
Improving GPU Utilization
for multi-tenant deep learning workloads
on DGX and cloud platforms

Joongi Kim @ Lablup Inc.
2019. 7. 2
NVIDIA AI Conference

Make AI Accessible

NVIDIA
AI CONFERENCE 2019

1 / 41

This�document�may�contain�undisclosed�information.
Permission�from�Lablup�Inc.�is�mandatory�to�access�the�information�in�this�slide�document.�

Disclaimer

Why is it so difficult to build up a DL system?

• Open source + cloud computing = everything done?

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure is vast and complex.

Static Analysis of Data Dependencies. In traditional code, compilers and build systems perform
static analysis of dependency graphs. Tools for static analysis of data dependencies are far less
common, but are essential for error checking, tracking down consumers, and enforcing migration
and updates. One such tool is the automated feature management system described in [12], which
enables data sources and features to be annotated. Automated checks can then be run to ensure that
all dependencies have the appropriate annotations, and dependency trees can be fully resolved. This
kind of tooling can make migration and deletion much safer in practice.

4 Feedback Loops

One of the key features of live ML systems is that they often end up influencing their own behavior
if they update over time. This leads to a form of analysis debt, in which it is difficult to predict the
behavior of a given model before it is released. These feedback loops can take different forms, but
they are all more difficult to detect and address if they occur gradually over time, as may be the case
when models are updated infrequently.

Direct Feedback Loops. A model may directly influence the selection of its own future training
data. It is common practice to use standard supervised algorithms, although the theoretically correct
solution would be to use bandit algorithms. The problem here is that bandit algorithms (such as
contextual bandits [9]) do not necessarily scale well to the size of action spaces typically required for
real-world problems. It is possible to mitigate these effects by using some amount of randomization
[3], or by isolating certain parts of data from being influenced by a given model.

Hidden Feedback Loops. Direct feedback loops are costly to analyze, but at least they pose a
statistical challenge that ML researchers may find natural to investigate [3]. A more difficult case is
hidden feedback loops, in which two systems influence each other indirectly through the world.

One example of this may be if two systems independently determine facets of a web page, such as
one selecting products to show and another selecting related reviews. Improving one system may
lead to changes in behavior in the other, as users begin clicking more or less on the other components
in reaction to the changes. Note that these hidden loops may exist between completely disjoint
systems. Consider the case of two stock-market prediction models from two different investment
companies. Improvements (or, more scarily, bugs) in one may influence the bidding and buying
behavior of the other.

5 ML-System Anti-Patterns

It may be surprising to the academic community to know that only a tiny fraction of the code in
many ML systems is actually devoted to learning or prediction – see Figure 1. In the language of
Lin and Ryaboy, much of the remainder may be described as “plumbing” [11].

It is unfortunately common for systems that incorporate machine learning methods to end up with
high-debt design patterns. In this section, we examine several system-design anti-patterns [4] that
can surface in machine learning systems and which should be avoided or refactored where possible.

4

Hidden Technical Debt in Machine Learning Systems

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips
{dsculley,gholt,dgg,edavydov,toddphillips}@google.com

Google, Inc.

Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, Dan Dennison
{ebner,vchaudhary,mwyoung,jfcrespo,dennison}@google.com

Google, Inc.

Abstract

Machine learning offers a fantastically powerful toolkit for building useful com-
plex prediction systems quickly. This paper argues it is dangerous to think of
these quick wins as coming for free. Using the software engineering framework
of technical debt, we find it is common to incur massive ongoing maintenance
costs in real-world ML systems. We explore several ML-specific risk factors to
account for in system design. These include boundary erosion, entanglement,
hidden feedback loops, undeclared consumers, data dependencies, configuration
issues, changes in the external world, and a variety of system-level anti-patterns.

1 Introduction

As the machine learning (ML) community continues to accumulate years of experience with live
systems, a wide-spread and uncomfortable trend has emerged: developing and deploying ML sys-
tems is relatively fast and cheap, but maintaining them over time is difficult and expensive.

