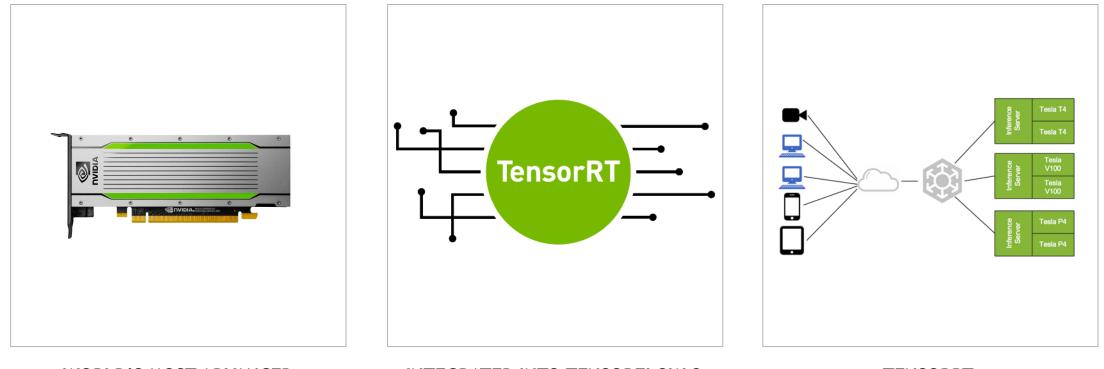


MAXIMIZING UTILIZATION FOR DATA CENTER INFERENCE WITH TENSORRT INFERENCE SERVER

정소영 상무 (<u>soyoungj@nvidia.com</u>) / 2019년 7월 2일

TENSORRT HYPERSCALE INFERENCE PLATFORM



WORLD'S MOST ADVANCED SCALE-OUT GPU INTEGRATED INTO TENSORFLOW & ONNX SUPPORT TENSORRT INFERENCE SERVER

TENSORRT INFERENCE SERVER

A Software Application for Deploying AI Models At Scale

- Maximum GPU Utilization
- Mechanisms for Large-Scale Inference Service
- Optimized for Management & Monitoring
- GitHub: <u>https://github.com/NVIDIA/tensorrt-inference-server</u>

TENSORRT INFERENCE SERVER

Architected for Maximum Datacenter Utilization

Support a variety of model frameworks

TensorRT, TensorFlow, Caffe2, custom

Support concurrent model execution, one or multiple models Multi-model, multi-GPU and asynchronous HTTP and GRPC request handling

Support many model types: CNN, RNN, "stateless", "stateful"

Multiple scheduling and batching algorithms

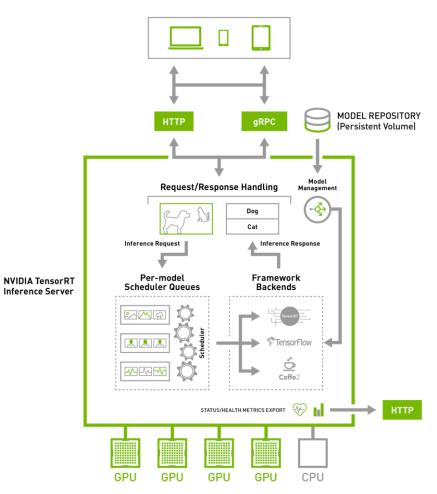
Enable both "online" and "offline" inference use cases

Batch 1, batch n, dynamic batching

Enable scalable, reliable deployment

Prometheus metrics, live/ready endpoints, Kubernetes integration

EXTENSIBLE ARCHITECTURE



Extensible backend architecture allows multiple framework and custom support

Extensible scheduler architecture allows support for different model types and different batching strategies

Leverage CUDA to support model concurrency and multi-GPU

AVAILABLE METRICS

Category	Name	Use Case	Granularity	Frequency
GPU Utilization	Power usage	Proxy for load on the GPU	Per GPU	Per second
	Power limit	Maximum GPU power limit	Per GPU	Per second
	GPU utilization	GPU utilization rate [0.0 - 1.0)	Per GPU	Per second
GPU Memory	GPU Total Memory	Total GPU memory, in bytes	Per GPU	Per second
	GPU Used Memory	Used GPU memory, in bytes	Per GPU	Per second
Count GPU & CPU	Request count	Number of inference requests	Per model	Per request
	Execution count	Number of model inference executions Request count / execution count = avg dynamic request batching	Per model	Per request
	Inference count	Number of inferences performed (one request counts as "batch size" inferences)	Per model	Per request
Latency GPU & CPU	Latency: request time	End-to-end inference request handling time	Per model	Per request
	Latency: compute time	Time a request spends executing the inference model (in the appropriate framework)	Per model	Per request
	Latency: queue time	Time a request spends waiting in the queue before being executed	Per model	Per request

MODEL REPOSITORY

File-system based repository of the models loaded and served by the inference server

Model metadata describes framework, scheduling, batching, concurrency and other aspects of each model

ModelX platform: TensorRT scheduler: default concurrency: ...

