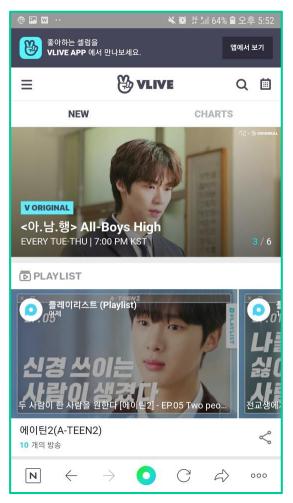
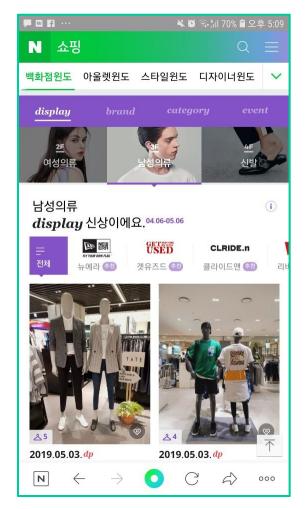
Deep Learning Research of NAVER Clova for Al-Enhanced Business

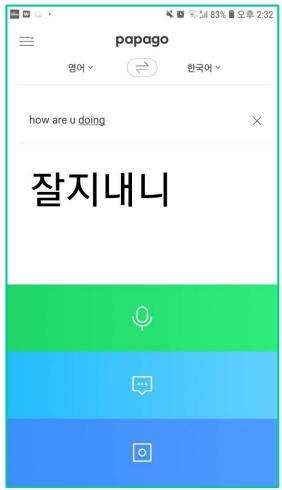
2 July 2019 NVidia Al Conference

Jung-Woo Ha, PhD Research Head, Clova AI, NAVER & LINE

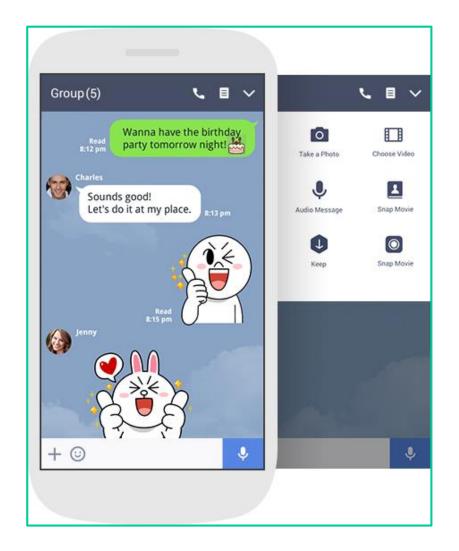
NAVER







LINE



NAVER & LINE

NAVER

Korea No.1 Internet Platform Company

Clova

LINE

Global Messenger Platform Company Based on Japan

Vision of Clova: Al for Everyone

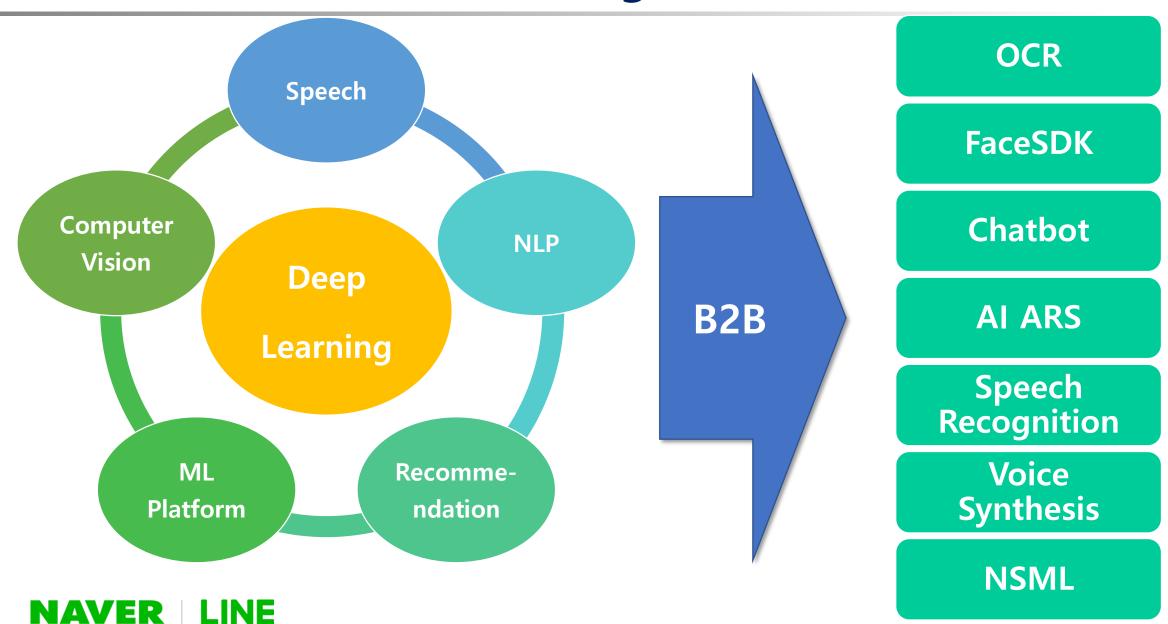
Innovative Al Technologies Practical & Valuable Al Services

B2B

B2C

Better World

Clova Al Core Technologies to B2B



AI Technology Hierarchy

Lightweight

AutoML

Application Logics + API

Task-specific Models

(Fine-tuning, Transfer learning, Distillation, Domain adaptation, ...)

Powerful Pretrained Models (Regularizer, DataAug, LR scheduling, Curriculum learning, ...)