This dichotomy can be understood through the lens of technical debt, a metaphor introduced by
Ward Cunningham in 1992 to help reason about the long term costs incurred by moving quickly in
software engineering. As with fiscal debt, there are often sound strategic reasons to take on technical
debt. Not all debt is bad, but all debt needs to be serviced. Technical debt may be paid down
by refactoring code, improving unit tests, deleting dead code, reducing dependencies, tightening
APIs, and improving documentation [8]. The goal is not to add new functionality, but to enable
future improvements, reduce errors, and improve maintainability. Deferring such payments results
in compounding costs. Hidden debt is dangerous because it compounds silently.

In this paper, we argue that ML systems have a special capacity for incurring technical debt, because
they have all of the maintenance problems of traditional code plus an additional set of ML-specific
issues. This debt may be difficult to detect because it exists at the system level rather than the code
level. Traditional abstractions and boundaries may be subtly corrupted or invalidated by the fact that
data influences ML system behavior. Typical methods for paying down code level technical debt are
not sufficient to address ML-specific technical debt at the system level.

This paper does not offer novel ML algorithms, but instead seeks to increase the community’s aware-
ness of the difficult tradeoffs that must be considered in practice over the long term. We focus on
system-level interactions and interfaces as an area where ML technical debt may rapidly accumulate.
At a system-level, an ML model may silently erode abstraction boundaries. The tempting re-use or
chaining of input signals may unintentionally couple otherwise disjoint systems. ML packages may
be treated as black boxes, resulting in large masses of “glue code” or calibration layers that can lock
in assumptions. Changes in the external world may influence system behavior in unintended ways.
Even monitoring ML system behavior may prove difficult without careful design.

1

Hidden Technical Debt in Machine Learning Systems

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips
{dsculley,gholt,dgg,edavydov,toddphillips}@google.com

Google, Inc.

Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, Dan Dennison
{ebner,vchaudhary,mwyoung,jfcrespo,dennison}@google.com

Google, Inc.

Abstract

Machine learning offers a fantastically powerful toolkit for building useful com-
plex prediction systems quickly. This paper argues it is dangerous to think of
these quick wins as coming for free. Using the software engineering framework
of technical debt, we find it is common to incur massive ongoing maintenance
costs in real-world ML systems. We explore several ML-specific risk factors to
account for in system design. These include boundary erosion, entanglement,
hidden feedback loops, undeclared consumers, data dependencies, configuration
issues, changes in the external world, and a variety of system-level anti-patterns.

1 Introduction

As the machine learning (ML) community continues to accumulate years of experience with live
systems, a wide-spread and uncomfortable trend has emerged: developing and deploying ML sys-
tems is relatively fast and cheap, but maintaining them over time is difficult and expensive.

This dichotomy can be understood through the lens of technical debt, a metaphor introduced by
Ward Cunningham in 1992 to help reason about the long term costs incurred by moving quickly in
software engineering. As with fiscal debt, there are often sound strategic reasons to take on technical
debt. Not all debt is bad, but all debt needs to be serviced. Technical debt may be paid down
by refactoring code, improving unit tests, deleting dead code, reducing dependencies, tightening
APIs, and improving documentation [8]. The goal is not to add new functionality, but to enable
future improvements, reduce errors, and improve maintainability. Deferring such payments results
in compounding costs. Hidden debt is dangerous because it compounds silently.

In this paper, we argue that ML systems have a special capacity for incurring technical debt, because
they have all of the maintenance problems of traditional code plus an additional set of ML-specific
issues. This debt may be difficult to detect because it exists at the system level rather than the code
level. Traditional abstractions and boundaries may be subtly corrupted or invalidated by the fact that
data influences ML system behavior. Typical methods for paying down code level technical debt are
not sufficient to address ML-specific technical debt at the system level.

