ADDING CUSTOM CUDA C++ OPERATIONS IN TENSORFLOW FOR BOOSTING BERT INFERENCE

Minseok Lee, Developer Technology Engineer, 2nd July
CUDA
NVIDIA’s Parallel Computing Platform and Programming Model

- Language Integration - C/C++, Fortran, ...
- Integrated Development Environment
- Domain Specific Libraries
- High Performance
TENSORFLOW
An End-to-End Open Source Deep Learning Framework

- Easy/Flexible Model Building based on Python and Keras
- Robust ML Production Anywhere
- GPU Accelerated Performance based on CUDA
CUDA KNOWLEDGE + TENSORFLOW
Customized Performance Synergy

• Help analyze and understand GPU-related behavior
e.g., Am I fully utilizing my GPU(s)? If not, what is the bottleneck?

• Enable to tune and squeeze training/inference performance
e.g., Increase the parallelism of CUDA kernel mapped to a TF Op
e.g., Implement a new optimized operation for your case

• It sounds great, but how can it be enabled?
AGENDA

• What is TensorFlow Custom Op

• Case Study: BERT SQuAD Inference

• Tips and Other Options
TENSORFLOW CUSTOM C++ OP
Interface to Add New Operations beyond Existing TensorFlow Library

Motivation:

• Difficult/Impossible to express your operation as a composition of existing ones
• The composite one doesn’t have decent performance
• The existing op is not efficient for your use case

Custom C++ Op is one of the sensible options to customize TF’s feature and performance
1. Define (or Register) Op’s interface in C++ (op’s name, input/output and their shapes, …)

2. Implement Op (or Kernel) in CUDA C++ (override OpKernel::Compute to call the kernel)

3. Implement Gradient in Python (not necessary if you only focus on Inference)

4. Build its shared library and use it in your Python code
CASE STUDY:
BERT SQUAD INFERENCE
WHY JUMPING INTO BERT SUDDENLY?
To Apply Custom Ops to BERT

• To provide a pragmatic example rather than a boring “Hello, World!” style example

• Transformer and BERT are being hyped everywhere nowadays
WHAT IS BERT?
Bidirectional Encoder Representations from Transformers

A new method of pre-training language representations for a wide array of NLP tasks

Model Architecture is a multi-layer bidirectional Transformer encoder which embraces

- **Multi-Head Attention**
- **Fully Connected Feed Forward with a GELU activation**

 “Intermediate” sub-layer in the code
- **Residual Connections**
TARGET CONFIGURATION
Let’s focus on BERT SQuAD Inference Case

Batch size and sequence length can be varied across different tasks and environments

- Based on what you want, the best optimization approach can be varied

BERT-Large checkpoint fine tuned for SQuAD is used

- 24-layer, 1024-hidden, 16-head
- max_seq_length: 384, batch_size: 8 (default from NVIDIA GitHub repo)

For the sake of simplicity, only the inference case is covered
FIRST CUSTOM OP: GELU
GELU ACTIVATION FUNCTION
Why and How to Make its Custom Op

Google’s Implementation in modeling.py

```python
def gelu(x):
    cdf = 0.5 * (1.0 + tf.tanh(
        (np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))
    return x * cdf
```

Single input, single output function, e.g., `out[4] = gelu(in[4])`

- Easy to write in Python by compositing existing TF ops

But how about its performance? How many CUDA kernels does it execute?

- Let’s trying profiling!
PROFILING GELU

Result based on NVIDIA Visual Profiler (NVVP)

GELU activation in Python results in 8 CUDA kernels in C++

- Their aggregated runtime is almost similar to $W^x + b$!
PERFORMANCE ANALYSIS

Why Multi-Kernel GELU is So Slow?