ModelY platform: TensorRT scheduler: dynamic-batcher concurrency: ... ModelZ platform: TensorFlow scheduler: sequence-batcher concurrency: ...

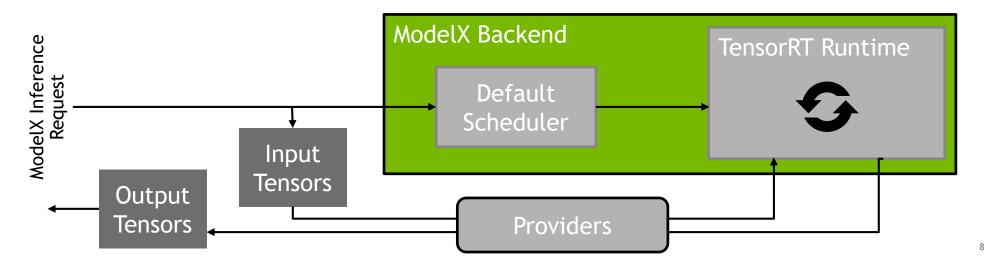
BACKEND ARCHITECTURE

Backend acts as interface between inference requests and a standard or custom framework

Supported standard frameworks: TensorRT, TensorFlow, Caffe2

Providers efficiently communicate inference request inputs and outputs (HTTP or GRPC)

Efficient data movement, no additional copies



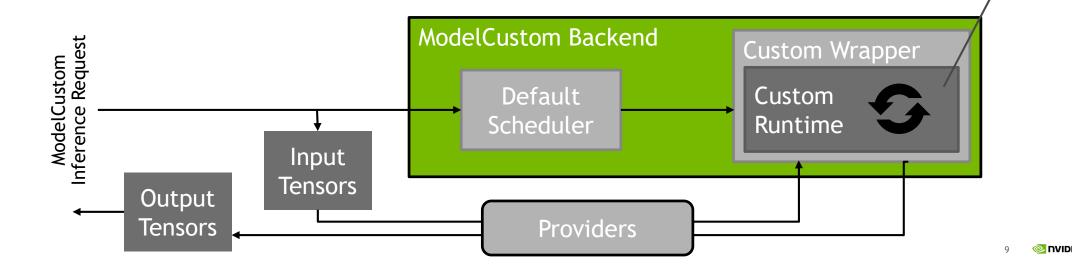
CUSTOM FRAMEWORK

Integrate Custom Logic Into Inference Server

Provide implementation of your "framework"/"runtime" as shared library

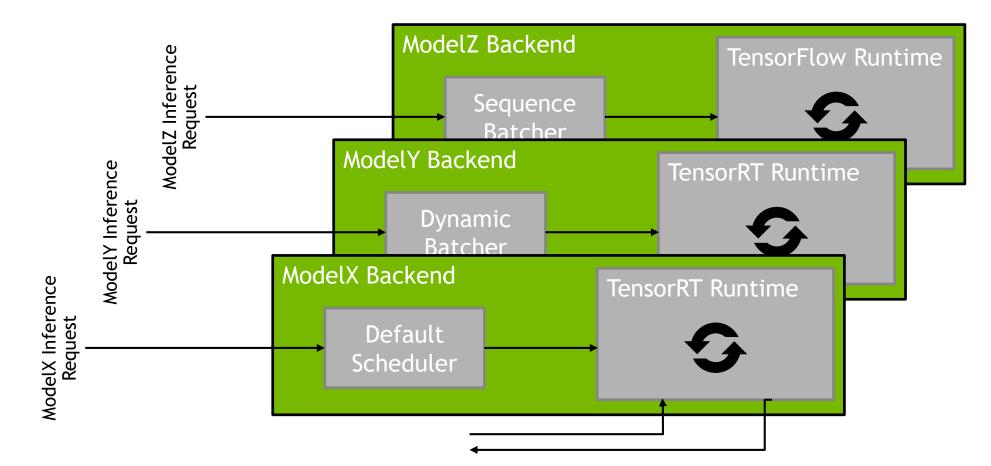
Implement simple API: Initialize, Finalize, Execute

All inference server features are available: multi-model, multi-GPU, concurrent execution, scheduling and batching algorithms, etc.