This paper does not offer novel ML algorithms, but instead seeks to increase the community’s aware-
ness of the difficult tradeoffs that must be considered in practice over the long term. We focus on
system-level interactions and interfaces as an area where ML technical debt may rapidly accumulate.
At a system-level, an ML model may silently erode abstraction boundaries. The tempting re-use or
chaining of input signals may unintentionally couple otherwise disjoint systems. ML packages may
be treated as black boxes, resulting in large masses of “glue code” or calibration layers that can lock
in assumptions. Changes in the external world may influence system behavior in unintended ways.
Even monitoring ML system behavior may prove difficult without careful design.

1

Hidden Technical Debt in Machine Learning Systems

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips
{dsculley,gholt,dgg,edavydov,toddphillips}@google.com

Google, Inc.

Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, Dan Dennison
{ebner,vchaudhary,mwyoung,jfcrespo,dennison}@google.com

Google, Inc.

Abstract

Machine learning offers a fantastically powerful toolkit for building useful com-
plex prediction systems quickly. This paper argues it is dangerous to think of
these quick wins as coming for free. Using the software engineering framework
of technical debt, we find it is common to incur massive ongoing maintenance
costs in real-world ML systems. We explore several ML-specific risk factors to
account for in system design. These include boundary erosion, entanglement,
hidden feedback loops, undeclared consumers, data dependencies, configuration
issues, changes in the external world, and a variety of system-level anti-patterns.

1 Introduction

As the machine learning (ML) community continues to accumulate years of experience with live
systems, a wide-spread and uncomfortable trend has emerged: developing and deploying ML sys-
tems is relatively fast and cheap, but maintaining them over time is difficult and expensive.

This dichotomy can be understood through the lens of technical debt, a metaphor introduced by
Ward Cunningham in 1992 to help reason about the long term costs incurred by moving quickly in
software engineering. As with fiscal debt, there are often sound strategic reasons to take on technical
debt. Not all debt is bad, but all debt needs to be serviced. Technical debt may be paid down
by refactoring code, improving unit tests, deleting dead code, reducing dependencies, tightening
APIs, and improving documentation [8]. The goal is not to add new functionality, but to enable
future improvements, reduce errors, and improve maintainability. Deferring such payments results
in compounding costs. Hidden debt is dangerous because it compounds silently.

In this paper, we argue that ML systems have a special capacity for incurring technical debt, because
they have all of the maintenance problems of traditional code plus an additional set of ML-specific
issues. This debt may be difficult to detect because it exists at the system level rather than the code
level. Traditional abstractions and boundaries may be subtly corrupted or invalidated by the fact that
data influences ML system behavior. Typical methods for paying down code level technical debt are
not sufficient to address ML-specific technical debt at the system level.

This paper does not offer novel ML algorithms, but instead seeks to increase the community’s aware-
ness of the difficult tradeoffs that must be considered in practice over the long term. We focus on
system-level interactions and interfaces as an area where ML technical debt may rapidly accumulate.
At a system-level, an ML model may silently erode abstraction boundaries. The tempting re-use or
chaining of input signals may unintentionally couple otherwise disjoint systems. ML packages may
be treated as black boxes, resulting in large masses of “glue code” or calibration layers that can lock
in assumptions. Changes in the external world may influence system behavior in unintended ways.
Even monitoring ML system behavior may prove difficult without careful design.

1

"Only a small fraction of real-world ML systems
is composed of ML code" 2 / 41

High development
costs for ML apps

IaaS / OS

Hardware Infra.

Brand Guidelines
TensorFlow is an end-to-end open-source platform
for machine learning. It has a comprehensive,
flexible ecosystem of tools, libraries and community
resources that lets researchers push the
state-of-the-art in ML and developers easily build
and deploy ML powered applications.

User-managed
GPUs and ML Apps

Data
Scientists

Data
Analysts

Instructors &
Learners

Developers

Inefficient GPU
utilization

Typical GPU Computing Stack

3 / 41

GPU management is difficult!

GPU

GPU

GPU

GPU

GPU

GPU ???

GPU

GPU

§ Manual assignment of GPUs for researchers
§ Both idle & insufficient at the same time
§ Manual checks for SW compatibilities

4 / 41

The OS knows
how to partition, share, and schedule

via standardized HW interfaces.