Pretrained Models

Distillation: Student Better Than A Teacher

[Heo et al. Arxiv 2019]

[CIFAR-100]

Setup	Compression type	Teacher network	Student network	# of params teacher	# of params student	Compress ratio
(a)	Depth	WideResNet 28-4	WideResNet 16-4	5.87M	2.77M	47.2%
(b)	Channel	WideResNet 28-4	WideResNet 28-2	5.87M	1.47M	25.0%
(c)	Depth & channel	WideResNet 28-4	WideResNet 16-2	5.87M	0.70M	11.9%
(d)	Different architecture	WideResNet 28-4	ResNet 56	5.87M	0.86M	14.7%
(e)	Different architecture	PyramidNet-200 (240)	WideResNet 28-4	26.84M	5.87M	21.9%
(f)	Different architecture	PyramidNet-200 (240)	PyramidNet-110 (84)	26.84M	3.91M	14.6%

Setup	Teacher	Baseline	KD [8]	FitNets [22]	AT [30]	Jacobian [26]	FT [14]	AB [7]	Proposed
(a)	21.09	22.72	21.69	21.85	22.07	22.18	21.72	21.36	20.89
(b)	21.09	24.88	23.43	23.94	23.80	23.70	23.41	23.19	21.98
(c)	21.09	27.32	26.47	26.30	26.56	26.71	25.91	26.02	24.08
(d)	21.09	27.68	26.76	26.35	26.66	26.60	26.20	26.04	24.44
(e)	15.57	21.09	20.97	22.16	19.28	20.59	19.04	20.46	17.80
(f)	15.57	22.58	21.68	23.79	19.93	23.49	19.53	20.89	18.89

Distillation: Student Better Than A Teacher

[Heo et al. Arxiv 2019]

[ImageNet-1k]

Network	# of param (ratio)	Method	Top-1 error(%)	Top-5 error(%)
ResNet152	60.19M	Teacher	21.69	5.95
		Baseline	23.72	6.97
	25.56M (42.5%)	AT [30]	22.75	6.35
ResNet50		FT [14]	22.80	6.49
		AB [7]	23.47	6.94
		Proposed	21.65	5.83
ResNet50	25.56M	Teacher	23.84	7.14
		Baseline	31.13	11.24
		AT [30]	30.44	10.67
MobileNet	4.23M	FT [14]	30.12	10.50
	(16.5%)	AB [7]	31.11	11.29
		Proposed	28.75	9.66

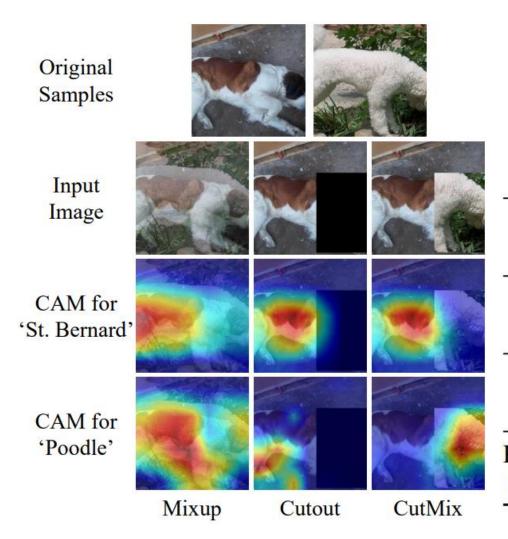
[Other Tasks: Object Detection & Segmentation]

Network	# of params	Method	mAP(%)
ResNet50-SSD 36.7M		Teacher (T1)	76.79
VGG-SSD	26.3M	Teacher (T2)	77.50
		Baseline	71.61
ResNet18-SSD	20.0M	Proposed-T1	73.08
		Proposed-T2	72.38
MobileNet		Baseline	67.58
	6.5M	Proposed-T1	68.54
-SSD lite		Proposed-T2	68.45

Backbone	# of params	Method	mIoU
ResNet101	59.3M	Teacher	77.39
ResNet18	16.6M	Baseline	71.79
	(28.0%)	Proposed	73.24
MobileNetV2	5.8M	Baseline	68.44
	(9.8%)	Proposed	71.36

CutMix: New Robust Data Augmentation

[Yun et al. Arxiv 2019]



	ResNet-50	Mixup [46]	Cutout [2]	CutMix
Image				
Label	Dog 1.0	Dog 0.5 Cat 0.5	Dog 1.0	Dog 0.6 Cat 0.4
ImageNet	76.3	77.4	77.1	78.4
Cls (%)	(+0.0)	(+1.1)	(+0.8)	(+2.1)
ImageNet	46.3	45.8	46.7	47.3
Loc (%)	(+0.0)	(-0.5)	(+0.4)	(+1.0)
Pascal VOC	75.6	73.9	75.1	76.7
Det (mAP)	(+0.0)	(-1.7)	(-0.5)	(+1.1)

CutMix: New Robust Data Augmentation

[Yun et al. Arxiv 2019]

Model	# Params	Top-1 Err (%)	Top-5 Err (%)
ResNet-152*	60.3 M	21.69	5.94
ResNet-101 + SE Layer* [14]	49.4 M	20.94	5.50
ResNet-101 + GE Layer* [13]	58.4 M	20.74	5.29
ResNet-50 + SE Layer* $[14]$	28.1 M	22.12	5.99
ResNet-50 + GE Layer* [13]	33.7 M	21.88	5.80
ResNet-50 (Baseline)	25.6 M	23.68	7.05
ResNet-50 + Cutout [2]	25.6 M	22.93	6.66
ResNet-50 + StochDepth [16]	25.6 M	22.46	6.27
ResNet-50 + Mixup [46]	25.6 M	22.58	6.40
ResNet-50 + Manifold Mixup [40]	25.6 M	22.50	6.21
ResNet-50 + DropBlock* [7]	25.6 M	21.87	5.98
ResNet-50 + Feature CutMix	25.6 M	21.80	6.06
ResNet-50 + CutMix	25.6 M	21.60	5.90

	Baseline	Mixup	Cutout	CutMix
Top-1 Acc (%)	8.2	24.4	11.5	31.0

Γable 11: Top-1 accuracy after FGSM white-box attack on ImageNet validation set.

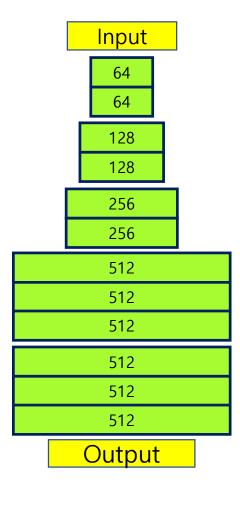
Method	TNR at TPR 95%	AUROC	Detection Acc.
Baseline	26.3 (+0)	87.3 (+0)	82.0 (+0)
Mixup	11.8 (-14.5)	49.3 (-38.0)	60.9 (-21.0)
Cutout	18.8 (-7.5)	68.7 (-18.6)	71.3 (-10.7)
CutMix	69.0 (+42.7)	94.4 (+7.1)	89.1 (+7.1)