libcustom.so

MULTIPLE MODELS

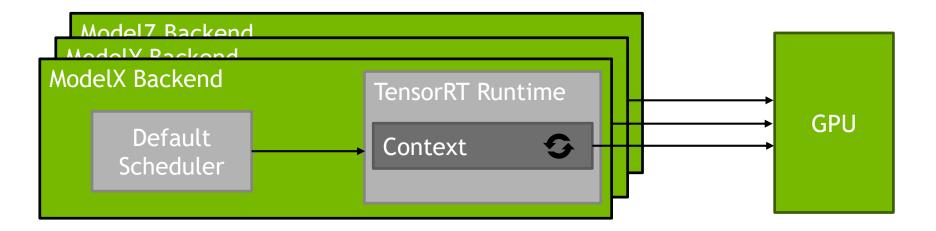


MODEL CONCURRENCY

Multiple Models Sharing a GPU

By default each model gets one *instance* on each available GPU (or 1 CPU instance if no GPUs)

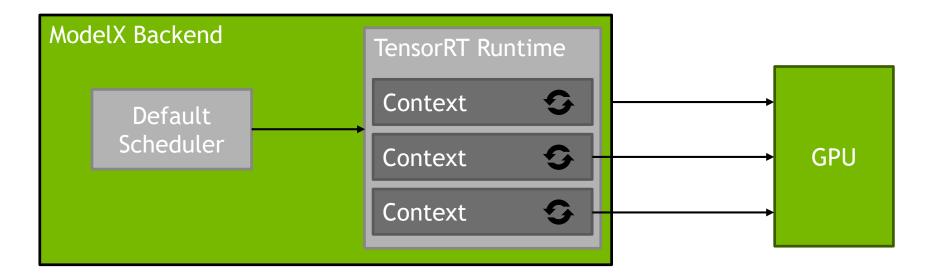
Each instance has an *execution context* that encapsulates the state needed by the runtime to execute the model



MODEL CONCURRENCY Multiple Instances of the Same Model

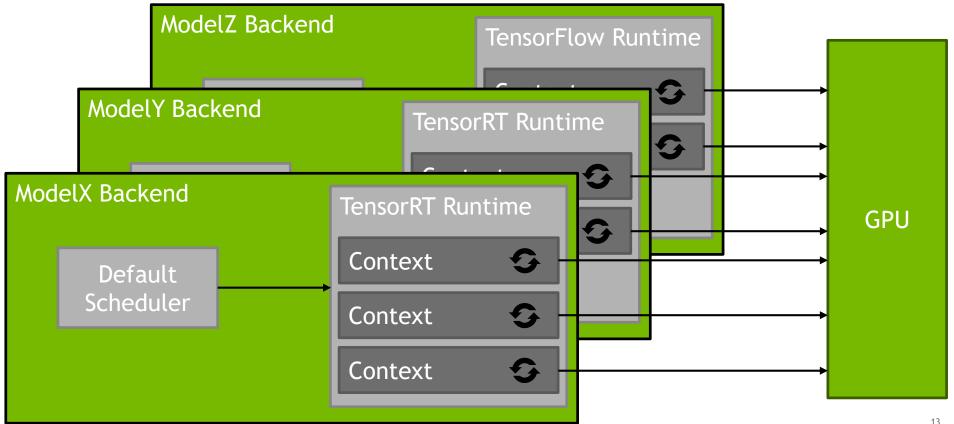
Model metadata allows multiple instances to be configured for each model

Multiple model instances allow multiple inference requests to be executed simultaneously