Root cause of GPU mgmt. difficulties

5 / 41

Lack of flexible GPU resource management

• Resource management / sharing technology is limited (as a peripheral device)

• Idle time from I/O latency

Extract
Step 1

Convert 1

Extract
Step 3

Convert 2

Load
1

Training 1

Load
2

Extract
Step 2

Training 2
GPU Idle time

CPU Idle time

Time

Process

Thread

Page

CPU / RAM / Disk

File ?
GPUOS-level virtualization blackbox ioctl()

6 / 41

Complexity of SW management

Fast Software
Release Cycles

Model/Framework
Version Mgmt.

Compatibility
Issues

CUDA 9.x
CUDA 10.x
Python 2.x
Python 3.x
…

7 / 41

Let
GPU computation

Be
Powerful and Easy

8 / 41

Backend.AI https://www.backend.ai

Streamlined platform
to train and serve

ML models
on premises and clouds

easy and fast

9 / 41

Backend.AI

Streamlined platform
to train and serve

ML models
on premises and clouds

easy and fast

https://www.backend.ai

10 / 41

GPU management is difficult!

GPU

GPU

GPU

GPU

GPU

GPU ??? Backend.AI

GPU

GPU

GPU

GPU

GPU

GPU

GPU GPU GPU

GPU

GPU

§ Manual assignment of GPUs for researchers
§ Both idle & insufficient at the same time
§ Manual checks for SW compatibilities

§ Sharing and consolidation of GPUs
§ Use only what you need at that time
§ Containerized runtime environments

11 / 41

Backend.AI Usage Scenario

Backend.AI

GPUGPUGPU

GPUGPUGPU

GPUGPUGPU

GPUGPUGPU

Backend.AI

GPUGPUGPUGPUGPUGPUGPUGPU

Building GPU clusters Sharing high-end
GPU nodes

Backend.AI

GPUGPUGPU

GPUGPUGPU

Dynamic scaling out from
on-prem to clouds

Cloud

12 / 41

Backend.AI-powered GPU Computing Stack

Reduced time to
build ML apps

IaaS / OS

Hardware Infra.
Brand Guidelines
TensorFlow is an end-to-end open-source platform
for machine learning. It has a comprehensive,
flexible ecosystem of tools, libraries and community
resources that lets researchers push the
state-of-the-art in ML and developers easily build
and deploy ML powered applications.

Managed GPU Apps

Data
Scientists

Data
Analysts

Instructors &
Learners

Developers

Flexible and efficient
GPU utilization

Container-level
GPU Virtualization

Click-to-ready GPU
Environments

Web GUI for
monitoring & control

Backend.AI Platform Seamless migration
of existing users

13 / 41

Backend.AI Offerings

Cloud

Fits with your needs
instantly

Open
Source

Get the most out of
your hardware

Enterprise

End-to-end
ML Infra Manager

On-demand GPU envs
for HPC and ML/DL
with pay-as-you-go
pricing

Hackable, customizable
computing framework
with cutting-edge
technologies

Private GPU cloud &
cluster managing
solution for large-scale
enterprises

Backend.AI

14 / 41

Backend.AI Advantages

• Only & first solution
­ The market offers solutions specialized for specific functions such as

batch scheduling and container hosting.
­ Backend.AI embraces headaches from both ML modelers and

DevOps engineers.
• Backend.AI

­ GPU-first optimization
üExtensible CUDA support via NVIDIA partnership
ü Fractional GPU scaling on device

­ Programmable sandboxing
ü syscall-level logging & customizable security policies

­ Legacy app support
üResource constraining without code changes
ü e.g., CPU core counting fix for old-school computation libraries

15 / 41

Backend.AI Components

Backend.AI Manager

Backend.AI Agent

Scaling Group Scaling Group

Backend.AI Agent

Backend.AI Agent

Backend.AI Agent

Backend.AI Agent

Backend.AI Client SDK

Kernel Kernel

Kernel

Kernel Kernel

Kernel

Kernel

StorageSession
DB

User DB

Config
Server

16 / 41

Backend.AI: Detail

>_

Backend.AI Client SDK
for Python

HTTPS
WebSocket /

REST / GraphQL

ZeroM
Q

etcdRedisPostgreSQL

(private protocols)

