
Minseok Lee, Developer Technology Engineer, 2nd July

ADDING CUSTOM CUDA C++ OPERATIONS IN
TENSORFLOWFOR BOOSTING BERT INFERENCE

2

CUDA
NVIDIAõs Parallel Computing Platform and Programming Model

Å Language Integration ðC/C++, Fortran, é

Å Integrated Development Environment

Å Doman Specific Libraries

Å High Performance

3

TENSORFLOW
An End-to-End Open Source Deep Learning Framework

Å Easy/Flexible Model Building based on Python and Keras

Å Robust ML Production Anywhere

Å GPU Accelerated Performance based on CUDA

4

CUDA KNOWLEDGE + TENSORFLOW
Customized Performance Synergy

Å Help analyze and understand GPU-related behavior

e.g., Am I fully utilizing my GPU(s)? If not, what is the bottleneck?

Å Enable to tune and squeeze training/inference performance

e.g., Increase the parallelism of CUDA kernel mapped to a TF Op

e.g., Implement a new optimized operation for your case

Å It sounds great, but how can it be enabled?

5

AGENDA

ÅWhat is TensorFlow Custom Op

ÅCase Study: BERT SQuADInference

ÅTips and Other Options

6

TENSORFLOW CUSTOM C++ OP
Interface to Add New Operations beyond Existing TensorFlow Library

Motivation:

Å Difficult/Impossible to express your operation as a composition of existing ones

ÅThe composite one doesnõt have decent performance

Å The existing op is not efficient for your use case

Custom C++ Op is one of the sensible options to customize TFõs feature and performance

7

CUSTOM C++ OP INCORPORATION
Bob Ross Style Guideline ðThat Easy, Right?

1. Define (or Register) Opõs interface in C++ (opõs name, input/output and their shapes, é)

2. Implement Op (or Kernel) in CUDAC++ (override OpKernel::Compute to call the kernel)

3. Implement Gradient in Python (not necessary if you only focus on Inference)

4. Build its shared library and use it in your Python code

8

CASE STUDY:
BERT SQUADINFERENCE

9

WHY JUMPING INTO BERT SUDDENLY?

ÅTo provide a pragmatic example rather than a boring òHello, World!ó style example

Å Transformer and BERT are being hyped everywhere nowadays

To Apply Custom Ops to BERT

10

WHAT IS BERT?
Bidirectional Encoder Representations from Transformers

A new method of pre -training language representations for a wide array of NLP tasks

Model Architecture is a multi -layer bidirectional Transformer encoder which embraces

Å Multi -Head Attention

Å Fully Connected Feed Forward with a GELUactivation

òIntermediateó sub-layer in the code

Å Residual Connections

Multi -Head Attention

Add & Layer Norm

Feed Forward

Add & Layer Norm

11

TARGET CONFIGURATION
Letõs focus on BERT SQuADInference Case

Batch size and sequence length can be varied across difference tasks and environments

Å Based on what you want, the best optimization approach can be varied

BERT-Large checkpoint fine tuned for SQuADis used

Å 24-layer, 1024-hidden, 16-head

Å max_seq_length: 384, batch_size: 8 (default from NVIDIA GitHub repo)

For the sake of simplicity, only the inference case is covered

https://github.com/NVIDIA/DeepLearningExamples/blob/master/TensorFlow/LanguageModeling/BERT

12

FIRST CUSTOM OP:
GELU

13

GELU ACTIVATION FUNCTION
Why and How to Make its Custom Op

Single input, single output function, e.g., out[4] = gelu(in[4])

Å Easy to write in Python by compositing existing TF ops

But how about its performance? How many CUDA kernels does it execute?

ÅLetõs trying profiling!

Googleõs Implementation in modeling.py

14

PROFILING GELU
Result based on NVIDIA Visual Profiler (NVVP)

GELU activation in Python results in 8 CUDA kernels in C++

Å Their aggregated runtime is almost similar to W* x+b!

pow

tf.dense

W*x+b GELU

tanh

15

PERFORMANCE ANALYSIS
Why Multi-Kernel GELU is So Slow?

time

Kernel 0 Kernel 1 Kernel 2 Kernel 3 Kernel 4 Kernel 5 Kernel 6 Kernel 7

Device Memory

re
a

d
 x

w
ri
te

 y

Each kernel reads the input array x and writes the output array y

Å Total 8 reads and 8 writes for the same arrays!