Backbone	ImageNet Cls	Detection		Image Captioning	
Network	Top-1 Error (%)	SSD [23]	Faster-RCNN [29]	NIC [41]	NIC [41]
Network	10p-1 E1101 (%)	(mAP)	(mAP)	(BLEU-1)	(BLEU-4)
ResNet-50 (Baseline)	23.68	76.7 (+0.0)	75.6 (+0.0)	61.4 (+0.0)	22.9 (+0.0)
Mixup-trained	22.58	76.6 (-0.1)	73.9 (-1.7)	61.6 (+0.2)	23.2 (+0.3)
Cutout-trained	22.93	76.8 (+0.1)	75.0 (-0.6)	63.0 (+1.6)	24.0 (+1.1)
CutMix-trained	21.60	77.6 (+0.9)	76.7 (+1.1)	64.2 (+2.8)	24.9 (+2.0)

Lightweight CNN Architecture Design

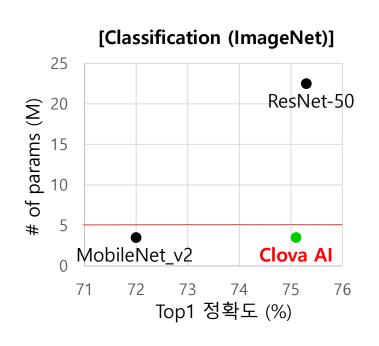
• Here, the problem is **how to design feature-map** sizes when the # of parameters is limited.

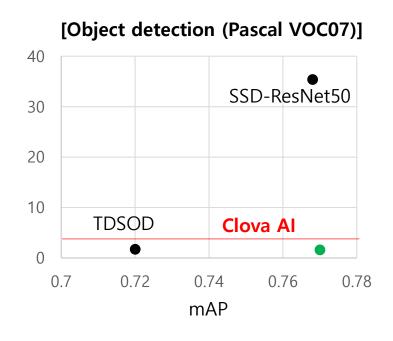
• The performance could be improved by weight layer reallocation.

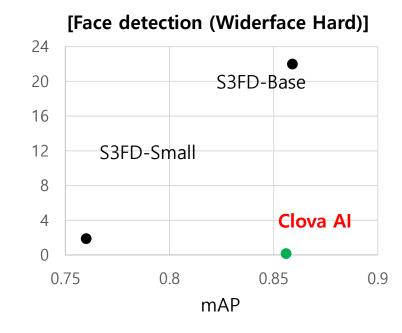


SOTA Lightweight Image Models

[Han et al. 2019; Yun et al. 2019; Yoo et al. 2019]







Lightweight CNN Architecture Design

- Transfer to object detection task (finetuning)
 - Pascal VOC 07 test results (trained on VOC 0712 trainval):

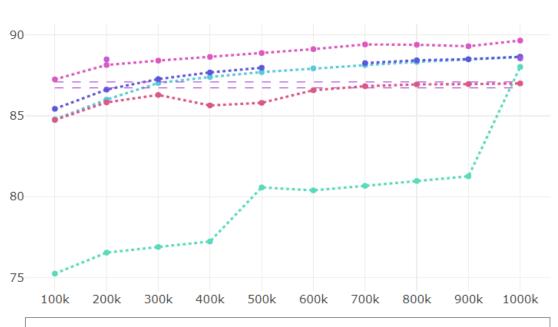
	Clova AI 경량화	SSD - MobileNet_v2
PASCAL: VOC 정확도(모델크기)	77.0 (5.4M)	70.1 (5.4M)

- Transfer to text detection task (Lite-CRAFT)
 - ICDAR-13 test results:

Backbone	# of params	Hmean(%)
VGG-16 BN	20.8 M	91.5
Ours	2.3 M	91.0
Ours	2.1 M	89.0

LaRva: Language Representation by Clova

- BigLM based on BERT
- New task definition
 - GLUE vs. KLUE and JLUE
- New encoding, corpus-level curriculum learning, n-gram maksing
- Distributed learning for LaRva
- Fast LaRva



Task Name: Average

L12, W+NW+E+N+B, 32k_v1, Cased (128->512 Length)
L12, W+NW+E+N+B, 32k_v2, Uncased
L12, N-gram, W+NW+E+N+B, 32k_v1, Cased (init From Scratch)
L12, W+NW+E+N+B, 32k_v1, Cased
L12, Multilingual, Cased
L12, Multilingual, Uncased
bert-large-kor-full-8node_1024b-kor_32k_v1_vocab-cased
L24, W+NW+E+N+B, 32k_v1, Cased
L6, W+NW+E+N+B, 32k_v1, Cased

Task-specific Models

Speech Enhancement

[Orignal]

[Enhanced]

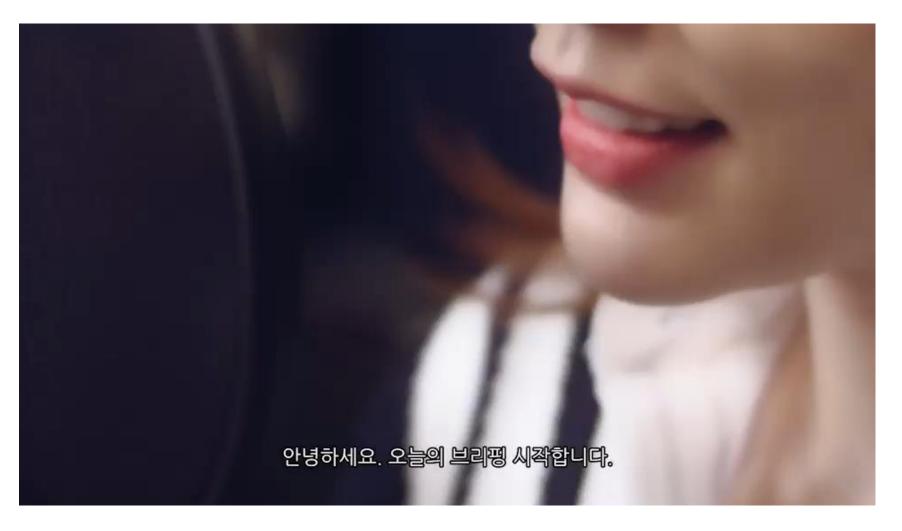
Audio-Visual Speech Enhancement

Speech separation given lip regions in the video

[Afouras et al. Interspeech 2018]