Backend.AI Client SDK
for Javascript

Tensor
Flow

Backend.AI Jail

R

Backend.AI Jail

Docker

User data files

Cloud Storage

Backend.AI AgentBackend.AI Manager
https://api.backend.ai

§ Real-time terminal connection
§ Query / batch / streaming mode
§ Usage / session status monitor
§ Multimedia I/O rendering

§ User session authentication
§ Real-time session usage statistics
§ Automatic rolling upgrade

§ Programmable SysCall Sandbox
§ Container resource control including

CPU/GPU Core, Memory, Storage

§ Per-user virtual folder
§ Sharing with permission control
§ Example dataset

§ Request routing
§ I/O relay / proxy
§ Agent auto-scaling
§ Hybrid cloud support

17 / 41

Container 2

Backend.AI GPU Virtualizer

Container 1 Container 3 Container 4

Fractional & Multi-GPU Scaling

nvidia-docker + CUDA Driver

PCIE/0 PCIE/1 PCIE/2 PCIE/3 PCIE/4 PCIE/5

PCIE/0PCIE/1PCIE/0 PCIE/0 PCIE/1 PCIE/0 PCIE/1 PCIE/2
/device:GPU:0 /device:GPU:0 /device:GPU:1 /device:GPU:0 /device:GPU:0 /device:GPU:1 /device:GPU:2/device:GPU:1

/device:GPU:0 /device:GPU:1 /device:GPU:2 /device:GPU:3 /device:GPU:4 /device:GPU:5
Host-side

view:

18 / 41

CUDA API Virtualization

CUDA-based Libraries

CUDA Runtime

nvidia-docker

CUDA Driver

GPU

Backend.AI GPU Virtualizer

GPU GPU

Container

Host

User Application

NVML

ü Takes all benefits of
nvidia-docker

ü Requires no user code
changes

ü Supports all NGC
containers and user-
written CUDA apps

ü Enforces per-
container GPU
resource limits

19 / 41

NVIDIA Integration: DGX Family

• NVIDIA DGX-1/DGX-2
­ Most powerful GPU computing node

üHigh-speed multi-GPU interconnects
via NVLink & NVSwitch

üAbility to run large-scale models

• Backend.AI Integration
­ Adds following features to NVIDIA container runtime

ü Fractional sharing of GPUs
üML pipeline components
ü Topology-aware CPU/GPU scheduling

NVIDIA DGX-2 | DATA SHEET | APR18

SYSTEM SPECIFICATIONS
GPUs 16X NVIDIA® Tesla V100
GPU Memory 512GB total
Performance 2 petaFLOPS
NVIDIA CUDA® Cores 81920
NVIDIA Tensor Cores 10240
NVSwitches 12
Maximum Power Usage 10 kW
CPU Dual Intel Xeon Platinum

8168, 2.7 GHz, 24-cores
System Memory 1.5TB
Network 8X 100Gb/sec

Infiniband/100GigE
Dual 10/25Gb/sec Ethernet

Storage OS: 2X 960GB NVME SSDs
Internal Storage: 30TB
(8X 3.84TB) NVME SSDs

Software Ubuntu Linux OS
See Software stack

for details
System Weight 340 lbs (154.2 kgs)
System Dimensions Height: 17.3 in (440.0 mm)

Width: 19.0 in (482.3 mm)
Length: 31.3 in (795.4 mm)
 - No Front Bezel
 32.8 in (834.0 mm)
 - With Front Bezel

Operating Temperature
Range

5°C to 35°C (41°F to 95°F)

NVIDIA DGX-2
THE WORLD’S MOST POWERFUL
DEEP LEARNING SYSTEM FOR THE
MOST COMPLEX AI CHALLENGES

The Challenge of Scaling to Meet the Demands of
Modern AI and Deep Learning
Deep neural networks are rapidly growing in size and complexity, in response to the
most pressing challenges in business and research. The computational capacity
needed to support today’s modern AI workloads has outpaced traditional data center
architectures. Modern techniques that exploit increasing use of model parallelism
are colliding with the limits of inter-GPU bandwidth, as developers build increasingly
large accelerated computing clusters, pushing the limits of data center scale.
A new approach is needed - one that delivers almost limitless AI computing scale
in order to break through the barriers to achieving faster insights that can transform
the world.