MODEL CONCURRENCY

Multiple Instances of Multiple Models



GPU Activity Over Time

ModelX ModelX ModelY ModelY ModelY

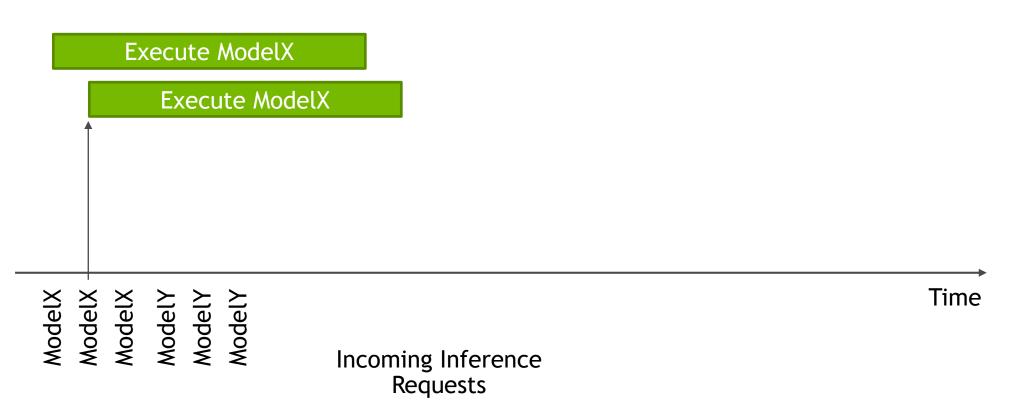
Incoming Inference Requests Time

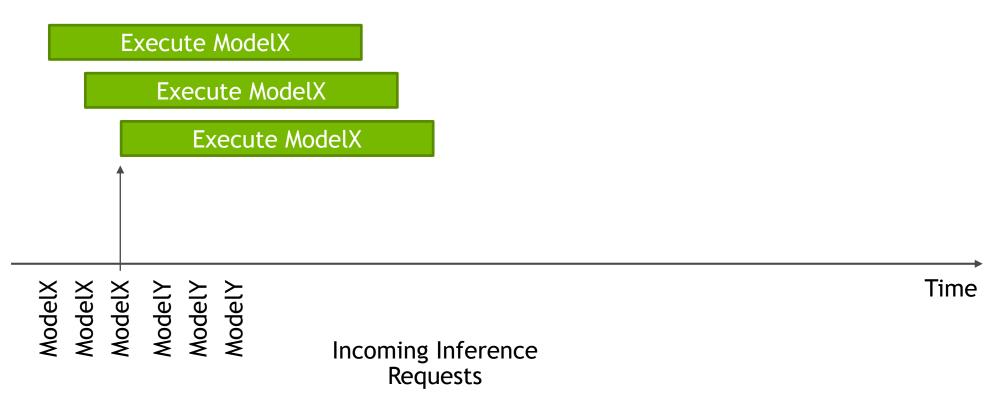
GPU Activity Over Time

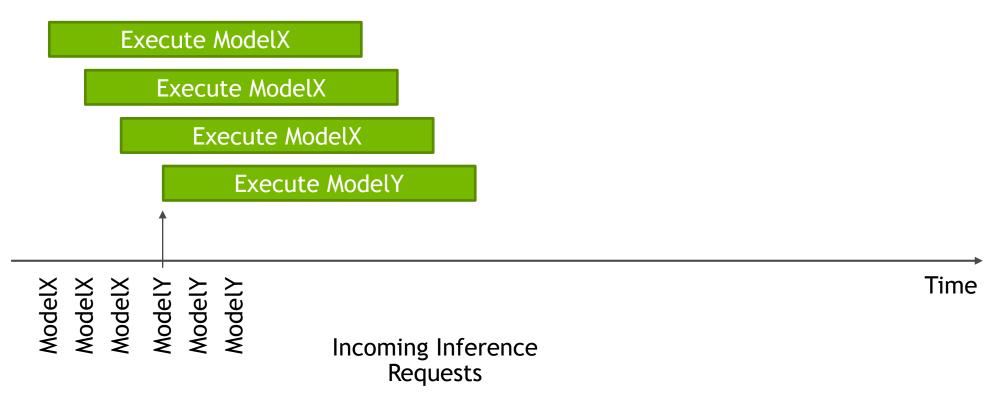
Execute I	
	NUUCIA

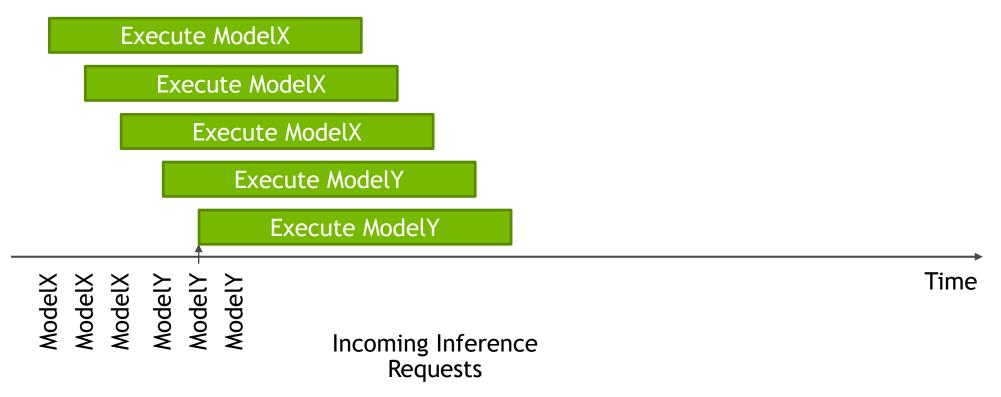
ModelX ModelX ModelY ModelY ModelY

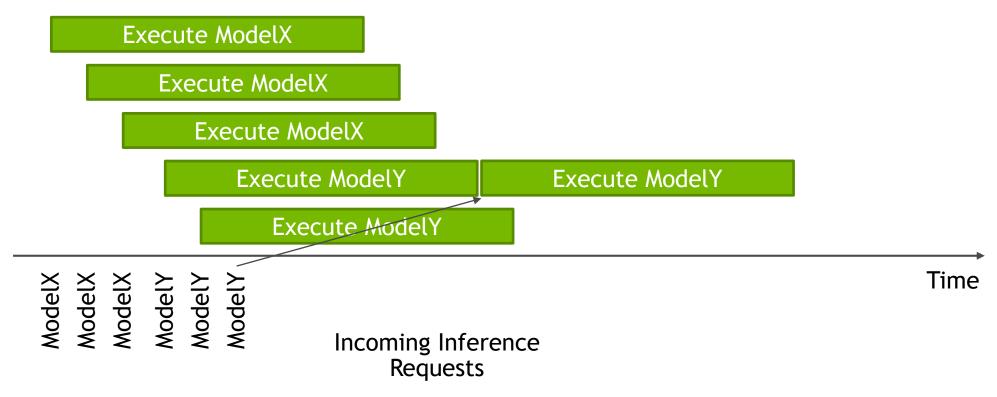
Incoming Inference Requests Time





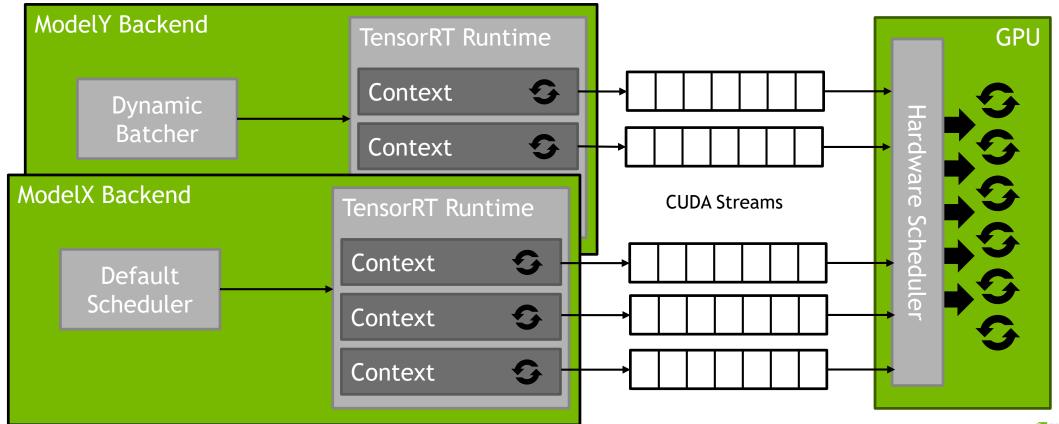






