
정소영상무 (soyoungj@nvidia.com) / 2019년 7월 2일

MAXIMIZING UTILIZATION FOR DATA
CENTER INFERENCE WITH TENSORRT
INFERENCE SERVER

mailto:soyoungj@nvidia.com

2

WORLD’S MOST ADVANCED
SCALE-OUT GPU

INTEGRATED INTO TENSORFLOW &
ONNX SUPPORT

TENSORRT HYPERSCALE INFERENCE PLATFORM

TENSORRT
INFERENCE SERVER

3

TENSORRT INFERENCE SERVER

A Software Application for Deploying AI Models At Scale

▪ Maximum GPU Utilization

▪ Mechanisms for Large-Scale Inference Service

▪ Optimized for Management & Monitoring

▪ GitHub: https://github.com/NVIDIA/tensorrt-inference-server

https://github.com/NVIDIA/tensorrt-inference-server

4

TENSORRT INFERENCE SERVER
Architected for Maximum Datacenter Utilization

Support a variety of model frameworks

TensorRT, TensorFlow, Caffe2, custom

Support concurrent model execution, one or multiple models

Multi-model, multi-GPU and asynchronous HTTP and GRPC request handling

Support many model types: CNN, RNN, “stateless”, “stateful”

Multiple scheduling and batching algorithms

Enable both “online” and “offline” inference use cases

Batch 1, batch n, dynamic batching

Enable scalable, reliable deployment

Prometheus metrics, live/ready endpoints, Kubernetes integration

5

EXTENSIBLE ARCHITECTURE

Extensible backend architecture allows multiple
framework and custom support

Extensible scheduler architecture allows support
for different model types and different batching
strategies

Leverage CUDA to support model concurrency
and multi-GPU

6

AVAILABLE METRICS

Category Name Use Case Granularity Frequency

GPU Utilization

Power usage Proxy for load on the GPU Per GPU Per second

Power limit Maximum GPU power limit Per GPU Per second

GPU utilization
GPU utilization rate

[0.0 - 1.0)

Per GPU Per second

GPU Memory

GPU Total Memory Total GPU memory, in bytes Per GPU Per second

GPU Used Memory Used GPU memory, in bytes Per GPU Per second

Count
GPU & CPU

Request count Number of inference requests Per model Per request

Execution count

Number of model inference executions

Request count / execution count = avg dynamic request

batching

Per model Per request

Inference count
Number of inferences performed (one request counts as

“batch size” inferences)

Per model Per request

Latency
GPU & CPU

Latency: request time End-to-end inference request handling time Per model Per request

Latency: compute time
Time a request spends executing the inference model (in

the appropriate framework)

Per model Per request

Latency: queue time
Time a request spends waiting in the queue before being

executed

Per model Per request

7

MODEL REPOSITORY

File-system based repository of the models loaded and served by the inference server

Model metadata describes framework, scheduling, batching, concurrency and other aspects of
each model

ModelX
platform: TensorRT
scheduler: default
concurrency: …

ModelY
platform: TensorRT
scheduler: dynamic-batcher
concurrency: …

ModelZ
platform: TensorFlow
scheduler: sequence-batcher
concurrency: ...

8

BACKEND ARCHITECTURE

Backend acts as interface between inference requests and a standard or custom framework

Supported standard frameworks: TensorRT, TensorFlow, Caffe2

Providers efficiently communicate inference request inputs and outputs (HTTP or GRPC)

Efficient data movement, no additional copies

ModelX Backend

Default

Scheduler

TensorRT Runtime

M
o
d
e
lX

In
fe

re
n
c
e

R
e
q
u
e
st

Output

Tensors

Input

Tensors

Providers

9

CUSTOM FRAMEWORK
Integrate Custom Logic Into Inference Server

Provide implementation of your “framework”/”runtime” as shared library

Implement simple API: Initialize, Finalize, Execute

All inference server features are available: multi-model, multi-GPU, concurrent execution,
scheduling and batching algorithms, etc.

ModelCustom Backend

Default

Scheduler

Custom Wrapper

M
o
d
e
lC

u
st

o
m

In
fe

re
n
c
e
 R

e
q
u
e
st

Output

Tensors

Input

Tensors

Providers

Custom

Runtime

libcustom.so

10

MULTIPLE MODELS

ModelZ Backend

Sequence

Batcher

TensorFlow Runtime

M
o
d
e
lZ

In
fe

re
n
c
e

R
e
q
u
e
st

ModelY Backend

Dynamic

Batcher

TensorRT Runtime

M
o
d
e
lY

In
fe

re
n
c
e

R
e
q
u
e
st

ModelX Backend

Default

Scheduler

TensorRT Runtime

M
o
d
e
lX

In
fe

re
n
c
e

R
e
q
u
e
st

11

MODEL CONCURRENCY
Multiple Models Sharing a GPU

By default each model gets one instance on each available GPU (or 1 CPU instance if no GPUs)