Performance to Train the Previously Impossible
Increasingly complex AI demands unprecedented levels of compute. NVIDIA®
DGX-2™ is the world’s first 2 petaFLOPS system, packing the power of 16 of the
world’s most advanced GPUs, accelerating the newest deep learning model types
that were previously untrainable. With groundbreaking GPU scale, you can train
models 4X bigger on a single node. In comparison with legacy x86 architectures,
DGX-2’s ability to train ResNet-50 would require the equivalent of 300 servers
with dual Intel Xeon Gold CPUs costing over $2.7 million dollars.

NVIDIA NVSwitch—A Revolutionary AI Network Fabric
Leading edge research demands the freedom to leverage model parallelism and
requires never-before-seen levels of inter-GPU bandwidth. NVIDIA has created
NVSwitch to address this need. Like the evolution from dial-up to ultra-high speed
broadband, NVSwitch delivers a networking fabric for the future, today. With
NVIDIA DGX-2, model complexity and size are no longer constrained by the limits of
traditional architectures. Embrace model-parallel training with a networking fabric
in DGX-2 that delivers 2.4TB/s of bisection bandwidth for a 24X increase over prior
generations. This new interconnect “superhighway” enables limitless possibilities
for model types that can reap the power of distributed training across 16 GPUs
at once.

Deep-learning�Framework

TensorFlow,�Caffe,�Torch,�mxnet,�

Theano,�etc.

Deep-learning�user�program

NVIDIA�DIGITS

Container�tools

NVIDIA�Container�Runtime�for�Docker

GPU�Driver

NVIDIA�Driver

System

Ubuntu-based�Host�OS

20 / 41

NVIDIA Integration: NGC

• NVIDIA GPU Cloud
­ A curated set of Docker images

optimized for NVIDIA GPUs
­ A hosted model zoo for easy start of

ML-based apps and transfer learning
(announced in GTC 2019)

• Backend.AI Integration
­ Instantly pull and run any NGC images

by adding some annotations
­ Model download / upload from NGC

(coming soon!)

FROM nvcr.io/nvidia/digits:18.12-tensorflow
...
LABEL ai.backend.kernelspec="1" \

ai.backend.envs.corecount="OPENBLAS_NUM_THREADS,OMP_NUM_THREADS,NPROC" \
ai.backend.features="query batch uid-match" \
ai.backend.accelerators="cuda" \
ai.backend.resource.min.cpu="1" \
ai.backend.resource.min.mem="1g" \
ai.backend.resource.min.cuda.device=1 \
ai.backend.resource.min.cuda.shares=0.1 \
ai.backend.base-distro="ubuntu16.04" \
ai.backend.runtime-type="python" \
ai.backend.runtime-path="/usr/bin/python" \
ai.backend.service-ports="digits:http:5000,tensorboard:http:6006,ipython

:pty:3000,jupyter:http:8080,jupyterlab:http:8090" 21 / 41

Storage Integration

• Backend.AI's storage layer runs on top of any centralized/distributed storage.
• Personal & shared storage abstraction

­ Mount storages into containers like a local filesystem
­ Permission control for user-to-user & group sharing
­ API-level or filesystem-level integration depending on storage solutions

Manager�+�Agent Agent Agent Manager�+�Agent Agent

22 / 41

Performance: Single-GPU Fractional Sharing

• Benchmark: Sample processing rate of cifar-10 on a V100 GPU (16/32GB)

• Results
­ Sharing overhead : -10% SPR when a container is added to share the same GPU

