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Why is it so difficult to build up a DL system?

* Open source + cloud computing = everything done?

Hidden Technical Debt in Machine Learning Systems

Google, Inc.
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"Only a small fraction of real-world ML systems

is composed of ML code”




Typical GPU Computing Stack
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Data Data Instructors & Developers
Scientists Analysts Learners

1F m @ User-managed

¢ PyTorch GPUs and ML Apps

S ) E laaS / OS

Hardware Infra.

High development
costs for ML apps

Inefficient GPU
utilization



GPU management is difficult!

Lot
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» Manual assignment of GPUs for researchers
» Bothidle & insufficient at the same time

» Manual checks for SW compatibilities



Root cause of GPU mgmt. difficulties
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The OS knows Ok )
how to partition, share, and schedule &

via standardized HW interfaces.



Lack of flexible GPU resource management

« Resource management /sharing technology is limited (as a peripheral device)

?
|

CPU /RAM / Disk OS-level virtualization blackbox ioctl()

* Idle time from I/O latency

Time
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Convert 1 < CPU Idle time > Convert 2
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Training 1 < > Training 2

GPU Idle time



Complexity of SW management

CUDA 9.x
_ CUDA 10.x
Python 2.x
Python 3.x

>p S

Fast Software Model/Framework Compatibility
Release Cycles Version Mgmt. Issues



Let

GPU computation
Be
Powerful and Easy



Backend.Al https://Mmwww.backend.ai
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Streamlined platform
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Backend.Al https://www.backend.ai

- Streamlined platform
to train and serve
ML models
: on premises and clouds
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GPU management is difficult!
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* Manual assignment of GPUs for researchers
» Both idle & insufficient at the same time

= Manual checks for SW compatibilities

Backend.Al
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» Sharing and consolidation of GPUs

» Use only what you need at that time

= Containerized runtime environments
/41



Backend.Al Usage Scenario
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Building GPU clusters Sharing high-end Dynamic scaling out from
GPU nodes on-prem to clouds
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Backend.Al-powered GPU Computing Stack

& & & & s —_ (o
Data Data Instructors & Developers Jupyter w
Scientists Analysts Learners o~

Backend.Al Platform Seamless migration

of existing users
1F W O PyTorch Managed GPU Apps
ok Reduced time to
Container-level Click-to-ready GPU Web GUI for build ML apps
GPU Virtualization Environments monitoring & control
Flexible and efficient

— GPU utilization
aws 2 = = laaS/OSs

i =T
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Backend.Al Offerings

Cloud

Fits with your needs
instantly

On-demand GPU envs
for HPC and ML/DL
with pay-as-you-go
pricing

Open
Source

Get the most out of
your hardware

Hackable, customizable
computing framework
with cutting-edge
technologies

Enterprise

End-to-end
ML Infra Manager

Private GPU cloud &

cluster managing
solution for large-scale

enterprises

Backend.Al
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Backend.Al Advantages

* Only & first solution

- The market offers solutions specialized for specific functions such as
batch scheduling and container hosting.

- Backend.Al embraces headaches from both ML modelers and
DevOps engineers.

Backend.Al
- GPU-first optimization

v Extensible CUDA support via NVIDIA partnership
v Fractional GPU scaling on device
- Programmable sandboxing

v'syscall-level logging & customizable security policies
- Legacy app support
v"Resource constraining without code changes
v e.g., CPU core counting fix for old-school computation libraries



Backend.Al Components
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Backend.Al: Detail

= Programmable SysCall Sandbox
= Container resource control including
CPU/GPU Core, Memory, Storage

Request routing = Tensor -
I/O relay / proxy ‘* Flow R R

' HTTPS Agent auto-scaling
| WebSocket/ . roeneautoscaing
=R AN 1350 /@8 REST / GraphQL & Docker
for Javascript ZeroM
Backend.Al Manager P Backend.Al Agent
Backend.Al Client SDK
for Python

https://api.backend.ai =
User data files
(priva\e pr%
L ]
S
Jupyter S

o @ PostgreSQL =2 Redis

£ eted

Real-time terminal connection
Query / batch / streaming mode
Usage / session status monitor
Multimedia I/O rendering