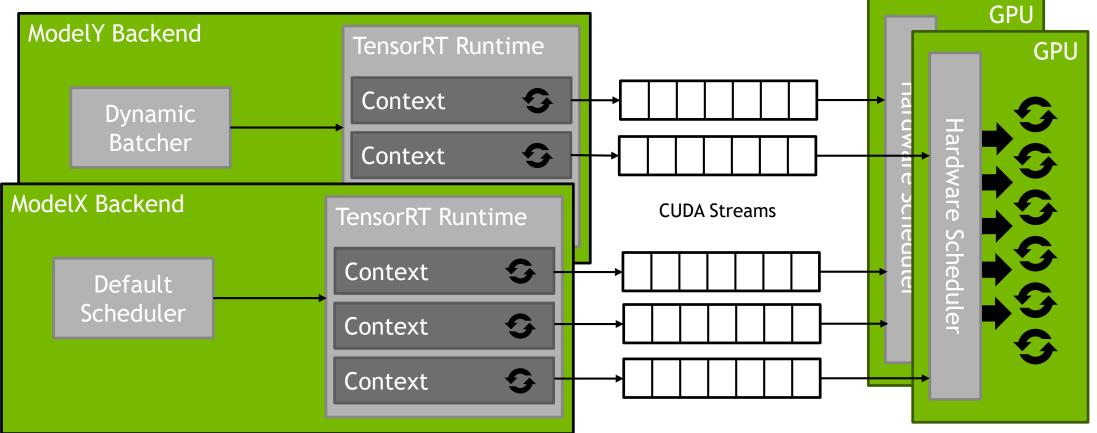
SHARING A GPU

CUDA Enables Multiple Model Execution on a GPU



MUTLI-GPU

Execution Contexts Can Target Multiple GPUs

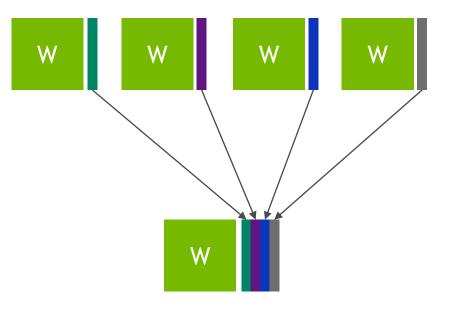


BATCHING VS NON-BATCHING

Batching: Grouping Inference Requests Together

Batch size = 1

- Run a single inference task on a GPU
- Low-latency, but the GPU is underutilized
 Batch size = N
- Group inference instances together
- High throughput and GPU utilization
- Allows employing Tensor Cores in Volta and Turing