0
2K
4K
6K
8K

10K
12K
14K

512 1024 2048 3072 512 1024 2048 3072

DGX1V GT800
SP

R
 (#

/s
ec

)
Allocated GPU memory per container (MiB),

Machine type

#SMPs per container = 16

1
2
4

containers
sharing the
same GPU

23 / 41

Custom Node

Performance: Multi-GPU Fractional Sharing

• Setup : Customer's BMT environment (Intel-based custom GPU server)
• Workload : fashion-MNIST
• P100 GPU Cluster (2-node 16 GPUs)

­ Spec: GPU shared (SMP 4, GPU Memory 1 GiB)
­ Concurrency: 50 users

• V100 GPU Cluster (1-node 8 GPUs)
­ Spec: GPU shared (SMP 4, GPU Memory 1 GiB) / non-shared (whole device)
­ Concurrency: 50 users / 8 users

0 20 40 60 80 100 120 140 160 180

V100 (discrete)

V100 (fractional)

P100 (fractional)

Avg. Sample Processing Time (us/step)

+26.5%

+66.6% ※ Lower is better
If the contention equally slows
down the computation speed,
it must be 625% slower.

24 / 41

Just Model It (JMI) Contest

• “Standing on the Shoulders of Titans”
• Jan.~Mar. 2019

­ https://events.backend.ai/just-model-it/
­ Provides GPU resources to ML scientists /

developers for free!
­ For us: system validation & tests
­ For participants: chances to creating

machine learning models without
huddle

• How
­ Setup an virtual Backend.AI GPU cluster

with many remote GPU servers / Cloud
instances

­ Provide resources via Backend.AI client
CLI / GUI app

26 / 41

https://events.backend.ai/just-model-it/

Creating virtual Backend.AI cloud with DGX series

• On-premise cluster for Just model it event
• 44 V100 on-premise GPUs + (8~32) V100 GPU instance on cloud

­ (16) 1 DGX-2 server NODE01

­ (4) 1 custom GPU server (with 4 V100 GPUs) NODE06

­ (16) 2 DGX-1V (with support by Nvidia) NODE02, NODE04

­ (8) 2 DGX Stations (with support by Nvidia) NODE03, NODE05

­ (8~32) Amazon EC2 instances (p3-8xlarge) as spot instances NODE50~NODE53

­ + CPU-only on-premise node (44-core Xeon) for compile / data preprocessing NODE07

• 4 geographically distant locations
­ DGX-2 + Custom GPU server (Lablup Inc.)
­ DGX-1V+DGX stations (Baynex , Local Nvidia Partner)
­ DGX-1V+DGX stations (Daebo, Local Nvidia Partner)
­ Amazon EC2 (ap-northeast-2)

27 / 41

Creating virtual Backend.AI cloud with DGX series

• Agent roles
­ NODE01: Backend.AI manager
­ NODE01~05: Active GPU Cluster
­ NODE06: Reserved / Staging area
­ NODE07: Image compilation / Julia
­ NODE50~53: Spot Instance on AWS

• Storage configuration
­ Scratch disk on each agent
­ Cachefilesd to each node
­ RedHat Ceph Storage as

distributed storage backend
ü Disabled due to the limited

network bandwidth NODE01

NODE02
NODE03

NODE04

NODE05

NODE06

NODE50~53

NODE07

DGX-2

DGX-1V

DGX-Station

CPU node

V100 Cluster

10MBps

100MBps

28 / 41

Configurations

• 12 independent teams
­ Research teams / Independent developer / Startups

• Resource allocation (for each team)
­ CPU: 22 Cores (various clock, followed by host CPU)
­ RAM: 512GB
­ Storage: 3TB scratch (8 NVMe RAID-0) + ⍺
­ GPU:64GB (32x2 or 16x4 V100s)

ü 32x2: Text workloads (RNN / BERT projects)
ü 16x4: Image / video workloads (CNN / GAN projects)
üMulti-GPU scaling mode