Each kernel reads the input array x and writes the output array y

- Total 8 reads and 8 writes for the same arrays!
- What if we can read and write once? **Kernel fusion**
STEP 1. REGISTER OP’S INTERFACE IN C++
Specify Name, Inputs, Outputs, Attributes and etc

```cpp
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/shape_inference.h"

namespace tensorflow {

using GPUDevice = Eigen::GpuDevice;

REGISTER_OP("GeluOp")
  .Attr("T: type")
  .Input("in: T")
  .Output("out: T")
  .SetShapeFn([](shape_inference::InferenceContext *c) {
    c->set_output(0, c->input(0));
    return Status::OK();
  });

} // namespace tensorflow
```
STEP 2.1. INHERIT OPKERNEL IN C++

Override Compute function to do CUDA calls

gelu_op.cc

```cpp
template <typename Device, typename T>
class GeluOp : public OpKernel {

public:
    explicit GeluOp(OpKernelConstruction* context) : OpKernel(context) {}
    void Compute(OpKernelContext* context) override {
        const Tensor& input_tensor = context->input(0);
        Get 0th input tensor

        Tensor* output_tensor = nullptr;
        Create a 0th output tensor in the same shape of 0th input
        OP_REQUIRES_OK(context,
                        context->allocate_output(0, input_tensor.shape(), &output_tensor))

        const T* input_ptr = input_tensor.flat<T>().data();
        T* output_ptr = output_tensor->flat<T>().data();
        int num_elements = input_tensor.NumElements();

        ... Get in/out pointers and their size
    }

private:
    functor::GeluOpFunctor<Device, T> functor_;
};
```
STEP 2.1. INHERIT OPKERNEL IN C++

Override **Compute** function to do CUDA calls

gelu_op.cc

template <typename Device, typename T>
class GeluOp : public OpKernel {
 public:
 explicit GeluOp(OpKernelConstruction* context): OpKernel(context) {}
 void Compute(OpKernelContext* context) override {
 functor_.run(
 context->eigen_device<Device>(),
 input_ptr,
 output_ptr,
 num_elements);
 }
 private:
 functor::GeluOpFunctor<Device, T> functor_;
};

Do what you want by using the device, in/out pointers and parameters
STEP 2.2. REGISTER IMPLEMENTATION

Specify Device and Type Constraints

```c
#ifdef GOOGLE_CUDA

#define REGISTER_GPU(T) \ 
REGISTER_KERNEL_BUILDER( \ 
    Name("GeluOp").Device(DEVICE_GPU).TypeConstraint<T>("T"), \ 
    GeluOp<GPUDevice, T>)

REGISTER_GPU(float);
#endif // GOOGLE_CUDA

• Device = Eigen::GPUDevice

• TypeContraint<T>("T"): attr "T" must be T

• REGISTER_GPU(float): it works only when T is float
```
STEP 2.3. CUDA PROGRAMMING
CUDA Kernel Configuration and Launch

```
#include "gelu_op.h"  // The template class declaration of GeluOpFunctor
#include "gelu_kernel.h"
#include "tensorflow/core/framework/op_kernel.h"

namespace tensorflow {

namespace functor {

using GPUDevice = Eigen::GpuDevice;

// Partial specialization for GPUDevice
template <typename T>
struct GeluOpFunctor<GPUDevice, T> {
    GeluOpFunctor() {
        int device;
        cudaGetDevice(&device);
        cudaDeviceGetAttribute(&num_devices_, cudaDevAttrMultiProcessorCount, device);
    }
    ...
};
```

STEP 2.3. CUDA PROGRAMMING
CUDA Kernel Configuration and Launch

gelu_op.cu.cc

```cpp
...template <typename T>
struct GeluOpFunctor<GPUDevice, T> {
  ...
  void run(const GPUDevice& d, const T* in, T* out, int n_elements) {
    GeluKernelLauncher(in, out, n_elements, num_devices, d.stream());
  }
  int num_devices_;
};

//namespace functor

#include "tensorflow/backport/20150912/gelu_op.h"

//namespace tensorflow

#endif
```
STEP 2.3. CUDA PROGRAMMING

Slight Optimization: Balance between Parallelism and Iteration

Why We decide # threads based on # SMs, not # elements?