Each instance has an execution context that encapsulates the state needed by the runtime to
execute the model

ModelZ Backend
ModelY Backend

ModelX Backend

Default

Scheduler

TensorRT Runtime

Context
GPU

12

MODEL CONCURRENCY
Multiple Instances of the Same Model

Model metadata allows multiple instances to be configured for each model

Multiple model instances allow multiple inference requests to be executed simultaneously

GPU

ModelX Backend

Default

Scheduler

TensorRT Runtime

Context

Context

Context

13

ModelZ Backend

Sequence

Batcher

TensorFlow Runtime

Context

Context

ModelY Backend

Dynamic

Batcher

TensorRT Runtime

Context

Context

MODEL CONCURRENCY
Multiple Instances of Multiple Models

GPU
ModelX Backend

Default

Scheduler

TensorRT Runtime

Context

Context

Context

14

CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time

Time

Incoming Inference
Requests

M
o
d
e
lX

M
o
d
e
lX

M
o
d
e
lX

M
o
d
e
lY

M
o
d
e
lY

M
o
d
e
lY

15

CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time

Time

Incoming Inference
Requests

M
o
d
e
lX

M
o
d
e
lX

M
o
d
e
lX

M
o
d
e
lY

M
o
d
e
lY

M
o
d
e
lY

Execute ModelX

16

CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time

Time

Incoming Inference
Requests

M
o
d
e
lX

M
o
d
e
lX

M
o
d
e
lX

M
o
d
e
lY

M
o
d
e
lY

M
o
d
e
lY

Execute ModelX

Execute ModelX

17

CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time

Time

Incoming Inference
Requests

M
o
d
e
lX

M
o
d
e
lX

M
o
d
e
lX

M
o
d
e
lY

M
o
d
e
lY

M
o
d
e
lY

Execute ModelX

Execute ModelX

Execute ModelX

18

CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time

Time

Incoming Inference
Requests

M
o
d
e
lX

M
o
d
e
lX

M
o
d
e
lX

M
o
d
e
lY

M
o
d
e
lY

M
o
d
e
lY

Execute ModelX

Execute ModelX

Execute ModelX

Execute ModelY

19

CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time

Time

Incoming Inference
Requests

M
o
d
e
lX

M
o
d
e
lX

M
o
d
e
lX

M
o
d
e
lY

M
o
d
e
lY

M
o
d
e
lY

Execute ModelX

Execute ModelX

Execute ModelX

Execute ModelY

Execute ModelY

20

CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time

Time

Incoming Inference
Requests

M
o
d
e
lX

M
o
d
e
lX

M
o
d
e
lX

M
o
d
e
lY

M
o
d
e
lY

M
o
d
e
lY

Execute ModelX

Execute ModelX

Execute ModelX

Execute ModelY

Execute ModelY

Execute ModelY

21

SHARING A GPU
CUDA Enables Multiple Model Execution on a GPU

ModelY Backend

Dynamic

Batcher

TensorRT Runtime

Context

Context

ModelX Backend

Default

Scheduler

TensorRT Runtime

Context

Context

Context

CUDA Streams

GPU

H
a
rd

w
a
re

 S
c
h
e
d
u
le

r

22

MUTLI-GPU
Execution Contexts Can Target Multiple GPUs

ModelY Backend

Dynamic

Batcher

TensorRT Runtime

Context

Context

ModelX Backend

Default

Scheduler

TensorRT Runtime

Context

Context

Context

CUDA Streams

GPU
H

a
rd

w
a
re

 S
c
h
e
d
u
le

r
GPU

H
a
rd

w
a
re

 S
c
h
e
d
u
le

r

23

BATCHING VS NON-BATCHING

Batch size = 1

• Run a single inference task on a GPU

• Low-latency, but the GPU is underutilized

Batch size = N

• Group inference instances together

• High throughput and GPU utilization

• Allows employing Tensor Cores in Volta and Turing

Batching: Grouping Inference Requests Together

W W W W

W

24

SCHEDULER ARCHITECTURE

Scheduler responsible for managing all inference requests to a given model

Distribute requests to the available execution contexts

Each model can configure the type of scheduler appropriate for the model

Model Backend

Scheduler

Runtime

Context

Context

25

DEFAULT SCHEDULER
Distribute Individual Requests Across Available Contexts

ModelX Backend

Default

Scheduler

Runtime

Context

Context

Batch-1 Request
Batch-4 Request

26

DEFAULT SCHEDULER
Distribute Individual Requests Across Available Contexts

ModelX Backend

Default

Scheduler

Runtime

Context

Context

Incoming requests to ModelX
queued in scheduler

27

DEFAULT SCHEDULER

Assuming GPU is fully utilized by
executing 2 batch-4 inferences at
the same time.