29 / 41

The Event Begins, AI Tech Talk
21 Jan. 2019, Google Startup Campus

30 / 41

...and one month passed.
31 / 41

Lessons from the Earth:
Technical insights from JMI events / tests

32 / 41

JMI Event Showcase: TAC-GAN-eCommerce

https://github.com/junwoopark92/TAC-GAN-eCommer
ce

• Problem
­ 1. Missing image for product ad.
­ 2. Promotional text to product

images → Generates unrelated
meta data

• Solution: text to image
synthesis
­ Meta data to product image
­ Prototyping TAC-GAN
­ 1. Creating production image

using generator
­ 2. Judge abusing using

discriminator

33 / 41

JMI Event Showcase: TAC-GAN-eCommerce

https://github.com/junwoopark92/TAC-GAN-eCommer
ce

• Data specification
­ Amazon eCommerce Dataset
­ 9M products
­ 16,000 leaf categories
­ 260GB images

• Preprocessing Pipeline
­ Indexing using sntencepiece
­ Sentence embedding with

doc2vec in genism
­ Data augmentation with

label shuffling

34 / 41

JMI Event Showcase: TAC-GAN-eCommerce

https://github.com/junwoopark92/TAC-GAN-eCommer
ce

• Generated image examples

35 / 41

JMI Event Showcase: TAC-GAN-eCommerce

https://github.com/junwoopark92/TAC-GAN-eCommer
ce

• Generating product image from product metadata
• Example: Guitar + variations

• Color variation

+Accoustics

+Electric+Color

36 / 41

JMI Event Showcase: TAC-GAN-eCommerce

• Classify abused product image using discriminator

https://github.com/junwoopark92/TAC-GAN-eCommer
ce

37 / 41

JMI Results: Benchmark (TAC-GAN-eCommerce)

• 1070 vs Tesla V100 16GB single (batch size = 128):
­ ~3X performance difference.
­ Adjusted the batch size until there was no performance degradation due to I/O.
­ Average load: 90~100 (1070), 80~90 (V100)

• Tesla V100 16GB (single ~ 4, batch size = 32 ~ 128)
­ Performance increases as the number of GPUs increases, but not linear.
­ TAC-GAN model size is small: Data feeding seems to be a bottleneck.
­ If the size of the batch is increased beyond a certain size, an error that exceeds the

shared area of IO occurs.
­ Load average: Single GPU: 80~90, 4 GPUs: 40~50

üMay get additional performance as the model size increases.

38 / 41

JMI Event: Lessons

• Backend.AI offers what we intended to offer.
­ nvidia-docker → a consistent way of using GPUs inside containers.
­ Backend.AI → a flexible way of allocating GPUs to containers.

• Technical insights
­ Unobtrusive upgrade is essential to keep long-running computations successful.

ü The manager and agent may restart while keeping containers running.
üNetwork tunneling for in-container services (e.g., Jupyter) enables seamless

upgrades with brief reconnections.
• UX insights

­ Non-developer users often think containers same as persistent VMs.
üContainers are on-demand and volatile.
ü The key advantage of containers (reproducibility) may be

the key surprise ("my things are gone!") for some category of users.

39 / 41

Summary

• Goals towards real-world ML systems
­ Data collection & feature extraction
­ Hardware resource management
­ Model deployments & feedback monitoring

• Backend.AI: GPU-optimized middleware for ML model training & serving
­ Integration with NVIDIA platforms (DGX + NGC)
­ Integration with storage platforms (open-source, vendors)
­ GPU fractional scaling: reduce idle time of GPUs and TCO
­ Cloud and on-premise offerings

(open-source / cloud subscription / enterprise support)

• Future roadmap: Evolution to an end-to-end ML pipeline system

40 / 41

Thank you
Inquiry : contact@lablup.com

Lablup Inc.
Backend.AI
Backend.AI GitHub
Backend.AI Cloud

https://www.lablup.com
https://www.backend.ai
https://github.com/lablup/backend.ai
https://cloud.backend.ai

41 / 41

mailto:contact@lablup.com
https://www.lablup.ai/
https://www.backend.ai/
https://github.com/lablup/backend.ai
https://cloud.backend.ai/