- A single GPU can run (# MAX threads per SM * # SMs) threads **concurrently**

 e.g., V100 has **80 SMs** and each SM can run up to **2048 threads** (=163,840 threads)

 If a kernel has more threads, it runs the first 163,840 threads with the others pended

- To minimize the inter-thread redundant operations, e.g., np.sqrt(2 / np.pi)

 Let’s make each thread handle multiple elements

```c
void GeluKernelLauncher(const float* in, float* out,
                        int n_elements, int n_dev, cudaStream_t stream) {
    int block_size = 1024;  // 1024 threads in a block
    int n_block = n_dev*2;  // (# SMs * 2) blocks in Kernel
    GeluKernel<<<n_block, block_size, 0, stream>>>(in, out, n_elements);
}
```
STEP 2.3. CUDA PROGRAMMING

CUDA Kernel Implementation

<table>
<thead>
<tr>
<th># Threads</th>
<th>iteration 0</th>
<th>iteration 1</th>
<th>iteration 2</th>
<th>iteration 3</th>
</tr>
</thead>
</table>

gelu_op.cu

```cpp
template <typename T>
__global__ void GeluKernel(const T* in, T* out, int n_elements) {
    int gid = blockIdx.x * blockDim.x + threadIdx.x;
    int chunk_size = blockDim.x * gridDim.x;

    const T scale = sqrt(T(2) / CUDART_PI);  // Calculated only once per thread

    for(int i = gid; i < n_elements; i += chunk_size) {
        T x = in[i];
        T cdf = T(1) + tanh(scale * (x + T(0.044715) * (x * x * x)));  // Efficient than pow(x, 3)
        cdf *= T(0.5);
        out[i] = x * cdf;
    }
}
```

The whole calculation is done in register.
STEP 3.1. BUILD OP SHARED LIBRARY
Generate a SO file from *.cc and *.cu

No matter how you build the code, e.g., CMake, clearly specify the following information

- Tensorflow header/library file location

e.g., tf.sysconfig.get_include() or /usr/local/lib/python3.5/dist-packages/tensorflow/include

- Library dependencies

e.g., -lcublas, -lcudart, -tensorflow_framework

- D_GLIBCXX_USE_CXX11_ABI=0
 (Omitting it leads to undefined symbol error for GCC >= 5.0)

- DGOOGLE_CUDA=1

- --std=C++11 --expt-relaxed-constexpr --expt-extended-lambda
STEP 3.2. LOAD AND USE OP IN PYTHON

How to Bind C++ code to Python code

```python
cuda_custom_ops_module = tf.load_op_library(os.path.join('build/libcuda_custom_ops.so'))
...

def get_activation(activation_string, use_fusion):
   ...
   elif act == "gelu":
      if use_fusion == True:
         return cuda_custom_ops_module.gelu_op  # Get the custom op we defined
      else:
         return gelu
   ...
```

The relationship between Python op name and C++ op name

- CamelCase in C++ to snake_case in Python
- e.g., if C++ op name is `GeluOp`, Python op name is `gelu_op`
PROFILING FUSED GELU
Result based on NVIDIA Visual Profiler (NVVP)

Original

Fused GELU

Kernel Fusion

1 kernel

GELU Speedup

* Higher is Better

GELU Speedup

0 1 2 3 4 5 6 7 8 9

Origianl

Fused GELU
SECOND CUSTOM OP: MULTI-HEAD ATTENTION
MULTI-HEAD ATTENTION
Most Important Function in Transformer

Legends:
- B: batch size (number of sequences)
- N: number of attention heads
- S: sequence length
- H: size of each attention head

How many CUDA kernels it leads to?
PROFILING MULTI-HEAD ATTENTION
Result based on NVIDIA Visual Profiler (NVVP)

scale, mask and soft max results in 4 CUDA kernels in C++

- Their aggregated runtime is even longer than the two gemm kernels!
- Kernel fusion can help again
STEP 1. REGISTER OP’S INTERFACE IN C++
Specify Name, Inputs, Outputs, Attributes

REGISTER.OP("AttentionOp")
Attr("T: type")
.Input("query_layer: T")
.Input("key_layer: T")
.Input("attention_mask: T")
.Output("attention_scores: T")
Attr("seq_length: int >= 16")
Attr("num_attention_heads: int >= 1")
Attr("size_per_head: int >= 1")
.SetShapeFn([](shape_inference::InferenceContext *c) {
 ...
});

- How to implement its shape function is in Appendix
STEP 2.1. INHERIT OPKERNEL CLASS
Initialization and Finalization

```cpp
template <typename Device, typename T>
class AttentionOp: public OpKernel {
public:
  explicit AttentionOp(OpKernelConstruction* context): OpKernel(context) {
    cublasCreate(&cublas_handle);
    OP_REQUIRES_OK(context, context->GetAttr("seq_length", &seq_length_));
    OP_REQUIRES_OK(context, context->GetAttr("num_attention_heads", &num_attention_heads_));
    OP_REQUIRES_OK(context, context->GetAttr("size_per_head", &size_per_head_));
  }

~AttentionOp() override {
  cublasDestroy(cublas_handle);
}
...
```