Cloud Storage

= User session authentication
= Real-time session usage statistics
= Automatic rolling upgrade

= Per-user virtual folder
= Sharing with permission control
= Example dataset



Fractional & Multi-GPU Scaling
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Backend.Al GPU Virtualizer

nvidia-docker + CUDA Driver
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CUDA API Virtualization

Container <

Host <

CUDA-based Libraries

CUDA Runtime

Backend.Al GPU Virtualizer

nvidia-docker

CUDA Diriver

v’ Takes all benefits of
nvidia-docker

v Requires no user code
changes

v Supports all NGC
containers and user-
written CUDA apps

v' Enforces per-

container GPU
resource limits
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NVIDIA Integration: DGX Family

° NVI DIA DGX-]/DGX-Z TensorFlow, Caffe, Torch, mxnet,

Theano, etc.

- Most powerful GPU computing node

v High-speed multi-GPU interconnects NVIDIA DIGITS =
via NVLink & NVSwitch e BACKEE.

‘/Ablllty tO run Iarge-scale mOdels NVIDIA Container Runtime for Docker

NVIDIA Driver

+ Backend.Al Integration
- Adds following features to NVIDIA container runtime

Ubuntu-based Host OS

v Fractional sharing of GPUs SYSTEM SPECIFICATIONS
GPUs 16X NVIDIA® Tesla V100
v ML pipeline components GPU Memory 51268 total
Performance 2 petaFLOPS
v Topology-aware CPU/GPU scheduling NVIDIA CUDA® Cores psmo
NVIDIA Tensor Cores 10240
NVSwitches 12
Maximum Power Usage 10 kW
CPU Dual Intel Xeon Platinum
8168, 2.7 GHz, 24-cores
System Memory 1.5TB




NVIDIA Integration: NGC

- NVIDIA GPU Cloud

- A curated set of Docker images
optimized for NVIDIA GPUs

- A hosted model zoo for easy start of
ML-based apps and transfer learning
(@announced in GTC 2019)

- Backend.Al Integration
- Instantly pull and run any NGC images
by adding some annotations

- Model download / upload from NGC
(coming soon!)

ablupernel-base-alpine3 6

ablupernel-base:ubuniul 604

lablupkemel-base ubuntu 16.04-

el-base uburitul6.04

backend, ai-hoak

lablupfemel-python-tensorflow
py3-ubuntul 04

FROM nvcr.io/nvidia/digits:18.12-tensorflow

LABEL ai.
ai.
ai.
ai.
ai.
ai.
ai.
ai.
ai.
ai.
ai.
ai.

backend

backend
backend
backend

backend.
backend.
backend.

.kernelspec="1" \
backend.
backend.
backend.
backend.
backend.

envs.corecount="0OPENBLAS_NUM_THREADS, OMP_NUM_THREADS,NPROC" \
features="query batch uid-match" \

accelerators="cuda" \

resource.min.cpu="1" \

resource.min.mem="1g" \
.resource.min.cuda.device=1 \
.resource.min.cuda.shares=0.1 \
.base-distro="ubuntul6.04" \

runtime-type="python" \
runtime-path="/usr/bin/python” \
service—ports="digits:http:Seee,tensorboard:http:60062ﬁpyﬁaﬁn

:pty:3000, jupyter:http:8080, jupyterlab:http:8090"




Storage Integration

- Backend.Al's storage layer runs on top of any centralized/distributed storage.
* Personal & shared storage abstraction
- Mount storages into containers like a local filesystem

- Permission control for user-to-user & group sharing
- API-level or filesystem-level integration depending on storage solutions

Manager + Agent Manager + Agent

s =
| S
i DACKLEHD. i
' PURE “
STORAGE
NetApp
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Performance: Single-GPU Fractional Sharing

« Benchmark: Sample processing rate of cifar-10 on a V100 GPU (16/32GB)
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* Results

