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ADDING CUSTOM CUDA C++ OPERATIONS IN 
TENSORFLOWFOR BOOSTING BERT INFERENCE
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CUDA
NVIDIAõs Parallel Computing Platform and Programming Model

Å Language Integration ðC/C++, Fortran, é

Å Integrated Development Environment

Å Doman Specific Libraries

Å High Performance



3

TENSORFLOW
An End-to-End Open Source Deep Learning Framework

Å Easy/Flexible Model Building based on Python and Keras

Å Robust ML Production Anywhere

Å GPU Accelerated Performance based on CUDA
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CUDA KNOWLEDGE + TENSORFLOW
Customized Performance Synergy

Å Help analyze and understand GPU-related behavior

e.g., Am I fully utilizing my GPU(s)? If not, what is the bottleneck?

Å Enable to tune and squeeze training/inference performance

e.g., Increase the parallelism of CUDA kernel mapped to a TF Op

e.g., Implement a new optimized operation for your case

Å It sounds great, but how can it be enabled?
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AGENDA

ÅWhat is TensorFlow Custom Op

ÅCase Study: BERT SQuADInference

ÅTips and Other Options
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TENSORFLOW CUSTOM C++ OP
Interface to Add New Operations beyond Existing TensorFlow Library

Motivation:

Å Difficult/Impossible to express your operation as a composition of existing ones

ÅThe composite one doesnõt have decent performance

Å The existing op is not efficient for your use case

Custom C++ Op is one of the sensible options to customize TFõs feature and performance
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CUSTOM C++ OP INCORPORATION
Bob Ross Style Guideline ðThat Easy, Right?

1. Define (or Register) Opõs interface in C++ (opõs name, input/output and their shapes, é)

2. Implement Op (or Kernel) in CUDAC++ (override OpKernel::Compute to call the kernel)

3. Implement Gradient in Python (not necessary if you only focus on Inference)

4. Build its shared library and use it in your Python code
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CASE STUDY:
BERT SQUADINFERENCE
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WHY JUMPING INTO BERT SUDDENLY?

ÅTo provide a pragmatic example rather than a boring òHello, World!ó style example

Å Transformer and BERT are being hyped everywhere nowadays

To Apply Custom Ops to BERT
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WHAT IS BERT?
Bidirectional Encoder Representations from Transformers

A new method of pre -training language representations for a wide array of NLP tasks

Model Architecture is a multi -layer bidirectional Transformer encoder which embraces

Å Multi -Head Attention 

Å Fully Connected Feed Forward with a GELUactivation

òIntermediateó sub-layer in the code

Å Residual Connections

Multi -Head Attention

Add & Layer Norm

Feed Forward

Add & Layer Norm
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TARGET CONFIGURATION
Letõs focus on BERT SQuADInference Case

Batch size and sequence length can be varied across difference tasks and environments

Å Based on what you want, the best optimization approach can be varied

BERT-Large checkpoint fine tuned for SQuADis used

Å 24-layer, 1024-hidden, 16-head

Å max_seq_length: 384, batch_size: 8 (default from NVIDIA GitHub repo)

For the sake of simplicity, only the inference case is covered

https://github.com/NVIDIA/DeepLearningExamples/blob/master/TensorFlow/LanguageModeling/BERT
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FIRST CUSTOM OP: 
GELU
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GELU ACTIVATION FUNCTION
Why and How to Make its Custom Op

Single input, single output function, e.g., out[4] = gelu(in[4])

Å Easy to write in Python by compositing existing TF ops

But how about its performance? How many CUDA kernels does it execute?

ÅLetõs trying profiling!

Googleõs Implementation in modeling.py
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PROFILING GELU
Result based on NVIDIA Visual Profiler (NVVP)

GELU activation in Python results in 8 CUDA kernels in C++

Å Their aggregated runtime is almost similar to W* x+b!

pow

tf.dense

W*x+b GELU

tanh
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PERFORMANCE ANALYSIS
Why Multi-Kernel GELU is So Slow?

time

Kernel 0 Kernel 1 Kernel 2 Kernel 3 Kernel 4 Kernel 5 Kernel 6 Kernel 7

Device Memory
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 y

Each kernel reads the input array x and writes the output array y

Å Total 8 reads and 8 writes for the same arrays!