HDTS: SOTA Speech Synthesis

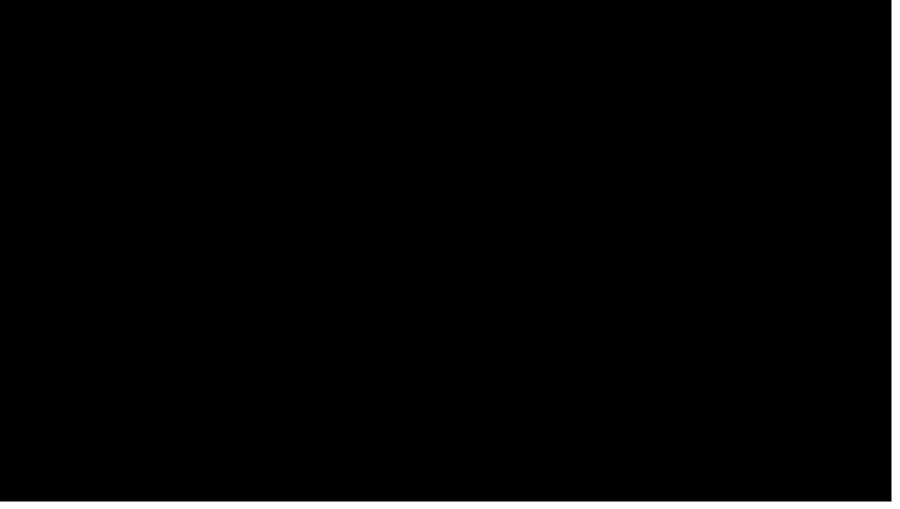
Required recorded voice data: 10hrs → 4hrs → 40mins



Detection in OCR

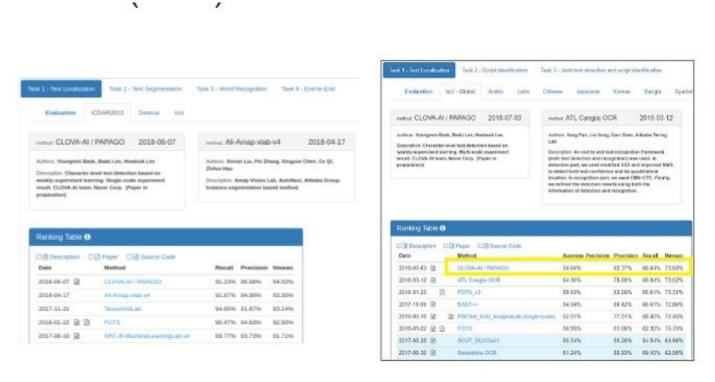
[Baek et al. CVPR 2019]

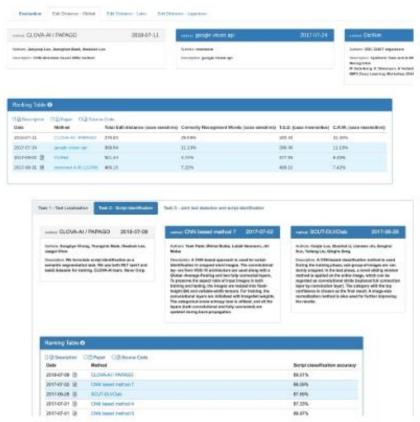
CRAFT: Character region awareness for text detection



OCR Challenges

• The 1st rank in 4 Leaderboards @ ICDAR Challenges (Jan 2019)





Clova

AutoCut (BTS)

V

Source video

Suga

Jungkook

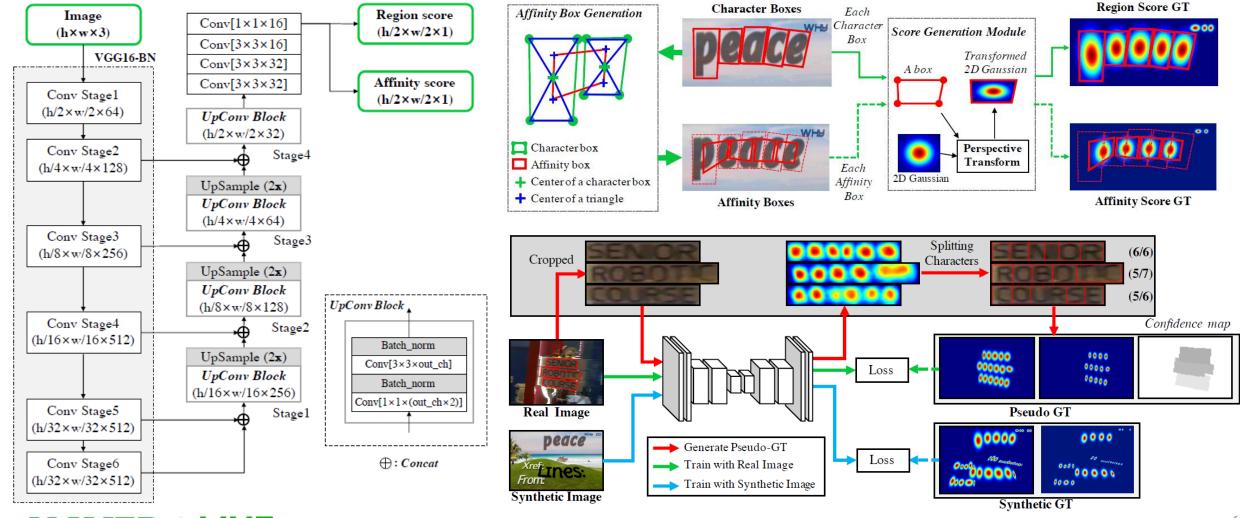
AutoCAM (Black Pink)

Applications of tracking, pose estimation, and person re-id in in-the-wild videos

Detection in OCR

CRAFT: Character region awareness for text detection

[Baek et al. CVPR 2019]



Detection in OCR

[Baek et al. CVPR 2019]