Get the attribute values defined in Step 1
STEP 2.2. FUSE SCALE WITH GEMM

How to Use CUBLAS API

cublas General Matrix Multiplication (GEMM) APIs support **in-register** scaling

- \(C = s \cdot (A \times B) \)

- \(C \) is accessed **only once** for the final write
STEP 2.3. FUSE SOFTMAX WITH MASK

Data Layout After Step 2.2

- **in**: $[B, N, S, S]$
- **mask**: $[B, 1, S, S]$
- **out**: $[B, N, S, S]$
STEP 2.3. FUSE SOFTMAX WITH MASK
A Possible Parallelization Approach (suppose B=8, S=384)

• Parallelize for sequence length (S) and batch size (B)
STEP 2.3. FUSE SOFTMAX WITH MASK

Data accessed by A Thread Block (suppose B=8, S=384)

- Total (B x S) thread blocks = 3072 thread blocks
STEP 2.3. FUSE SOFTMAX WITH MASK

Set Block Size to 128

- If $S=384$, each block has **3 iterations** within the same row
STEP 2.3. FUSE SOFTMAX WITH MASK

Reuse Mask across N Attention Heads in Batch

- Let each thread load a mask into a local variable (stored in register)

 That’s why we didn’t parallelize across N attention heads (will be revisited in later slide)
STEP 2.3. FUSE SOFTMAX WITH MASK
Parallel Row Reduction to Get Sum (1/3)

A row from Batch 0 (in global memory)

\[\exp(in[attention_idx] + adder[c])\]
adder[c] is in register (see previous slide)

Partial sum (in register)
STEP 2.3. FUSE SOFTMAX WITH MASK

Parallel Row Reduction to Get Sum (2/3)

block size(=128) warp size(=32)

```
for(int lane_mask=max_lane_mask; lane_mask>0; lane_mask>>=1)
    val += __shfl_xor_sync(FULL_MASK, val, lane_mask, WARP_SIZE);
```

Warp reduction (in register)

threadIdx.x % 32 == 0 hold sum (in register)
STEP 2.3. FUSE SOFTMAX WITH MASK
Parallel Row Reduction to Get Sum (3/3)
STEP 2.3. FUSE SOFTMAX WITH MASK
Broadcast Sum and Do Softmax

\[\sum_{i} e^{\text{in}(\text{idx}) + \text{adder}(c)} \]

• Everything was done in register or shared memory

\[\text{out[attention_idx]} = \text{val}[c] / (\text{sbuf}[\text{seq_id}] + 1e-6); \]

Read “in” and “mask” once and write “out” once to global memory
STEP 2.3. FUSE SOFTMAX WITH MASK
Repeat for N Attention Heads

```
... 
T adder[n_col_chunk_per_block];
for(int c=0; c<n_col_chunk_per_block; c++) {
    adder[c] = (T(1.0)) - attention_mask[attention_mask_idx]) * T(-10000.0);
    attention_mask_idx += chunk_length;
}
...
for(int h=0; h<num_attention_heads; h++) {
    ...
}
```

Row reduction & Softmax adder is reused N times
STEP 3. USE CUSTOM OP IN PYTHON

How to Substitute Original Implementation

```python
ref_tensor = tf.matmul(query_layer, key_layer, transpose_b=True)
ref_tensor = tf.multiply(ref_tensor, 1.0 / math.sqrt(float(size_per_head)))
adder = (1.0 - tf.cast(attention_mask, ref_tensor.dtype)) * -10000.0
ref_tensor += adder;
ref_tensor = tf.nn.softmax(ref_tensor)
```

```python
out_tensor = cuda_custom_ops_module.attention_op(query_layer, key_layer, attention_mask,
                                            seq_length=seq_length,
                                            num_attention_heads=num_attention_heads,
                                            size_per_head=size_per_head)
```

Original Implementation

Custom Implementation
PROFILING FUSED MULTI-HEAD ATTENTION

Result based on NVIDIA Visual Profiler (NVVP)
END-TO-END PERFORMANCE
SQuAD Inference on a single V100 16G