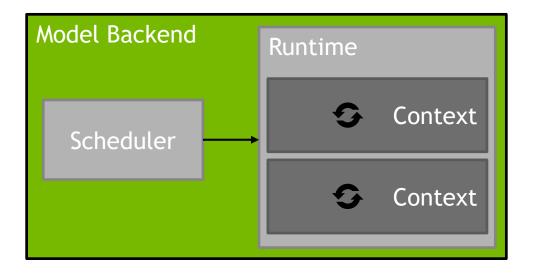


SCHEDULER ARCHITECTURE

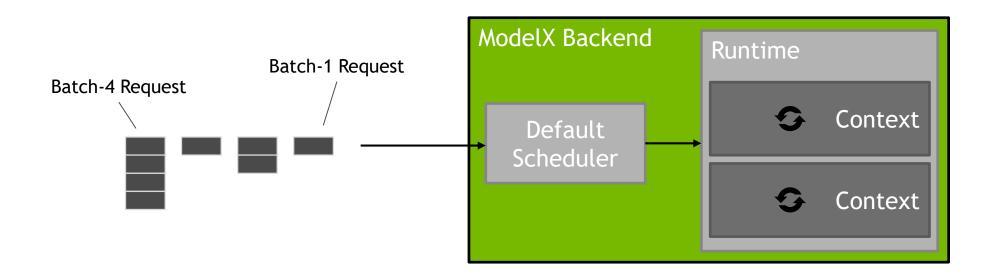
Scheduler responsible for managing all inference requests to a given model

Distribute requests to the available execution contexts

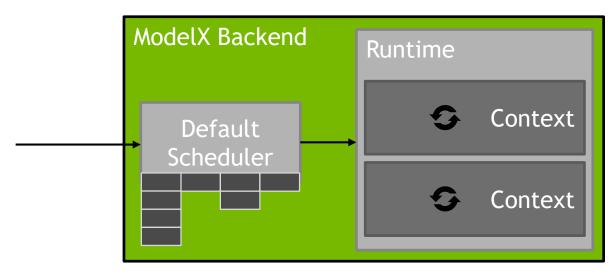
Each model can configure the type of scheduler appropriate for the model



Distribute Individual Requests Across Available Contexts



Distribute Individual Requests Across Available Contexts

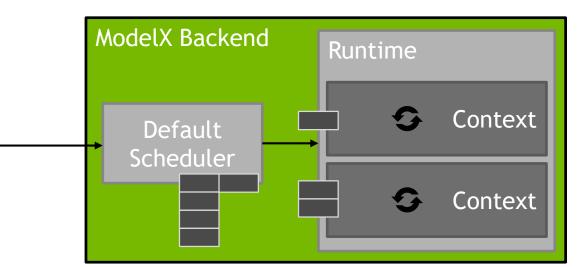


Incoming requests to ModelX queued in scheduler

Distribute Individual Requests Across Available Contexts

Assuming GPU is fully utilized by executing 2 batch-4 inferences at the same time.

Utilization = 3/8 = 37.5%

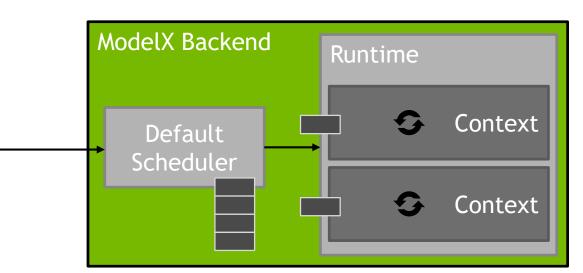


requests assigned in order to ready contexts

Distribute Individual Requests Across Available Contexts

Assuming GPU is fully utilized by executing 2 batch-4 inferences at the same time.

Utilization = 2/8 = 25%

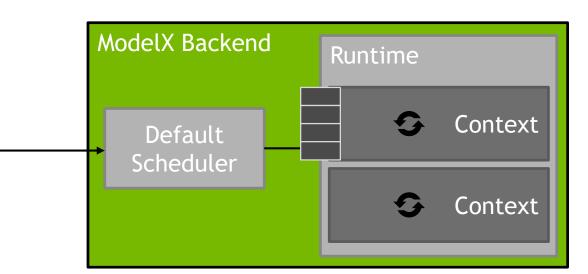


When context completes a new request is assigned

Distribute Individual Requests Across Available Contexts

Assuming GPU is fully utilized by executing 2 batch-4 inferences at the same time.