CRAFT: Character region awareness for text detection

Method	IC1	3(DetE	val)		IC15		IC17			MSRA-TD500			FPS
	R	P	Н	R	P	Н	R	P	Н	R	P	Н	
Zhang et al. [39]	78	88	83	43	71	54	-	_	-	67	83	74	0.48
Yao et al. [37]	80.2	88.8	84.3	58.7	72.3	64.8	-	-	-	75.3	76.5	75.9	1.61
SegLink [32]	83.0	87.7	85.3	76.8	73.1	75.0	-	-	-	70	86	77	20.6
SSTD [8]	86	89	88	73	80	77	-	_	-	-	-	-	7.7
Wordsup [12]	87.5	93.3	90.3	77.0	79.3	78.2	-	_	-	-	-	-	1.9
EAST* [40]	-	_	-	78.3	83.3	80.7	-	_	-	67.4	87.3	76.1	13.2
He et al. [11]	81	92	86	80	82	81	-	-	-	70	77	74	1.1
R2CNN [13]	82.6	93.6	87.7	79.7	85.6	82.5	-	-	-	-	-	-	0.4
TextSnake [24]	-	-	-	80.4	84.9	82.6	-	-	-	73.9	83.2	78.3	1.1
TextBoxes++* [17]	86	92	89	78.5	87.8	82.9	-	-	-	-	-	-	2.3
EAA [10]	87	88	88	83	84	83	-	-	-	-	-	-	-
Mask TextSpotter [25]	88.1	94.1	91.0	81.2	85.8	83.4	-	-	-	-	-	-	4.8
PixelLink* [4]	87.5	88.6	88.1	82.0	85.5	83.7	-	-	-	73.2	83.0	77.8	3.0
RRD* [19]	86	92	89	80.0	88.0	83.8	-	-	-	73	87	79	10
Lyu et al.* [26]	84.4	92.0	88.0	79.7	89.5	84.3	70.6	74.3	72.4	76.2	87.6	81.5	5.7
FOTS [21]	-	-	87.3	82.0	88.8	85.3	57.5	79.5	66.7	-	-	-	23.9
CRAFT(ours)	93.1	97.4	95.2	84.3	89.8	86.9	68.2	80.6	73.9	78.2	88.2	82.9	8.6

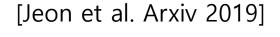
Recognition in OCR

• Full integration for practical OCR

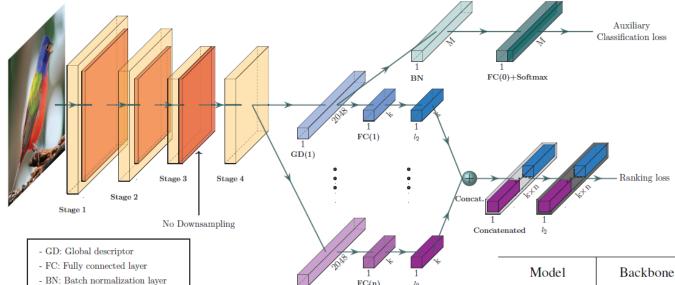
[Baek et al. ArXiv 2019]

	Model	Vann	Train data	IIIT	SVT	IC	03	IC	13	IC	15	SP	CT	Time	params
	Model	Year	Train data	3000	647	860	867	857	1015	1811	2077	645	288	ms/image	$\times 10^6$
	CRNN [23]	2015	MJ	78.2	80.8	89.4	_	_	86.7	_	_	_	_	160	8.3
	RARE [24]	2016	MJ	81.9	81.9	90.1	_	88.6	_	_	_	71.8	59.2	<2	_
	R2AM [15]	2016	MJ	78.4	80.7	88.7	_	_	90.0	_	_	_	_	2.2	_
ılts	STAR-Net [17]	2016	MJ+PRI	83.3	83.6	89.9	_	_	89.1	_	_	73.5	_	_	_
rted results	GRCNN [26]	2017	MJ	80.8	81.5	91.2	_	_	_	_	_	_	_	_	_
d r	ATR [28]	2017	PRI+C	_	_	_	_	_	_	_	_	75.8	69.3	_	_
rte	FAN [4]	2017	MJ+ST+C	87.4	85.9	_	94.2	_	93.3	70.6	_	_	_	_	_
Repor	Char-Net [16]	2018	MJ	83.6	84.4	91.5	_	90.8	_	_	60.0	73.5	_	_	_
Re	AON [5]	2018	MJ+ST	87.0	82.8	_	91.5	_	_	_	68.2	73.0	76.8	_	_
	EP [2]	2018	MJ+ST	88.3	87.5	_	94.6	_	94.4	73.9	_	_	_	_	_
	Rosetta [3]	2018	PRI	_	_	_	_	_	_	_	_	_	_	_	_
	SSFL [18]	2018	MJ	89.4	87.1	_	94.7	94.0	_	_	_	73.9	62.5	_	_
+	CRNN [23]	2015	MJ+ST	82.9	81.6	93.1	92.6	91.1	89.2	69.4	64.2	70.0	65.5	4.4	8.3
riment	RARE [24]	2016	MJ+ST	86.2	85.8	93.9	93.7	92.6	91.1	74.5	68.9	76.2	70.4	23.6	10.8
Æ	R2AM [15]	2016	MJ+ST	83.4	82.4	92.2	92.0	90.2	88.1	68.9	63.6	72.1	64.9	24.1	2.9
ехре	STAR-Net [17]	2016	MJ+ST	87.0	86.9	94.4	94.0	92.8	91.5	76.1	70.3	77.5	71.7	10.9	48.7
ex	GRCNN [26]	2017	MJ+ST	84.2	83.7	93.5	93.0	90.9	88.8	71.4	65.8	73.6	68.1	10.7	4.6
Ē	Rosetta [3]	2018	MJ+ST	84.3	84.7	93.4	92.9	90.9	89.0	71.2	66.0	73.8	69.2	4.7	44.3
	Our best model		MJ+ST	87.9	87.5	94.9	94.4	93.6	92.3	77.6	71.8	79.2	74.0	27.6	49.6

SOTA Fashion Retrieval



In-shop



Model	Backbone	Dim		3	Ol				111-8	пор		
Wiodei	Dackbone	Dilli	1	10	100	1000	1	10	20	30	40	50
Facility [37]	BN-Inception	64	67.0	83.7	93.2	-	-	-	-	-	-	
HTL [9]	BN-Inception	512	74.8	88.3	94.8	98.4	-	-	-	-	-	-
HTL [9]	BN-Inception	128	-	-	-	-	80.9	94.3	95.8	97.2	97.4	97.8
Margin [54]	ResNet-50	128	72.7	86.2	93.8	98.0	_	-	-	-	-	-
ABE-8 [22]	GoogleNet [‡]	512	76.3	88.4	94.8	98.2	87.3	96.7	97.9	98.2	98.5	98.7
BFE [†] [7]	ResNet-50 [‡]	1536	83.0	93.3	97.3	99.2	89.1	96.3	97.6	98.5	99.1	-
CGD (SG/GS)	BN-Inception	64	75.6	89.0	95.5	98.6	86.6	96.3	97.4	97.9	98.2	98.4
CGD (SG/ -)	BN-Inception	512	80.5	92.1	96.7	98.9	-	-	-	-	-	-
CGD (- /GS)	BN-Inception	128	-	-	-	-	88.5	97.1	98.0	98.5	98.8	98.9
CGD (SG/GS)	ResNet-50	128	81.0	92.2	96.8	99.1	88.4	97.2	98.1	98.4	98.7	98.8
CGD (SG/GS)	ResNet-50 [‡]	1536	83.9	93.8	97.5	99.2	90.9	98.0	98.7	99.0	99.1	99.2
CGD (SG/GS)	ShuffleNet-v2	1536	78.7	90.9	96.1	98.8	86.1	96.9	97.8	98.4	98.6	98.7
CGD (SG/GS)	SE-ResNet-50 [‡]	1536	84.2	93.9	97.4	99.2	91.9	98.1	98.7	99.0	99.1	99.3