- Sharing overhead : -10% SPR when a container is added to share the same GPU
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Performance: Multi-GPU Fractional Sharing

Setup : Customer's BMT environment (Intel-based custom GPU server)
Workload : fashion-MNIST
P100 GPU Cluster (2-node 16 GPUs)

- Spec: GPU shared (SMP 4, GPU Memory 1GiB)

- Concurrency: 50 users

V100 GPU Cluster (1-node 8 GPUs)
- Spec: GPU shared (SMP 4, GPU Memory 1 GiB) / non-shared (whole device)
- Concurrency: 50 users / 8 users

Avg. Sample Processing Time (us/step)
P100 (fractional)

V100 (fractional) +66.6% % Lower is better
If the contention equally slows

down the computation speed,

it must be 625% slower.

V100 (discrete) +26.5%

(0] 20 40 60 80 100 120 140 160 180



Just Model It (IMI) Contest

» “Standing on the Shoulders of Titans”
- Jan.~Mar. 2019
- https://events.backend.ai/just-model-it/

- Provides GPU resources to ML scientists /
developers for free!

- For us: system validation & tests

- For participants: chances to creating
machine learning models without
huddle

* How

- Setup an virtual Backend.Al GPU cluster
with many remote GPU servers / Cloud
instances

- Provide resources via Backend.Al client
CLI/GUl app

Just Model,It.; Backend.Al

| ]
Standing Blldérs Bf Titans
S % =]

[ JUST MODEL IT M#E57| } o
AR

=
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https://events.backend.ai/just-model-it/

Creating virtual Backend.Al cloud with DGX series

« On-premise cluster for Just model it event

* 44 \V100 on-premise GPUs + (8~32) V100 GPU instance on cloud
- (16) 1 DGX-2 server
- (4) 1 custom GPU server (with 4 V100 GPUs)
- (16) 2 DGX-1V (with support by Nvidia)
- (8) 2 DGX Stations (with support by Nvidia)
- (8~32) Amazon EC2 instances (p3-8xlarge) as spot instances
- + CPU-only on-premise node (44-core Xeon) for compile / data preprocessing

» & geographically distant locations
- DGX-2 + Custom GPU server (Lablup Inc.)
- DGX-1V+DGX stations (Baynex, Local Nvidia Partner)
- DGX-1V+DGX stations (Daebo, Local Nvidia Partner)
- Amazon EC2 (ap-northeast-2)




Creating virtual Backend.Al cloud with DGX series

« Agent roles DGX-2 10MBps
- : DGX-1V
NODEO1: Backend.Al manager “ T,
- NODEO1~05: Active GPU Cluster DGX-Station

- NODEOG6: Reserved / Staging area

- NODEO7: Image compilation / Julia
- NODES5O0~53: Spot Instance on AWS

» Storage configuration
- Scratch disk on each agent

i NODEO5

- Cachefilesd to each node

NODEO6 4
- RedHat Ceph Storage as
distributed storage backend

I m NODEO4
v" Disabled due to the limited

network bandwidth ; | NODEO1 |




Configurations

* 12 independent teams
- Research teams / Independent developer / Startups

* Resource allocation (for each team)

- CPU: 22 Cores (various clock, followed by host CPU)

- RAM: 512GB

- Storage: 3TB scratch (8 NVMe RAID-0) + a

- GPU:64GCB (32x2 or 16x4 VV100s)
v/ 32x2: Text workloads (RNN / BERT projects)
v 16x4: Image / video workloads (CNN / GAN projects)
v Multi-GPU scaling mode



E:":‘

. Al Tech Talk
The Event Beglnsr 21 Jan. 2019, Goog‘|e Startup Campus
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Lessons from the Earth:

Technical insights from JMI events / tests
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JMI Event Showcase: TAC-GAN-eCommerce

* Problem

Previous dataset

- 1. Missing image for product ad.

