How will Deep Learning Change Internet Video Delivery?

Hyunho Yeo

Ph.D. Candidate@KAIST

- Work on DL-based video delivery
- Publish papers at top-tier system/network conferences

Neural Adaptive Content-aware Internet Video Delivery

Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, **Dongsu Han** USENIX OSDI 2018

How will Deep Learning Change Internet Video Delivery? Hyunho Yeo, Sunghyun Do, Dongsu Han ACM HotNets 2017

Overview

"How will Deep Learning Change Internet Video Delivery?"

- 1. Observation/Limitation of Current Video Delivery
- 2. Recent research: DL-based adaptive streaming [OSDI 18]
- 3. Vision of DL-based Video Delivery

Era of Internet Video Delivery

Internet video traffic has *exponentially* grown over last decade!

1: CISCO Visual Networking Index, 16 data was interpolated

2: https://digitalbusinessblog.wordpress.com/2014/11/25/who-are-the-biggest-bandwidth-hogs/

Observation on Current Video Ecosystem

5

To handle bandwidth heterogeneity over space and time, Adaptive streaming has been widely deployed

Traditional Approaches

Optimizing ABR algorithms

Pensieve [SIGCOMM 17], MPC [SIGCOMM 15]

Choosing better servers, CDNs

Content Multihoming [SIGCOMM 12], VDN [SIGCOMM 15]

Leveraging centralized control plan

Video Control Plane [SIGCOMM 12], Pythease [NSDI 17]

Goal: Find how to best utilize the network resource

Limitation of Current Video Delivery

7

Video quality heavily depends on available bandwidth

Limitation of Current Video Delivery

Client computing power is scarcely utilized other than for decoding

Observation on Current Video Ecosystem

Standard codecs efficiently reduce redundancy *only* inside GOP

Limitation of Current Video Delivery

Standard codecs lack any mechanisms for exploiting redundancy that occurs at large timescales

What Deep Neural Network (DNN) Can Do?

1. Utilize **client computation** to enhance video quality

What Deep Neural Network (DNN) Can Do?

12

1. Utilize client computation to enhance video quality

What Deep Neural Network (DNN) Can Do?

13

2. Trained and operate in large timescales (video)

Can we overcome the current limitations via DNN?

To answer these, let's move to our recent research, NAS [OSDI18]

Neural Adaptive Content-aware Internet Video Delivery

NAS: DL-based Adaptive Streaming

Apply super-resolution DNN on top of bitrate adaptation

NAS: System Target

1. Content: Video on demand (VOD)

2. Computing device: **NVIDIA** GTX 10 series

NAS: Two Initial Challenges

A NAS utilizes DNN and client computation, but ...

NAS: Two Initial Challenges

A NAS utilizes DNN and client computation, but ...

- 1. DNN testing accuracy is unreliable for unseen/new content
 - Even worse, degradation can occur (below figure)

For the real-world deployment, DNN accuracy should be guaranteed

NAS: Two Initial Challenges

A NAS utilizes DNN and **client computation**, but ...

2. Client must process DNN at real-time,

but computing power varies across space and time

Adaptation to computing power is required

Key Design 1: Content-aware DNN

Challenge: Providing reliable DNN quality

1. New video admission 2. Generates a content-aware 3. Provide (video, DNN)

Content-aware DNN delivers the reliable (over-fitted) training accuracy instead of the unpredictable testing accuracy.

Training a content-aware super-resolution

22

Content-agnostic vs. Content-aware

"PSNR 2~4 dB gain over content-agnostic"

Bicubic vs. Content-aware DNN

Bicubic vs. Content-aware DNN

25

Key Design 2: Multiple Quality DNNs

Challenge: Enabling real-time super-resolution on heterogeneous clients

1. Provides multiple quality DNN options

Key Design 2: Multiple Quality DNNs

27

Challenge: Enabling real-time super-resolution on heterogeneous clients

Key Design 2: Multiple Quality DNNs

Challenge: Enabling real-time super-resolution on heterogeneous clients

1. Provides multiple quality DNN options

highest-quality running at real-time

NAS: Two Additional Challenges

A NAS streams video with a content-aware DNN, but ...

NAS: Two Additional Challenges

A NAS streams video with a content-aware DNN, but ...

1. Takes long time to download and utilize a DNN

Need to provide incremental benefit during downloading a DNN

NAS: Two Additional Challenges

A NAS streams video with a content-aware DNN, but ...