SOP

- l₂: l₂-normalization layer

Audio-Visual Speech Enhancement

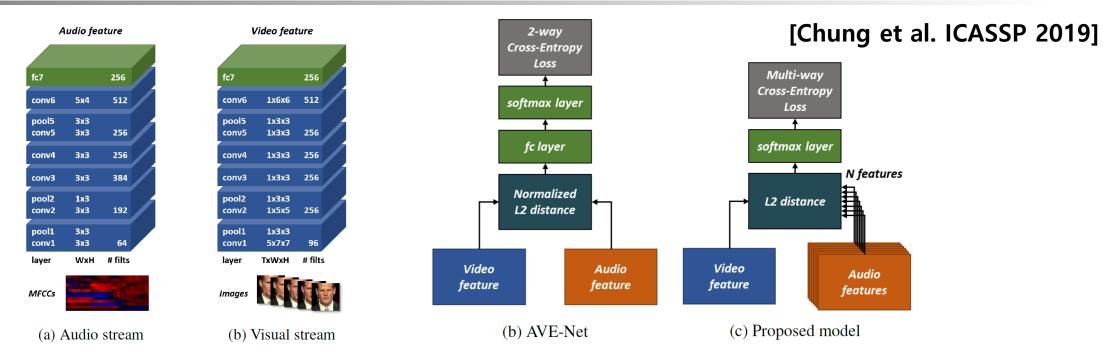


Table 1. Synchronization accuracy. **# Frames**: the number of visual frames for which the distances are averaged over.

# Frames	SyncNet	AVE-Net	Proposed
5	75.8%	74.1%	89.5%
7	82.3%	80.4%	92.1%
9	87.6%	86.1%	94.7%
11	91.8%	90.6%	96.1%
13	94.5%	93.7%	97.5%
15	96.1%	95.5%	98.1%

Table 2. Word accuracy of lip reading using various architectures and training methods.

Architecture	Method	Top-1 (%)
MT-5 [15]	E2E	66.8
LF-5 [15]	E2E	66.0
LSTM-5 [15]	E2E	65.4
TC-5	E2E	71.5
TC-5	PT - SyncNet	67.8
TC-5	PT - AVE-Net	66.7
TC-5	PT - Proposed	71.6

Super-Real Style Transfer

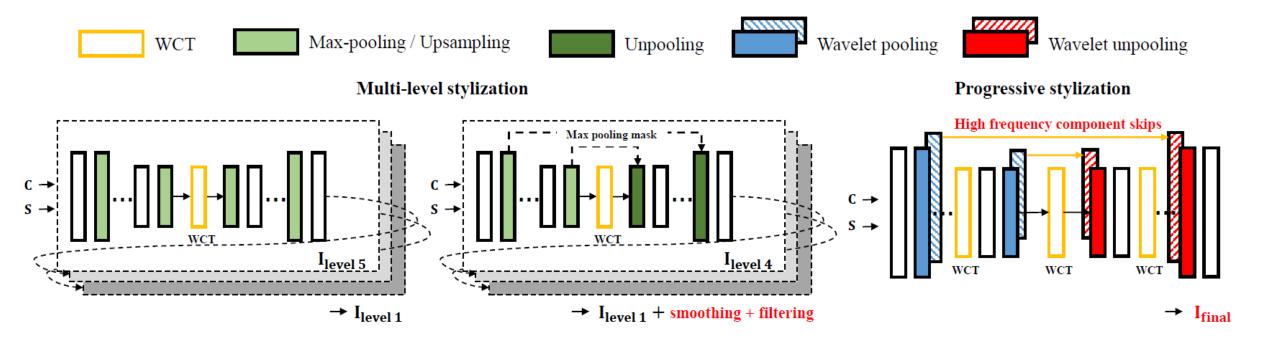
[Yoo et al. Arxiv 2019]

[WCT] [PhotoWCT wo pp] [WCT2(ours)]

Super-Real Style Transfer

• Wavelet Pooling for Perfect Reconstruction

[Yoo et al. Arxiv 2019]



https://github.com/clovaai/wct2

EXTD: EXtremely Tiny face Detector

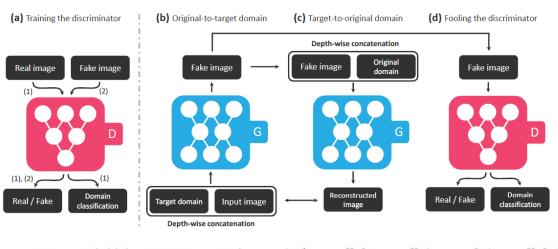
[EXTD: 0.16M]

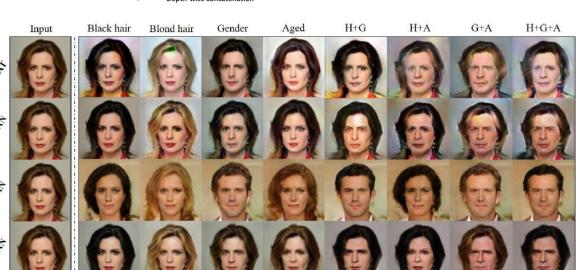
[MobileFaceNet: 1.5M]

Clova

StarGAN

[Choi et al. CVPR 2018 (oral)]





Method	Hair color	Gender	Aged
DIAT	9.3%	31.4%	6.9%
CycleGAN	20.0%	16.6%	13.3%
IcGAN	4.5%	12.9%	9.2%
StarGAN	66.2%	39.1%	70.6%

Method	Classification error	# of parameters
DIAT	4.10	$52.6M \times 7$
CycleGAN	5.99	$52.6M \times 14$
IcGAN	8.07	$67.8M \times 1$
StarGAN	2.12	$53.2M \times 1$
Real images	0.45	-

Table 1. AMT perceptual evaluation for ranking different models on a single attribute transfer task. Each column sums to 100%.