ÅWhat if we can read and write once? Kernel fusion
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STEP 1. REGISTER OPõS INTERFACE IN C++ 
Specify Name, Inputs, Outputs, Attributes and etc 

Op name

Input name: òinó, type: òTó

Output name: òoutó, type: òTó

Attr name: òTó, type: òtypeó

set 0th output shape to 0 th input shape

gelu_op.cc
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STEP 2.1. INHERIT OPKERNELIN C++
Override Compute function to do CUDA calls

Get 0th input tensor

Get in/out pointers and their size

Create a 0th output tensor in the same shape of 0 th input

gelu_op.cc
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STEP 2.1. INHERIT OPKERNELIN C++
Override Compute function to do CUDA calls

Do what you want by using the device, in/out pointers and parameters

gelu_op.cc
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STEP 2.2. REGISTER IMPLEMENTATION
Specify Device and Type Constraints

gelu_op.cc

Å Device = Eigen::GPUDevice

Å TypeContraint<T>(òTó): attr òTó must be T

Å REGISTER_GPU(float): it works only when T is float
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STEP 2.3. CUDA PROGRAMMING
CUDA Kernel Configuration and Launch

gelu_op.cu.cc

CUDA API Call to get # SMs for the current device

Partial specialization for GPUDevice

The template class declaration of GeluOpFunctor
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STEP 2.3. CUDA PROGRAMMING
CUDA Kernel Configuration and Launch

gelu_op.cu.cc

Pass CUDA StreamPass # SMs 

Template instantiation for float 
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STEP 2.3. CUDA PROGRAMMING
Slight Optimization: Balance between Parallelism and Iteration

Why We decide # threads based on # SMs, not # elements?

Å A single GPU can run (# MAX threads per SM * # SMs) threads concurrently

e.g., V100 has 80 SMs and each SM can run up to 2048 threads (=163,840 threads)
If a kernel has more threads, it runs the first 163,840 threads with the others pended

Å To minimize the inter -thread redundant operations, e.g., np.sqrt (2 / np.pi )

Letõs make each thread handle multiple elements

gelu_op.cu

1024 threads in a block

(# SMs * 2) blocks in Kernel
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STEP 2.3. CUDA PROGRAMMING
CUDA Kernel Implementation

1024 threads in CTA

# SMs * 2 CTAs in Kernel

iteration 0 iteration 1 iteration 2 iteration 3

# Threads

gelu_op.cu

Calculated only once per thread

The whole calculation is done in register

Efficient than pow(x, 3)
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STEP 3.1. BUILD OP SHARED LIBRARY 
Generate a SO file from *.cc and *.cu

No matter how you build the code, e.g., CMake, clearly specify the following information

Å Tensorflow header/library file location

e.g., tf.sysconfig.get_include () or / usr/local/lib/python3.5/ dist-packages/tensorflow /include

Å Library dependencies

e.g., -lcublas, -lcudart , -tensorflow_framework

Å -D_GLIBCXX_USE_CXX11_ABI=0
(Omitting it leads to undefined symbol error for GCC >= 5.0)

Å -DGOOGLE_CUDA=1

Å --std=C++11 --expt-relaxed-constexpr --expt-extended-lambda



25

STEP 3.2. LOAD AND USE OP IN PYTHON
How to Bind C++ code to Python code

The relationship between Python op name and C++ op name

Å CamelCase in C++ to snake_casein Python

Å e.g., if C++ op name is GeluOp, Python op name is gelu_op

modeling.py

Load the shared library by specifying the path

Get the custom op we defined
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PROFILING FUSED GELU
Result based on NVIDIA Visual Profiler (NVVP)

tf.dense

W*x+b GELU

1 kernel

Kernel
Fusion

Original 

Fused GELU
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Origianl Fused GELU

GELU Speedup

* Higher is Better
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SECOND CUSTOM OP: 
MULTI-HEAD ATTENTION
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MULTI-HEAD ATTENTION
Most Important Function in Transformer 

MatMul(Q,T(K))

Q[B, N, S, H]

Scale

Mask

Softmax

K[B, N, S, H]

MatMul(A, V)

V[B, N, S, H]

A[B, N, S, S]

A[B, N, S, S]
Legends:

Å B: batch size (number of sequences)

Å N: number of attention heads

Å S: sequence length

Å H: size of each attention head

How many CUDA kernels it leads to?
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PROFILING MULTI-HEAD ATTENTION
Result based on NVIDIA Visual Profiler (NVVP)

scale, mask and soft max results in 4 CUDA kernels in C++

Å Their aggregated runtime is even longer than the two gemm kernels!

Å Kernel fusion can help again 

attention_layer

scale mask softmax

reduce
(max)

reduce
(sum)

softmax
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STEP 1. REGISTER OPõS INTERFACE IN C++ 
Specify Name, Inputs, Outputs, Attributes 

Å How to implement its shape function is in Appendix

attention_op.cc

Three inputs

Attributes used as option parameters
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STEP 2.1. INHERIT OPKERNELCLASS
Initialization and Finalization

attention_op.cc

Get the attribute values defined in Step 1
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STEP 2.2. FUSE SCALE WITH GEMM
How to Use CUBLAS API

cublas General Matrix Multiplication (GEMM) APIs support in -register scaling

Å# Óɇ! "

Å C is accessed only once for the final write

attention_op.cu.cc