- 2. Promotional text to product
images » Generates unrelated
meta data

o s

S
. . 0 B .
¢ SOIUtlon: teXt to Image flowers dataset birds dataset

SyntheSiS eCommerce dataset

Meta data to product image i i _ solid qwest ”
: natural ) a0 - street bike

Prototyping TAC-GAN acoustic —» R _ motorcycle  —— -

1. Creating production image guitars l helmet matte

. small shoei

using generator - helmets

2. Judge abusing using
discriminator

https://github.com/junwoopark92/TAC-GAN-eCommer




JMI Event Showcase: TAC-GAN-eCommerce

« Data specification

Amazon eCommerce Dataset
9M products

16,000 leaf categories
260GB images

* Preprocessing Pipeline

- Indexing using sntencepiece

- Sentence embedding with
doc2vec in genism

- Data augmentation with
label shuffling

https://github.com/junwoopark92/TAC-GAN-eCommer



JMI Event Showcase: TAC-GAN-eCommerce

* Generated image examples
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JMI Event Showcase: TAC-GAN-eCommerce

» Generating product image from product metada
« Example: Guitar + variations

+Accoustics §

guitars taylor bar 8 blueridge br first act

baritone guitar 140 historic acoustic guitars
8 string indian dreadnaught
rosewood guitar steel
+Color +Electric acoustic guitars  string acoustics

= cherry solid seabluesolid  solidbody guitars solid body deansolid solid body shred
bo.dy elnttrc vody §che?ter schecter electric schecter model body electric  x explorer
gultars electricguitar  guitar black t electric bass guitars electric guitar
butterscotch ebony standard

https://github.com/junwoopark92/TAC-GAN-eCommer




JMI Event Showcase: TAC-GAN-eCommerce

 Classify abused product image using discriminator
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JMI Results: Benchmark (TAC-GAN-eCommerce)

* 1070 vs Tesla V100 16GB single (batch size =128):
- ~3X performance difference.
- Adjusted the batch size until there was no performance degradation due to 1/O.
- Average load: 90~100 (1070), 80~90 (V100)
» Tesla V100 16GB (single ~ 4, batch size = 32 ~ 128)
- Performance increases as the number of GPUs increases, but not linear.
- TAC-GAN model size is small: Data feeding seems to be a bottleneck.
- If the size of the batch is increased beyond a certain size, an error that exceeds the

shared area of |10 occurs.
- Load average: Single GPU: 80~90, 4 GPUs: 40~50

Performance by gpu model

dgx multi-4 (batch=128)
dgx multi-3 (batch=96

ul )
wi =64)
dgx single (batch=32)

dgx multi-2 (batch=64
- - — -
o 0 0 &0 80

Sec per Epoch

GPU models

dgx single (batch=128)

gtx 1070




JMI Event: Lessons

+ Backend.Al offers what we intended to offer.
- nvidia-docker - a consistent way of using GPUs inside containers.
- Backend.Al - a flexible way of allocating GPUs to containers.

* Technical insights
- Unobtrusive upgrade is essential to keep long-running computations successful.
v' The manager and agent may restart while keeping containers running.

v"Network tunneling for in-container services (e.g., Jupyter) enables seamless
upgrades with brief reconnections.

« UX insights
- Non-developer users often think containers same as persistent VMs.
v Containers are on-demand and volatile.

v The key advantage of containers (reproducibility) may be
the key surprise ("my things are gone!") for some category of users.



Summary

» Goals towards real-world ML systems
- Data collection & feature extraction
- Hardware resource management
- Model deployments & feedback monitoring

- Backend.Al: GPU-optimized middleware for ML model training & serving
- Integration with NVIDIA platforms (DGX + NGC)
- Integration with storage platforms (open-source, vendors)
- GPU fractional scaling: reduce idle time of GPUs and TCO

- Cloud and on-premise offerings
(open-source / cloud subscription / enterprise support)

* Future roadmap: Evolution to an end-to-end ML pipeline system



Thank you

Inquiry : contact@lablup.com

Lablup Inc. https:./Mwww.lablup.com
Backend Al https:/Mww.backend.ai
Backend.Al GitHub  https://github.com/lablup/backend.ai
Backend Al Cloud  https://cloud.backend.ai
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