Method	H+G	H+A	G+A	H+G+A
DIAT	20.4%	15.6%	18.7%	15.6%
CycleGAN	14.0%	12.0%	11.2%	11.9%
IcGAN	18.2%	10.9%	20.3%	20.3%
StarGAN	47.4%	61.5%	49.8%	52.2%

Table 2. AMT perceptual evaluation for ranking different models on a multi-attribute transfer task. H: Hair color; G: Gender; A: Aged.

LaRva: Language Representation by Clova

- Giant-scale general-purpose language model by improving BERT
- Not Multi-lingual BERT but LaRva

[WikiSQL]

Model	Dev logical form accuracy	Dev execution accuracy	Test logical form accuracy	Test execution accuracy	Uses execution
SQLova +Execution-Guided Decoding (Hwang 2019)	84.2	90.2	83.6	89.6	Inference
IncSQL +Execution-Guided Decoding (Shi 2018)	51.3	87.2	51.1	87.1	Inference
Execution-Guided Decoding (Wang 2018)	76.0	84.0	75.4	83.8	Inference
SQLova (Hwang 2019)	81.6	87.2	80.7	86.2	
IncSQL (Shi 2018)	49.9	84.0	49.9	83.7	
MQAN (unordered) (McCann 2018)	76.1	82.0	75.4	81.4	
MQAN (ordered) (McCann 2018)	73.5	82.0	73.2	81.4	
Coarse2Fine (Dong 2018)	72.5	79.0	71.7	78.5	

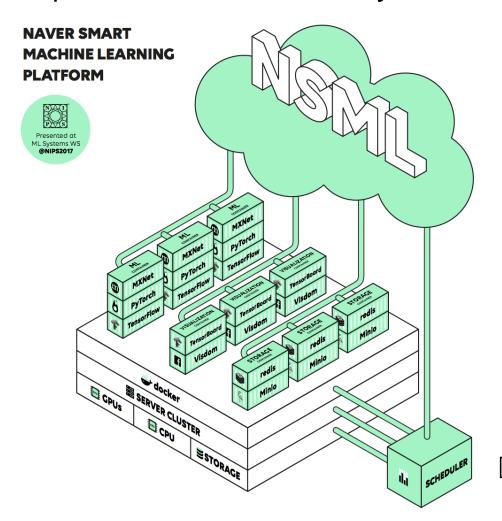
[KorQuAD]

		-	_
Leaderboard			
Leauelbualu			

Rank	Reg. Date	Model	EM	F1
(4)	2018.10.17	Human Performance	80.17	91.20
1	2019.03.13	BERT-Kor (single) Clova Al LPT Team	83.50	92.41
2	2019.01.30	BERT LM fine-tuned (single) + KHAIII Kakao NLP Team	83.32	92.10
3	2019.01.24	BERT LM fine-tuned (single) + KHAIII Kakao NLP Team	82.14	91.85

NSML

NSML: ML research platform that enables you to focus on your model!!



[Sung et al. MLSYS 2017@NIPS 2017]

Easy One-Liner CLI

Dataset registration

```
/app/examples/09_NMT$ nsml dataset push NMT_EN_KR ./nmt_en_kr
```

• Train

```
/app/examples/09_NMT$ nsml run -d NMT_EN_KR
Session clair/NMT_EN_KR/1 is running
```

• Serve (Inference)

```
'/app/examples$ echo Hello | nsml infer clair/NMT_EN_KR/1/12
안녕하세요
```


NSML

- Support any kind of GPU clusters
- Automated GPU allocation / release
- Support most deep learning libraries
- Docker-based isolated research environment
- Easy-to-use CLI and Web interfaces
- Effective visualization
- Leaderboard
- Jupyter and AutoML

[Sung et al. MLSYS 2017@NIPS 2017]

네이버 스마트 머신러닝 플랫폼

쉽고 편리한 사용

클라우드 기반으로 즉시 사용이 가능하고, 데이터 관리가 편리합니다

효율적 자원 활용

GPU Clustering 및 Scheduling 를 통해 자원을 효과적으로 배분합니다

다양한 실험과 인사이트

병렬학습 및 형상관리, Visualization 을 통해 빠르게 인사이트를 얻습니다

효과적 협업과 투명한 관리

문제를 공유할 수 있고 전체 학습 및 자원 현황을 실시간 확인할 수 있습니다

모델 성능 최적화

AutoML을 통해 자동으로 파라미터를 튜닝하고 성능을 최적화합니다

빠르고 효율적인 데이터 레이블링

Active Learning 을 통해 성능 향상에 중요한 데이터를 선별하고, 자동으로 데이터를 레이블링 합니다

NAVER

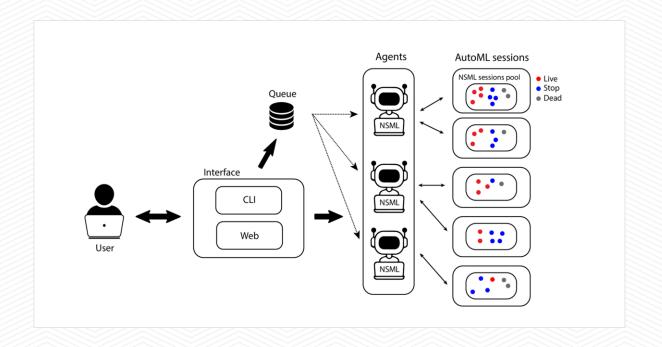
AutoML in **NSML**

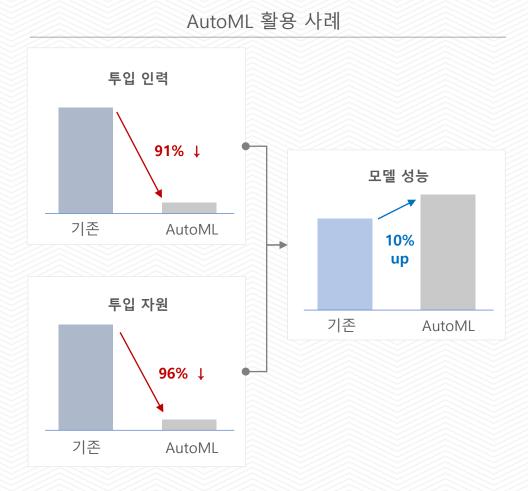
AutoML

(5) AutoML을 통해 더 빠르게, 더 좋은 학습 결과를 얻을 수 있습니다

파라미터 튜닝 자동화

- 간단한 조건 세팅으로 Auto ML을 통해 자동으로 Parameter 를 조정하고 최적 모델 탐색
- 각 모델의 Parameter 조합 및 성능은 그래프를 통해 비교 확인
- 설정에 따른 성능 추이를 분석하고, 탐색 범위를 좁혀가며 추가적인 실험 진행