Utilization = 4/8 = 50%



When context completes a new request is assigned

Group Requests To Form Larger Batches, Increase GPU Utilization

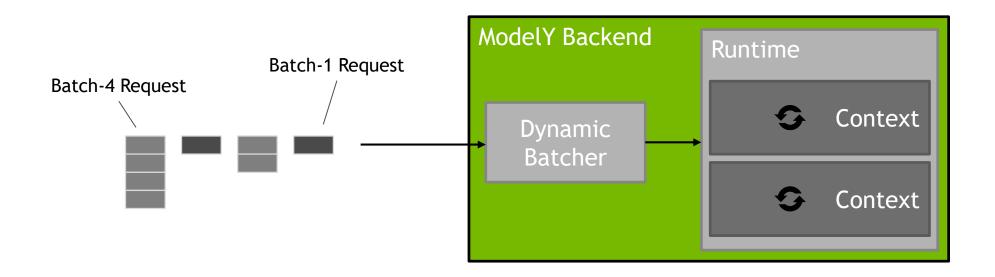
Default scheduler takes advantage of multiple model instances

But GPU utilization dependent on the batch-size of the inference request

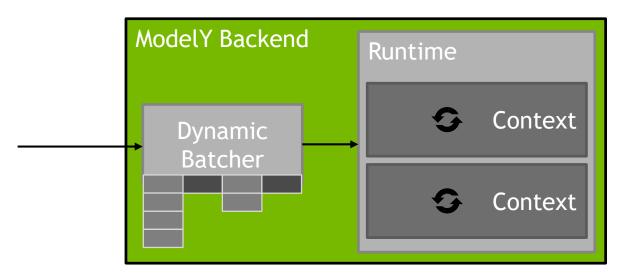
Batching is often on of the best ways to increase GPU utilization

Dynamic batch scheduler (aka dynamic batcher) forms larger batches by combining multiple inference request

Group Requests To Form Larger Batches, Increase GPU Utilization



Group Requests To Form Larger Batches, Increase GPU Utilization



Incoming requests to ModelY queued in scheduler

Group Requests To Form Larger Batches, Increase GPU Utilization

Dynamic batcher configuration for ModelY can specify preferred batch-size. Assume 4 gives best utilization. Dynamic batcher groups requests to give 100% utilization Dynamic batcher groups requests to give 100% utilization

Dynamic Batching for Stateful Models

Default and dynamic-batching schedulers work with stateless models; each request is scheduled and executed independently

Some models are stateful, a sequence of inference requests must be routed to the same model instance

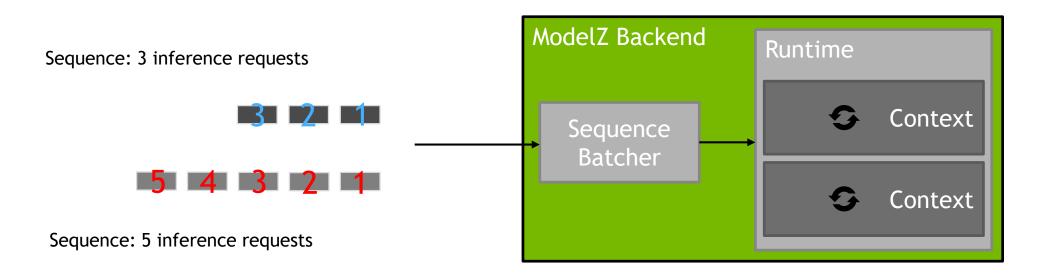
"Online" ASR, TTS, and similar models

Models that use LSTM, GRU, etc. to maintain state across inference requests

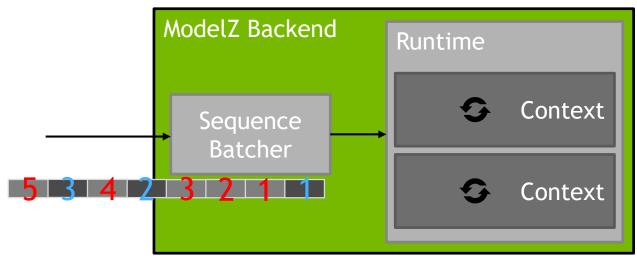
Multi-instance and batching required by these models to maximum GPU utilization

