Improving GPU Utilization for multi-tenant deep learning workloads on DGX and cloud platforms

Joongi Kim @ Lablup Inc.
2019. 7. 2
NVIDIA AI Conference

Disclaimer
This document may contain undisclosed information. Permission from Lablup Inc. is mandatory to access the information in this slide document.
Why is it so difficult to build up a DL system?

- Open source + cloud computing = everything done?

Hidden Technical Debt in Machine Learning Systems

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips
{dsculley, gholt, dgg, edavydov, toddphillips}@google.com
Google, Inc.

Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, Dan Dennison
{ebner, vchaudhary, mwyoung, jfcrespo, dennison}@google.com
Google, Inc.

"Only a small fraction of real-world ML systems is composed of ML code"
TensorFlow is an end-to-end open-source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications.

Typical GPU Computing Stack

<table>
<thead>
<tr>
<th>User-managed GPUs and ML Apps</th>
<th>High development costs for ML apps</th>
</tr>
</thead>
<tbody>
<tr>
<td>IaaS / OS</td>
<td>Inefficient GPU utilization</td>
</tr>
<tr>
<td>Hardware Infra.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Scientists</th>
<th>Data Analysts</th>
<th>Instructors & Learners</th>
<th>Developers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GPU management is difficult!

- Manual assignment of GPUs for researchers
- Both idle & insufficient at the same time
- Manual checks for SW compatibilities
The OS knows how to partition, share, and schedule via standardized HW interfaces.
Lack of flexible GPU resource management

- Resource management / sharing technology is limited (as a peripheral device)
- Idle time from I/O latency
Complexity of SW management

- Fast Software Release Cycles
- Model/Framework Version Mgmt.
- Compatibility Issues

CUDA 9.x
CUDA 10.x
Python 2.x
Python 3.x
...
Let GPU computation be powerful and easy.
Streamlined platform to train and serve ML models on premises and clouds easy and fast.
Streamlined platform to train and serve ML models on premises and clouds easy and fast

https://www.backend.ai
GPU management is difficult!

- Manual assignment of GPUs for researchers
- Both idle & insufficient at the same time
- Manual checks for SW compatibilities

- Sharing and consolidation of GPUs
- Use only what you need at that time
- Containerized runtime environments
Backend.AI Usage Scenario

Building GPU clusters

Sharing high-end GPU nodes

Dynamic scaling out from on-prem to clouds
Backend.AI-powered GPU Computing Stack

Backend.AI Platform

- Managed GPU Apps
- Container-level GPU Virtualization
- Click-to-ready GPU Environments
- Web GUI for monitoring & control
- Hardware Infra.

- Data Scientists
- Data Analysts
- Instructors & Learners
- Developers

Seamless migration of existing users
Reduced time to build ML apps
Flexible and efficient GPU utilization

IaaS / OS
Backend.AI Offerings

Cloud
- Fits with your needs instantly
- On-demand GPU envs for HPC and ML/DL with pay-as-you-go pricing

Open Source
- Get the most out of your hardware
- Hackable, customizable computing framework with cutting-edge technologies

Enterprise
- End-to-end ML Infra Manager
- Private GPU cloud & cluster managing solution for large-scale enterprises

Backend.AI
Backend.AI Advantages

• Only & first solution
 - The market offers solutions specialized for specific functions such as batch scheduling and container hosting.
 - Backend.AI embraces headaches from both ML modelers and DevOps engineers.