Clova Al Tech Demo

https://clova.ai/techdemo

We can meet here

ICLR | 2019

Seventh International Conference on Learning Representations

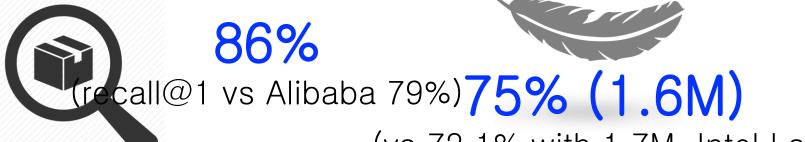
ICML | 2019

Thirty-sixth International Conference on Machine Learning

EMNLP-IJCNLP 2019

Research Opportunities

Clova Al World-class Achievement



Product Image Search

(vs 72.1% with 1.7M, Intel Lab) Lightweight (detection)

Four-hour Recoding Voice

Optical Character Recognition

Selected Publication List of Clova Al Since 2018

- 1. Sung et al. NSML: A Machine Learning Platform That Enables You to Focus on Your Models, MLSYSWS@NIPS 2017
- Seo et al. Neural Speed Reading via Skim-RNN, ICLR 2018.
- Choi et al. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation, <u>CVPR 2018</u>.
- 4. Afouras et al. Deep Lip Reading: a comparison of models and an online application, Interspeech 2018.
- 5. Chung et al. VoxCeleb2: Deep Speaker Recognition, Interspeech 2018.
- 6. Afouras et al. The Conversation: Deep Audio Visual Speech Enhancement, Interspeech 2018.
- 7. Lee et al. Acoustic modeling using adversarially trained variational recurrent neural network for speech synthesis, Interspeech 2018.
- 8. Hwang et al. A Unified Framework for the Generation of Glottal Signals in Deep Learning-Based Parametric Speech Synthesis Systems, Interspeech 2018.
- 9. Park et al. Representation Learning of Music Using Artist Labels, <u>ISMIR 2018</u>.
- 10. Lee et al. Unsupervised holistic image generation from key local patches, ECCV 2018.
- 11. Kim et al. Multimodal Dual Attention Memory for Video Story Question Answering, ECCV 2018.
- 12. Seo et al. Phrase-Indexed Question Answering: A New Challenge for Scalable Document Comprehension, EMNLP 2018.
- 13. Lee et al. Answerer in Questioner's Mind: Information Theoretic Approach to Goal-Oriented Visual Dialog, NeurlPS 2018.
- 14. Song et al. Hierarchical Context enabled Recurrent Neural Network for Recommendation, AAAI 2019.
- 15. Park et al. Adversarial Dropout for Recurrent Neural Networks, AAAI 2019.
- 16. Park et al. Paraphrase Diversification using Counterfactual Debiasing, AAAI 2019.
- 17. Heo et al. Knowledge Distillation with Adversarial Samples Supporting Decision Boundary, AAAI 2019.
- 18. Heo et al. Knowledge Transfer via Distillation of Activation Boundaries Formed by Hidden Neurons, AAAI 2019.
- 19. Oh et al. Modeling Uncertainty with Hedged Instance Embeddings, ICLR 2019.
- 20. Gu et al. DialogWAE: Multimodal Response Generation with Conditional Wasserstein Auto-Encoder, ICLR 2019.
- 21. Lee et al. Large-Scale Answerer in Questioner's Mind for Visual Dialog Question Generation, ICLR 2019.
- 22. Kim et al. Curiosity-Bottleneck: Exploration By Distilling Task-Specific Novelty, ICML 2019.
- 23. Chung et al. Perfect match: Improved cross-modal Embeddings for audio-visual synchronisation, ICASSP 2019
- 24. Baek et al. Character Region Awareness for Text Detection, CVPR 2019.
- 25. Seo et al. Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index, ACL 2019.
- 26. Chung et al. Who said that?: Audio-visual speaker diarisation of real-world meeting, Interspeech 2019.
- 27. Afouras et al. My lips are concealed: Audio-visual speech enhancement through obstructions, Interspeech 2019.
- 28. Yamamoto et al. Probability Density Distillation with Generative Adversarial Networks for High-quality Parallel Waveform Generation, Interspeech 2019.
- 29. Hwang et al. Parameter enhancement for MELP speech codec in noisy communication environment, Interspeech 2019.

WE ARE HIRING! Join Us!

Positions

Research Scientist Al Software Engineer

Research Internship Global Residency

Fields and Domains

All fields of AI from fundamental theories to practical applications

Why should I Join Naver Clova?

Great Colleagues & Work Environment, Hands-on R&D Experience Advisory: Kyunghyun Cho, Jun-Yan Zhu, Hannaneh Hajishirzi, and Jaegul Choo

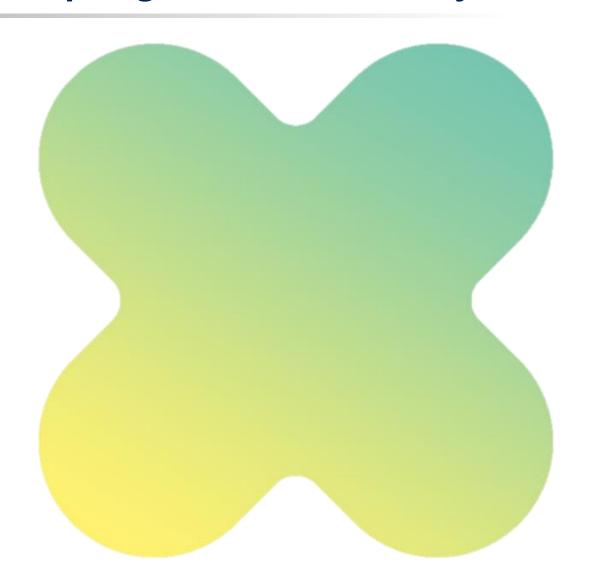
How to Apply?

clova-jobs@navercorp.com

We are hiring 2019 Fall / 2020 Spring Global Residency

Clova Al Research Recruiting

2020 SPRING GLOBAL RESIDENCY



Send Your CV Today!

clova-jobs@navercorp.com

[Clova Al Github]

[Facebook Clova AI Research]

[Clova Al Research Web]