Utilization = 3/8 = 37.5%

Distribute Individual Requests Across Available Contexts

ModelX Backend

Default

Scheduler

Runtime

Context

Context

requests assigned in order
to ready contexts

28

DEFAULT SCHEDULER
Distribute Individual Requests Across Available Contexts

ModelX Backend

Default

Scheduler

Runtime

Context

Context

When context completes a
new request is assigned

Assuming GPU is fully utilized by
executing 2 batch-4 inferences at
the same time.

Utilization = 2/8 = 25%

29

DEFAULT SCHEDULER
Distribute Individual Requests Across Available Contexts

ModelX Backend

Default

Scheduler

Runtime

Context

Context

When context completes a
new request is assigned

Assuming GPU is fully utilized by
executing 2 batch-4 inferences at
the same time.

Utilization = 4/8 = 50%

30

DYNAMIC BATCHING SCHEDULER

Default scheduler takes advantage of multiple model instances

But GPU utilization dependent on the batch-size of the inference request

Batching is often on of the best ways to increase GPU utilization

Dynamic batch scheduler (aka dynamic batcher) forms larger batches by combining multiple
inference request

Group Requests To Form Larger Batches, Increase GPU Utilization

31

DYNAMIC BATCHING SCHEDULER
Group Requests To Form Larger Batches, Increase GPU Utilization

ModelY Backend

Dynamic

Batcher

Runtime

Context

Context

Batch-1 Request
Batch-4 Request

32

DYNAMIC BATCHING SCHEDULER
Group Requests To Form Larger Batches, Increase GPU Utilization

ModelY Backend

Dynamic

Batcher

Runtime

Context

Context

Incoming requests to ModelY
queued in scheduler

33

DYNAMIC BATCHING SCHEDULER
Group Requests To Form Larger Batches, Increase GPU Utilization

ModelY Backend

Dynamic

Batcher

Runtime

Context

Context

Dynamic batcher configuration for
ModelY can specify preferred
batch-size. Assume 4 gives best
utilization.

Dynamic batcher groups requests
to give 100% utilization

34

SEQUENCE BATCHING SCHEDULER

Default and dynamic-batching schedulers work with stateless models; each request is
scheduled and executed independently

Some models are stateful, a sequence of inference requests must be routed to the same
model instance

“Online” ASR, TTS, and similar models

Models that use LSTM, GRU, etc. to maintain state across inference requests

Multi-instance and batching required by these models to maximum GPU utilization

Sequence-batching scheduler provides dynamically batching for stateful models

Dynamic Batching for Stateful Models

35

SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence

Batcher

Runtime

Context

Context

Sequence: 3 inference requests

123

12345

Sequence: 5 inference requests

36

SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence

Batcher

Runtime

Context

Context123 12345

Inference requests arrive
in arbitrary order

37

SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence

Batcher

Runtime

Context

Context123 12345

Sequence batcher allocates context slot
to sequence and routes all requests to

that slot

Context has available slots, not used
waiting requests due to stateful model

requirement

38

SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence

Batcher

Runtime

Context

Context23 2345

Sequence batcher allocates context slot
to sequence and routes all requests to

that slot

39

SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence

Batcher

Runtime

Context

Context3
3

45

Sequence batcher allocates context slot
to sequence and routes all requests to

that slot

40

SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence

Batcher

Runtime

Context

Context45

On a fully-loaded server, all context
slots would be occupied by
sequences.

As soon as one sequence ends
another is allocated to the slot.

41

ENSEMBLE MODELS
A way of pipelining models in TRTIS

ModelZ Backend

Sequence

Batcher

TensorFlow Runtime

ModelY Backend

Dynamic

Batcher

TensorRT Runtime

ModelX Backend

Default

Scheduler

TensorRT Runtime

In
fe

re
n
c
e
 R

e
q
u
e
st

 f
o
r

E
n
se

m
b
le

 M
o
d
e
l

42

Concurrent Model Execution
Multiple models (or multiple instances of same

model) may execute on GPU simultaneously

CPU Model Inference Execution
Framework native models can execute inference

requests on the CPU

Metrics
Utilization, count, and latency

Custom Backend
Custom backend allows the user more flexibility

by providing their own implementation of an

execution engine through the use of a shared

library

Stateless / Stateful Inference
Supports many model types including CNN, RNN,

etc

Dynamic Batching
Inference requests can be batched up by the

inference server to 1) the model-allowed

maximum or 2) the user-defined latency SLA

Multiple Model Format Support
TensorFlow GraphDef/SavedModel

TensorFlow and TensorRT GraphDef

TensorRT Plans

Caffe2 NetDef (ONNX import path)

Ensemble Model Support
An Ensemble represents a pipeline of one or

more models and the connection of input and

output tensors between those models

Multi-GPU support
The server can distribute inferencing across all

system GPUs

Recap

soyoungj@nvidia.com