2. A DNN competes bandwidth with video

(-) Aggressive download: rebuffering, low video quality(-) Conservative download: low DNN benefit

Need to carefully decide how/when to download a DNN model

Key Design 3: Scalable DNN

Challenge: Takes a long time to utilize a DNN

1. Implement a scalable DNN (+ divide into similar-size chunks) 2. Download/Apply a partial DNN

NAS DNN Architecture

1. Per-resolution DNN: enable real-time processing

[1] Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW, 2017

Key Design 4: Integrated ABR

Challenge: How to decide when to download a DNN

-X- ABR already handles unpredictable bandwidth variations

→ Integrate DNN download decisions with existing RL-based ABR (Pensieve [1])

[1]: Mao, Hongzi, Ravi Netravali, and Mohammad Alizadeh. "Neural adaptive video streaming with pensieve.", SIGCOMM, 2017.[2]: Upper right figure is from the slide of "Neural adaptive video streaming with pensieve.",

Key Design 4: Integrated ABR

Challenge: How to decide when to download a DNN

• Integrate DNN download decisions with existing RL-based ABR (Pensieve) [1]

Goal: Maximize the total QoE over an entire video

[1]: Mao, Hongzi, Ravi Netravali, and Mohammad Alizadeh. "Neural adaptive video streaming with pensieve.", SIGCOMM, 2017.

Key Design 4: Integrated ABR

Challenge: How to decide when to download a DNN

• Integrate DNN download decisions with existing RL-based ABR (Pensieve) [1]

Goal: Maximize the total QoE reflecting DNN-based quality enhancement

Putting All Together: Implementation

NAS Player (dash.js) ∆1.7K LOC (8.8%) Integrated ABR 5.5K LOC

Evaluation

1) How much benefit does NAS deliver?

2) What are the cost and benefit of NAS ?

3) Does NAS effectively adapt to heterogeneous clients?

NAS vs. Existing Video Delivery : QoE

- **17.8 hours real-world network traces**: collected from 3G network and broadband (average bandwidth: 1.31Mbps)
- **27 YouTube videos**: 5-24 minutes, encoded at {400, 800, 1200, 2400, 4800}kbps
- **Computing device:** NVIDIA Titan Xp, **DNN quality:** Ultra-high
- Video player: Chromium browser, Video server: Apache server

QoE Metric

Quantify user experience of video streaming

+(Quality) - (rebuffering) - (smoothness)Generalized QoE model^{1,2,3}: +(Q(A)) + $\mu(F_Rbuffq(R_g) - (q(R_Qth)))$ = (smoothness)

- $q(R_n)$: Perceptual quality of n^{th} video chunk bitrate R_n
- T_n : Rebuffering time for downloading n^{th} video chunk

NAS vs. Existing Video Delivery : QoE

- **17.8 hours real-world network traces**: collected from 3G network and broadband (average bandwidth: 1.31Mbps)
- **27 YouTube videos**: 5-24 minutes, encoded at {400, 800, 1200, 2400, 4800}kbps
- Computing device: NVIDIA Titan Xp, DNN quality: Ultra-high
- Video player: Chromium browser, Video server: Apache server

NAS improves user QoE by 43.08% compared to Pensieve and 92.28% compared to BOLA using same amount of bandwidth.

NAS vs. Existing Video Delivery : Cost

When the total viewing reaches 30 hours (per minute of video), NAS CDN recoups the initial training cost.

Heterogeneous Clients

NAS adapts to heterogeneous devices,

and a device with higher computing power receives greater benefit.

NAS: DL-based Adaptive Streaming

- NAS shows that applying **DNN** on **video content** utilizing **client computation** can significantly enhance user QoE.
- NAS accommodates *four key designs*: Content-aware DNN, Multiple quality DNNs, Scalable DNN, Integrated ABR.

What's Next?

NAS = Adaptive streaming + VoD contents + Desktop-class GPUs

- Integrate DL with various parts in video delivery infrastructure
- Apply DL on diverse video applications (e.g., Live/4K/AR/VR)
- Deploy DL-based streaming on **commercial mobile devices**

Conclusion

"How will Deep Learning Change Internet Video Delivery?"

• The advance of deep learning presents unseen opportunities

• Rethinking the video delivery infrastructure is required to take advantage of the new opportunities

Neural Adaptive Content-aware Internet Video Delivery					
Hyunho Yeo	Youngmok Jung	Jaehong Kim KAIST	Jinwoo Shin	Dongsu Han	•

: First step toward this direction

Thank you

OSDI conference @ Carlsbad, CA, USA

• Personal homepage

http://ina.kaist.ac.kr/~hyunho/

- Lab homepage MINA http://ina.kaist.ac.kr/
- Project homepage

http://ina.kaist.ac.kr/~nas/

Content-agnostic vs. Content-aware

QoE breakdown

Average QoE over Content Types

Scalable DNN

Integrated ABR (Quality-awareness)

Integrated ABR (DNN downloads)

Case Study: Timeline

