

• 27 YouTube videos: 5-24 minutes, encoded at {400, 800, 1200, 2400, 4800}kbps 
• Computing device: NVIDIA Titan Xp, DNN quality: Ultra-high
• Video player: Chromium browser, Video server: Apache server



NAS vs. Existing Video Delivery : Cost
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When the total viewing reaches 30 hours (per minute of video), 
NAS CDN recoups the initial training cost.
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NAS Pensieve

Training costNAS CDN

= 0.085$/GB

: ↓17.13% bandwidth 
for same quality

= 0.23$/minute of video 
10 mins 1.4$/hour

better
= 0.085$/GB

Pensieve CDN



Heterogeneous Clients
43

DNN quality GPU model (Price)
Low GTX 1050 Ti ($139)
Medium GTX 1060  ($249)
High GTX 1070 Ti ($449)

GTX 1080  ($559)
Ultra-high GTX 1080 Ti ($669)

Titan Xp ($1,200)

NAS adapts to heterogeneous devices, 
and a device with higher computing power receives greater benefit.

Each GPU processes at real-time 
(> 30fps for all resolutions)

Average QoE
C

D
F

better

Medium High Ultra-highLow
BOLA RobustMPC Pensieve



NAS: DL-based Adaptive Streaming
44

• NAS shows that applying DNN on video content 
utilizing client computation can significantly enhance user QoE.

• NAS accommodates four key designs: Content-aware DNN, 
Multiple quality DNNs, Scalable DNN, Integrated ABR.

NAS



What’s Next?
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NAS = Adaptive streaming + VoD contents + Desktop-class GPUs

DL-based video ingest DL-based Live, 4K, AR/VR 
Content Provider CDN Client

DL-based video storage

• Integrate DL with various parts in video delivery infrastructure
• Apply DL on diverse video applications (e.g., Live/4K/AR/VR)
• Deploy DL-based streaming on commercial mobile devices



Conclusion
46

“How will Deep Learning Change Internet Video Delivery?”
• The advance of deep learning presents unseen opportunities

Content redundancy

Client computation

Bandwidth

Better experience

DL-based streaming

Current streaming

• Rethinking the video delivery infrastructure is required to take 
advantage of the new opportunities

: First step toward this direction



• Personal homepage
http://ina.kaist.ac.kr/~hyunho/

• Lab homepage
http://ina.kaist.ac.kr/

• Project homepage
http://ina.kaist.ac.kr/~nas/

Thank you

OSDI conference @ Carlsbad, CA, USA

http://ina.kaist.ac.kr/%7Ehyunho/
http://ina.kaist.ac.kr/%7Edongsuh/
http://ina.kaist.ac.kr/%7Enas/


25

28

31

34

37

1 2 3 4 5 6 7 8 9

PS
N

R
(d

B
)

Content type

Original agDNN awDNN
Content-agnostic vs. Content-aware



0.05 0.05 
0.16 0.15 

0.02 0.05 
0.07 0.10 

0

0.5

1

1.5

2

2.5

Bitrate utility Rebuffer penalty Smoothness penalty

BOLA R-MPC Pensieve NAS

QoE breakdown



0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7 8 9N
or

m
al

iz
ed

 a
ve

ra
ge

 Q
oE

Content type

BOLA R-MPC Pensieve NAS

Average QoE over Content Types



Scalable DNN
51

0

0.2

0.4

0.6

0.8

1

0.3 0.5 0.7 0.9

C
D

F

Average QoE

NAS
NAS FULL
Pensieve

17.54%

0

0.2

0.4

0.6

0.8

1

0.3 1.3 2.3 3.3
C

D
F

Average QoE

NAS
NAS FULL
Pensieve



240p 360p 480p 720p 1080p

0 0.5 1
Ratio

lin
lo

g
hd

aware
unaware

aware
unaware

aware
unaware

Q
oE

ty
pe

Integrated ABR (Quality-awareness)



0.06 
0.07 

0.15 
0.06 0.09 

0.09 
0

0.5

1

1.5

2

Bitrate utility Rebuffering
penalty

Smoothness
penalty

Pensieve (10%)
Pensieve (100%)
NAS

Integrated ABR (DNN downloads)



Pl
ay

er
DN

N
 

Pr
oc

es
so

r
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Download 2nd DNN chunkDownload 1st video chunk

Mock DNN test

6 7 8 9 10 11 12 13 14 15 17

Apply 1st DNN chunk to 6th video chunk
2nd 3rd 4th Full DNN - 5th

21 3 4 51 2 3 4 5 6 7 8 9

18 19

Download manifest file

1st

Download time

Processing time

Play time = 20 sec 24 sec, 1st DNN 32 sec, 2nd DNN 44 sec, 3rd DNN 52 sec, 4th DNN 60 sec, full DNN

DNNs are fully downloaded

: Video chunk

: DNN processing

: DNN chunk

15 sec

Case Study: Timeline
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