Sequence-batching scheduler provides dynamically batching for stateful models

Dynamic Batching for Stateful Models

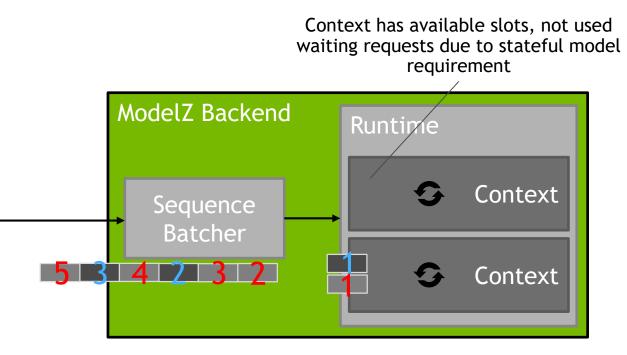


Dynamic Batching for Stateful Models



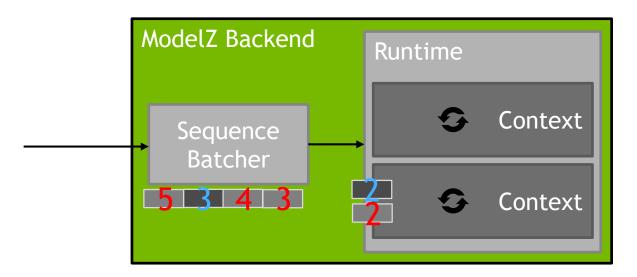
Inference requests arrive in arbitrary order

Dynamic Batching for Stateful Models



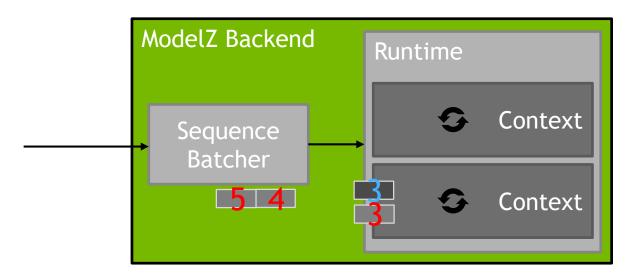
Sequence batcher allocates context slot to sequence and routes all requests to that slot

Dynamic Batching for Stateful Models



Sequence batcher allocates context slot to sequence and routes all requests to that slot

Dynamic Batching for Stateful Models

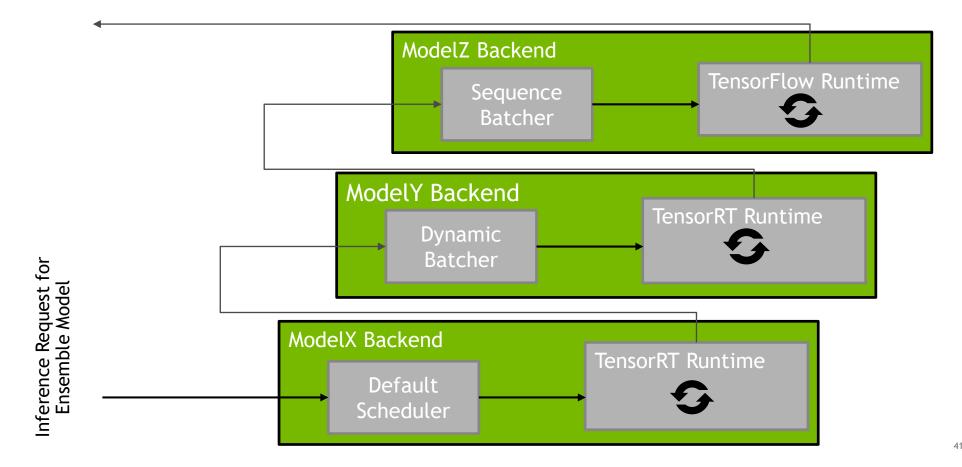


Sequence batcher allocates context slot to sequence and routes all requests to that slot

Dynamic Batching for Stateful Models

ENSEMBLE MODELS

A way of pipelining models in TRTIS



Recap

Concurrent Model Execution

Multiple models (or multiple instances of same model) may execute on GPU simultaneously

CPU Model Inference Execution

Framework native models can execute inference requests on the CPU

Metrics

Utilization, count, and latency

Custom Backend

Custom backend allows the user more flexibility by providing their own implementation of an execution engine through the use of a shared library

Stateless / Stateful Inference

Supports many model types including CNN, RNN, etc

Dynamic Batching

Inference requests can be batched up by the inference server to 1) the model-allowed maximum or 2) the user-defined latency SLA

Multiple Model Format Support

TensorFlow GraphDef/SavedModel TensorFlow and TensorRT GraphDef TensorRT Plans Caffe2 NetDef (ONNX import path)

Ensemble Model Support

An Ensemble represents a pipeline of one or more models and the connection of input and output tensors between those models

Multi-GPU support

The server can distribute inferencing across all system GPUs

TensorRT

soyoungj@nvidia.com