• Backend.AI
 - GPU-first optimization
 ✓ Extensible CUDA support via NVIDIA partnership
 ✓ Fractional GPU scaling on device
 - Programmable sandboxing
 ✓ syscall-level logging & customizable security policies
 - Legacy app support
 ✓ Resource constraining without code changes
 ✓ e.g., CPU core counting fix for old-school computation libraries
Backend.AI Components

- **Backend.AI Agent**: Client SDK, Manager, Scaling Group
- **Kernel**: Session DB, User DB, Config Server, Storage
- **AWS**: Scaling Group

Diagram showing the integration and components of Backend.AI, including Client SDK, Manager, Agent, Kernel, Session DB, User DB, Config Server, and Storage.
Backend.AI: Detail

- **Backend.AI Client SDK** for Javascript
- **Backend.AI Client SDK** for Python

- **Backend.AI Manager**
 - HTTPS
 - WebSocket / REST / GraphQL

- **ZeroMQ**

- **Tensor Flow**
 - **Backend.AI Jail**
 - **Docker**

- **Redis**
 - **PostgreSQL**

- **Cloud Storage**

- **User data files**

- **Real-time terminal connection**
- **Query / batch / streaming mode**
- **Usage / session status monitor**
- **Multimedia I/O rendering**

- **Request routing**
- **I/O relay / proxy**
- **Agent auto-scaling**
- **Hybrid cloud support**

- **User session authentication**
- **Real-time session usage statistics**
- **Automatic rolling upgrade**

- **Programmable SysCall Sandbox**
- **Container resource control including CPU/GPU Core, Memory, Storage**

- **Per-user virtual folder**
- **Sharing with permission control**
- **Example dataset**

- **Example dataset**

- **Request routing**
- **I/O relay / proxy**
- **Agent auto-scaling**
- **Hybrid cloud support**
Fractional & Multi-GPU Scaling

Container 1
/device:GPU:0
PCIE/0

Container 2
/device:GPU:0 /device:GPU:1
PCIE/0 PCIE/1

Container 3
/device:GPU:0 /device:GPU:1
PCIE/0 PCIE/1

Container 4
/device:GPU:0 /device:GPU:1 /device:GPU:2
PCIE/0 PCIE/1 PCIE/2

Backend.AI GPU Virtualizer

nvidia-docker + CUDA Driver

Host-side view:
CUDA API Virtualization

Container

- CUDA-based Libraries
- CUDA Runtime
- Backend.AI GPU Virtualizer
- nvidia-docker

Host

- CUDA Driver
- NVML
- GPU
- GPU
- GPU

- Takes all benefits of nvidia-docker
- Requires no user code changes
- Supports all NGC containers and user-written CUDA apps
- Enforces per-container GPU resource limits
NVIDIA Integration: DGX Family

• NVIDIA DGX-1/DGX-2
 - Most powerful GPU computing node
 ✓ High-speed multi-GPU interconnects via NVLink & NVSwitch
 ✓ Ability to run large-scale models

• Backend.AI Integration
 - Adds following features to NVIDIA container runtime
 ✓ Fractional sharing of GPUs
 ✓ ML pipeline components
 ✓ Topology-aware CPU/GPU scheduling

SYSTEM SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>16X NVIDIA® Tesla V100</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPUs</td>
<td>16X</td>
</tr>
<tr>
<td>GPU Memory</td>
<td>512GB total</td>
</tr>
<tr>
<td>Performance</td>
<td>2 petaFLOPS</td>
</tr>
<tr>
<td>NVIDIA CUDA® Cores</td>
<td>81920</td>
</tr>
<tr>
<td>NVIDIA Tensor Cores</td>
<td>10240</td>
</tr>
<tr>
<td>NVSwitches</td>
<td>12</td>
</tr>
<tr>
<td>Maximum Power Usage</td>
<td>10 kW</td>
</tr>
<tr>
<td>CPU</td>
<td>Dual Intel Xeon Platinum 8168, 2.7 GHz, 24-cores</td>
</tr>
<tr>
<td>System Memory</td>
<td>1.5TB</td>
</tr>
</tbody>
</table>
NVIDIA Integration: NGC

• NVIDIA GPU Cloud
 - A curated set of Docker images optimized for NVIDIA GPUs
 - A hosted model zoo for easy start of ML-based apps and transfer learning (announced in GTC 2019)