ÅWhat if we can read and write once? Kernel fusion

16

STEP 1. REGISTER OPõS INTERFACE IN C++
Specify Name, Inputs, Outputs, Attributes and etc

Op name

Input name: òinó, type: òTó

Output name: òoutó, type: òTó

Attr name: òTó, type: òtypeó

set 0th output shape to 0 th input shape

gelu_op.cc

17

STEP 2.1. INHERIT OPKERNELIN C++
Override Compute function to do CUDA calls

Get 0th input tensor

Get in/out pointers and their size

Create a 0th output tensor in the same shape of 0 th input

gelu_op.cc

18

STEP 2.1. INHERIT OPKERNELIN C++
Override Compute function to do CUDA calls

Do what you want by using the device, in/out pointers and parameters

gelu_op.cc

19

STEP 2.2. REGISTER IMPLEMENTATION
Specify Device and Type Constraints

gelu_op.cc

Å Device = Eigen::GPUDevice

Å TypeContraint<T>(òTó): attr òTó must be T

Å REGISTER_GPU(float): it works only when T is float

20

STEP 2.3. CUDA PROGRAMMING
CUDA Kernel Configuration and Launch

gelu_op.cu.cc

CUDA API Call to get # SMs for the current device

Partial specialization for GPUDevice

The template class declaration of GeluOpFunctor

21

STEP 2.3. CUDA PROGRAMMING
CUDA Kernel Configuration and Launch

gelu_op.cu.cc

Pass CUDA StreamPass # SMs

Template instantiation for float

22

STEP 2.3. CUDA PROGRAMMING
Slight Optimization: Balance between Parallelism and Iteration

Why We decide # threads based on # SMs, not # elements?

Å A single GPU can run (# MAX threads per SM * # SMs) threads concurrently

e.g., V100 has 80 SMs and each SM can run up to 2048 threads (=163,840 threads)
If a kernel has more threads, it runs the first 163,840 threads with the others pended

Å To minimize the inter -thread redundant operations, e.g., np.sqrt (2 / np.pi)

Letõs make each thread handle multiple elements

gelu_op.cu

1024 threads in a block

(# SMs * 2) blocks in Kernel

23

STEP 2.3. CUDA PROGRAMMING
CUDA Kernel Implementation

1024 threads in CTA

SMs * 2 CTAs in Kernel

iteration 0 iteration 1 iteration 2 iteration 3

Threads

gelu_op.cu

Calculated only once per thread

The whole calculation is done in register

Efficient than pow(x, 3)

24

STEP 3.1. BUILD OP SHARED LIBRARY
Generate a SO file from *.cc and *.cu

No matter how you build the code, e.g., CMake, clearly specify the following information

Å Tensorflow header/library file location

e.g., tf.sysconfig.get_include () or / usr/local/lib/python3.5/ dist-packages/tensorflow /include

Å Library dependencies

e.g., -lcublas, -lcudart , -tensorflow_framework

Å -D_GLIBCXX_USE_CXX11_ABI=0
(Omitting it leads to undefined symbol error for GCC >= 5.0)

Å -DGOOGLE_CUDA=1

Å --std=C++11 --expt-relaxed-constexpr --expt-extended-lambda

25

STEP 3.2. LOAD AND USE OP IN PYTHON
How to Bind C++ code to Python code

The relationship between Python op name and C++ op name

Å CamelCase in C++ to snake_casein Python

Å e.g., if C++ op name is GeluOp, Python op name is gelu_op

modeling.py

Load the shared library by specifying the path

Get the custom op we defined

26

PROFILING FUSED GELU
Result based on NVIDIA Visual Profiler (NVVP)

tf.dense

W*x+b GELU

1 kernel

Kernel
Fusion

Original

Fused GELU

0

1

2

3

4

5

6

7

8

9

Origianl Fused GELU

GELU Speedup

* Higher is Better

27

SECOND CUSTOM OP:
MULTI-HEAD ATTENTION

28

MULTI-HEAD ATTENTION
Most Important Function in Transformer

MatMul(Q,T(K))

Q[B, N, S, H]

Scale

Mask

Softmax

K[B, N, S, H]

MatMul(A, V)

V[B, N, S, H]

A[B, N, S, S]

A[B, N, S, S]
Legends:

Å B: batch size (number of sequences)

Å N: number of attention heads

Å S: sequence length

Å H: size of each attention head

How many CUDA kernels it leads to?

29

PROFILING MULTI-HEAD ATTENTION
Result based on NVIDIA Visual Profiler (NVVP)

scale, mask and soft max results in 4 CUDA kernels in C++

Å Their aggregated runtime is even longer than the two gemm kernels!

Å Kernel fusion can help again

attention_layer

scale mask softmax

reduce
(max)

reduce
(sum)

softmax

30

STEP 1. REGISTER OPõS INTERFACE IN C++
Specify Name, Inputs, Outputs, Attributes

Å How to implement its shape function is in Appendix

attention_op.cc

Three inputs

Attributes used as option parameters

31

STEP 2.1. INHERIT OPKERNELCLASS
Initialization and Finalization

attention_op.cc

Get the attribute values defined in Step 1

32

STEP 2.2. FUSE SCALE WITH GEMM
How to Use CUBLAS API

cublas General Matrix Multiplication (GEMM) APIs support in -register scaling

Å# Óɇ! "

Å C is accessed only once for the final write

attention_op.cu.cc