- To get more speedup, GEMM-centric optimization is required

* Higher is Better

1.19X speedup

Inference Speedup

GEMM and add bias represent 83.9% now
WHAT WE CAN DO MORE

Further Optimization Options

More Fusion and/or custom kernels in “Feed Forward” and “Multi-Head Attention”

- GEMM + add bias + layer norm + activation
- GEMM + scale + mask + softmax + GEMM

Apply **Quantization** or Use lower precision, e.g., FP16, INT8

FasterTransformer will be released soon

- Highly optimized BERT Transformer for Inference based on custom CUDA kernels and CUBLAS
- Will support various sequence length and multi-precisions
MORE ABOUT TENSORFLOW CUSTOM OP

Pitfalls and Tips

Use allocate_output or allocate_temp instead of explicit cudaMalloc()

- allocate_output: used to allocate output tensor
- allocate_temp: used to allocate temporary memory, not exposed as a tensor
- cudaFree() is not necessary because TF has its own memory management

If you encounter the undefined symbol error in building, check the list below

- `-D_GLIBCXX_USE_CXX11_ABI=0` (if GCC >= 5.0)
- Library dependency, template specialization
RELATED SESSIONS IN AI CONFERENCE
Learn More About Inference and Profiling

Deep Learning Inference 가속화를 위한 NVIDIA의 기술 소개 - 이종환 (NVIDIA)
• 13:50 - 14:30, Track 2

TensorRT를 이용한 OCR Model Inference 성능 최적화 - 이현수 (카카오)
• 14:40 - 15:20, Track 2

GPU Profiling 기법을 통한 Deep Learning 성능 최적화 기법 소개 - 홍광수 (NVIDIA)
• 16:30 - 17:10 Track 3
WE ARE HIRING!
AI Developer Technology Engineer

Study and Develop cutting-edge techniques in DL/ML, and perform in-depth analysis and optimization to achieve the best possible performance on GPU architectures.

Work directly with key developers to understand and solve the practical problems using GPUs.

Collaborate closely with the architecture, libraries, tools and research teams at NVIDIA to influence the design of next-generation architectures, software, and programming models.

In short, we do what was discussed in this session 😊
RULES IN STEP 1

Things to Remember

• Multiple inputs and outputs are allowed

• `.Attr("AttrName": "AttrType")` is used to configure the op
 int32, float, double, bool, `type` and etc are allowed as “AttrType”

• `.SetShape()` defines the output shape

c->set_output(i, shape): set ith output’s shape

c->input(i): get ith input’s shape
STEP 1. REGISTER OP’S INTERFACE IN C++
Calculate Output Shape and check errors

Top 4 things to notice
- How to get input dim and rank
- How to make shape object
- How to handle invalid arguments
- How to set output shape

```cpp
.SetShapeFn([](shape_inference::InferenceContext *c) {
  Status status = Status::OK();
  int in0_rank = shape_inference::InferenceContext::Rank(c->input(0));
  int in1_rank = shape_inference::InferenceContext::Rank(c->input(1));
  if(in0_rank != in1_rank) {
    status.Update(errors::InvalidArgument(
      "The input ranks are mismatched(" , in0_rank, ", !=" , in1_rank, ", ")"));
  }
  std::vector<shape_inference::DimensionHandle> out_dims;
  int i;
  for(i=0; i<in0_rank-2; i++) {
    auto in0_dim_val = shape_inference::InferenceContext::Value(c->Dim(c->input(0), i));
    shape_inference::DimensionHandle in1_dim;
    TF_RETURN_IF_ERROR(c->WithValue(c->Dim(c->input(1), i), in0_dim_val, &in1_dim));
    out_dims.push_back(in1_dim);
  }
  out_dims.push_back(c->Dim(c->input(0), i));
  out_dims.push_back(c->Dim(c->input(1), i));
  i++;
  auto in0_k = shape_inference::InferenceContext::Value(c->Dim(c->input(0), i));
  auto in1_k = shape_inference::InferenceContext::Value(c->Dim(c->input(1), i));
  if(in0_k != in1_k) {
    status.Update(errors::InvalidArgument(
      "Invalid input matrices: nx", in0_k, " and nx", in1_k));
  }
  c->set_output(0, c->MakeShape(out_dims));
  return status;
});
```