• Backend.AI Integration
 - Instantly pull and run any NGC images by adding some annotations
 - Model download / upload from NGC (coming soon!)

```
FROM nvcr.io/nvidia/digits:18.12-tensorflow
LABEL ai.backend.kernelspec="1" \
ai.backend.envs.corecount="OPENBLAS_NUM_THREADS,OMP_NUM_THREADS,NPROC" \
ai.backend.features="query_batch uid-match" \
ai.backend.accelerators="cuda" \
ai.backend.resource.min.cpu="1" \
ai.backend.resource.min.mem="1g" \
ai.backend.resource.min.cuda.device=1 \
ai.backend.resource.min.cuda.shares=0.1 \
ai.backend.base-distro="ubuntu16.04" \
ai.backend.runtime-type="python" \
ai.backend.runtime-path="/usr/bin/python" \
```
Storage Integration

- Backend.AI's storage layer runs on top of any centralized/distributed storage.
- Personal & shared storage abstraction
 - Mount storages into containers like a local filesystem
 - Permission control for user-to-user & group sharing
 - API-level or filesystem-level integration depending on storage solutions
Performance: Single-GPU Fractional Sharing

- **Benchmark:** Sample processing rate of cifar-10 on a V100 GPU (16/32GB)

Results
- Sharing overhead: **-10% SPR** when a container is added to share the same GPU
Performance: Multi-GPU Fractional Sharing

- **Setup**: Customer's BMT environment (Intel-based custom GPU server)
- **Workload**: fashion-MNIST
- **P100 GPU Cluster** (2-node 16 GPUs)
 - Spec: GPU shared (SMP 4, GPU Memory 1 GiB)
 - Concurrency: 50 users
- **V100 GPU Cluster** (1-node 8 GPUs)
 - Spec: GPU shared (SMP 4, GPU Memory 1 GiB) / non-shared (whole device)
 - Concurrency: 50 users / 8 users

![Bar chart showing average sample processing time (us/step)]

- P100 (fractional)
- V100 (fractional)
- V100 (discrete)

※ Lower is better

If the contention equally slows down the computation speed, it must be 625% slower.
Just Model It (JMI) Contest

• “Standing on the Shoulders of Titans”
• Jan.-Mar. 2019
 - [link](https://events.backend.ai/just-model-it/)
 - Provides GPU resources to ML scientists / developers for free!
 - For us: system validation & tests
 - For participants: chances to creating machine learning models without huddle

• How
 - Setup an virtual Backend.AI GPU cluster with many remote GPU servers / Cloud instances
 - Provide resources via Backend.AI client CLI / GUI app
Creating virtual Backend.AI cloud with DGX series

- On-premise cluster for *Just model it* event
- **44** V100 on-premise GPUs + (8~32) V100 GPU instance on cloud
 - (16) 1 DGX-2 server NODE01
 - (4) 1 custom GPU server (with 4 V100 GPUs) NODE06
 - (16) 2 DGX-1V *(with support by Nvidia)* NODE02, NODE04
 - (8) 2 DGX Stations *(with support by Nvidia)* NODE03, NODE05
 - (8~32) Amazon EC2 instances (p3-8xlarge) as spot instances NODE50-NODE53
 - + CPU-only on-premise node (44-core Xeon) for compile / data preprocessing NODE07

- **4** geographically distant locations
 - DGX-2 + Custom GPU server (Lablup Inc.)
 - DGX-1V+DGX stations (Baynex, Local Nvidia Partner)
 - DGX-1V+DGX stations (Daebo, Local Nvidia Partner)
 - Amazon EC2 (ap-northeast-2)
Creating virtual Backend.AI cloud with DGX series

• Agent roles
 - **NODE01**: Backend.AI manager
 - **NODE01-05**: Active GPU Cluster
 - **NODE06**: Reserved / Staging area
 - **NODE07**: Image compilation / Julia
 - **NODE50-53**: Spot Instance on AWS

• Storage configuration
 - Scratch disk on each agent
 - Cachefilesd to each node
 - RedHat Ceph Storage as distributed storage backend
 ✓ Disabled due to the limited network bandwidth
Configurations

• 12 independent teams
 - Research teams / Independent developer / Startups

• Resource allocation (for each team)
 - CPU: 22 Cores (various clock, followed by host CPU)
 - RAM: 512GB
 - Storage: 3TB scratch (8 NVMe RAID-0) + α
 - GPU:64GB (32x2 or 16x4 V100s)
 ✓ 32x2: Text workloads (RNN / BERT projects)
 ✓ 16x4: Image / video workloads (CNN / GAN projects)
 ✓ Multi-GPU scaling mode
The Event Begins,

21 Jan. 2019, Google Startup Campus
...and one month passed.
Lessons from the Earth:
Technical insights from JMI events / tests
JMI Event Showcase: TAC-GAN-eCommerce

• Problem
 - 1. Missing image for product ad.
 - 2. Promotional text to product images → Generates unrelated meta data

• Solution: text to image synthesis
 - Meta data to product image
 - Prototyping TAC-GAN
 - 1. Creating production image using generator
 - 2. Judge abusing using discriminator

https://github.com/junwoopark92/TAC-GAN-eCommer
JMI Event Showcase: TAC-GAN-eCommerce

- **Data specification**
 - Amazon eCommerce Dataset
 - 9M products
 - 16,000 leaf categories
 - 260GB images

- **Preprocessing Pipeline**
 - Indexing using sentencepiece
 - Sentence embedding with doc2vec in genism
 - Data augmentation with label shuffling

https://github.com/junwoopark92/TAC-GAN-eCommer
JMI Event Showcase: TAC-GAN-eCommerce

- Generated image examples

https://github.com/junwoopark92/TAC-GAN-eCommer
JMI Event Showcase: TAC-GAN-eCommerce

- Generating product image from product metadata
- Example: Guitar + variations

+Accoustics

+Color

+Electric

https://github.com/junwoopark92/TAC-GAN-eCommer
JMI Event Showcase: TAC-GAN-eCommerce

- Classify abused product image using discriminator

https://github.com/junwoopark92/TAC-GAN-eCommer
JMI Results: Benchmark (TAC-GAN-eCommerce)

• 1070 vs Tesla V100 16GB single (batch size = 128):
 - ~3X performance difference.
 - Adjusted the batch size until there was no performance degradation due to I/O.
 - Average load: 90~100 (1070), 80~90 (V100)

• Tesla V100 16GB (single ~ 4, batch size = 32 ~ 128)
 - Performance increases as the number of GPUs increases, but not linear.
 - TAC-GAN model size is small: Data feeding seems to be a bottleneck.
 - If the size of the batch is increased beyond a certain size, an error that exceeds the shared area of IO occurs.
 - Load average: Single GPU: 80~90, 4 GPUs: 40~50
JMI Event: Lessons

• Backend.AI offers what we intended to offer.
 - **nvidia-docker** → a *consistent* way of using GPUs inside containers.
 - **Backend.AI** → a *flexible* way of allocating GPUs to containers.

• Technical insights
 - **Unobtrusive upgrade** is essential to keep long-running computations successful.
 ✓ The manager and agent may restart while keeping containers running.
 ✓ Network tunneling for in-container services (e.g., Jupyter) enables seamless upgrades with brief reconnections.

• UX insights
 - **Non-developer users** often think containers same as persistent VMs.
 ✓ Containers are *on-demand* and *volatile*.
 ✓ The key advantage of containers (reproducibility) may be the key surprise ("my things are gone!") for some category of users.
Summary

• Goals towards real-world ML systems
 - Data collection & feature extraction
 - Hardware resource management
 - Model deployments & feedback monitoring

• **Backend.AI**: GPU-optimized middleware for ML model training & serving
 - Integration with NVIDIA platforms (DGX + NGC)
 - Integration with storage platforms (open-source, vendors)
 - GPU fractional scaling: reduce idle time of GPUs and TCO
 - Cloud and on-premise offerings
 (open-source / cloud subscription / enterprise support)

• Future roadmap: Evolution to an end-to-end ML pipeline system
Thank you

Inquiry: contact@lablup.com