
한재근과장 | Solutions Architect | jahan@nvidia.com

GETTING MORE DL TRAINING WITH
TENSOR CORES AND AMP

2

AGENDA

• What is Automatic Mixed Precision

• AMP Technical Details

• Getting started on AMP

• Performance Guide

• Additional Resources

3

BACKGROUD: TENSOR CORES

125 TFlops in FP16 vs 15.7 TFlops in FP32 (8x speed-up)

Inherently mixed precision: 32bit accumulation

Available in Volta and Turing architecture GPUs

Optimized 4x4 dot operation (GEMM)

Hardware support for accelerated 16-bit FP math

Memory Savings

• Half Storage Requirements (larger batch size)

• Half the memory traffic by reducing size of
gradient/activation tensors

4

WHAT IS
AUTOMATIC MIXED PRECISION

5

MAXIMIZING MODEL PERFORMANCE

1x compute throughput

1x memory throughput

1x memory storage

FP32 FP16 with Tensor Cores

8X compute throughput

2X memory throughput

1/2X memory storage

FP16 is fast and memory-efficient.

6

DevBlog: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/

MIXED PRECISION TRAINING

• Balance a pure tradeoff of speed and accuracy:

• Reduced precision (16-bit floating point) for speed or scale

• Full precision (32-bit floating point) to maintain task-specific accuracy

• Under the constraints:

• Maximize use of reduced precision
while matching accuracy of full precision training

• No changes to hyperparameters

Motivation

7

AUTOMATIC MIXED PRECISION

“This easy integration enables TensorFlow

developers to literally flip a switch in their AI model

and get up to 3X speedup with mixed precision

training while maintaining model accuracy.”

Rajat Monga, Engineering Director, TensorFlow

Speedup Your Network Across Frameworks With Just Two Lines of Code

Tensor

Cores

NVIDIA

AMP

Frameworks

Models

CNN, RNN, GAN,

RL, NCF…

8

AUTOMATIC MIXED PRECISION IN TENSORFLOW
Upto 3X Speedup

All models can be found at:

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow, except for ssd-rn50-fpn-640, which is here: https://github.com/tensorflow/models/tree/master/research/object_detection

All performance collected on 1xV100-16GB, except bert-squadqa on 1xV100-32GB.

Speedup is the ratio of time to train for a fixed number of epochs in single-precision and Automatic Mixed Precision. Number of epochs for each model was matching the literature or common practice (it was also confirmed that both training sessions achieved the same model

accuracy).

Batch sizes:. rn50 (v1.5): 128 for FP32, 256 for AMP+XLA; ssd-rn50-fpn-640: 8 for FP32, 16 for AMP+XLA; NCF: 1M for FP32 and AMP+XLA; bert-squadqa: 4 for FP32, 10 for AMP+XLA; GNMT: 128 for FP32, 192 for AMP.

TensorFlow Medium Post: Automatic Mixed Precision in TensorFlow for Faster AI Training on NVIDIA GPUs

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow
https://github.com/tensorflow/models/tree/master/research/object_detection
https://medium.com/tensorflow/automatic-mixed-precision-in-tensorflow-for-faster-ai-training-on-nvidia-gpus-6033234b2540?linkId=64995850

9

MIXED PRECISION TRAINING

• 8GPU training of ResNet-50
(ImageNet classification) on DGX-1

• NVIDIA mxnet-18.08-py3 container

• Total time to run full training
schedule in mixed precision is well
under four hours

• 2.9x speedup over FP32 training

• Equal validation accuracies

• No hyperparameters changed

• Minibatch = 256 per GPU

With Tensor Cores

10

MIXED PRECISION IS GENERAL PURPOSE
Models trained to match FP32 results (same hyperparameters)

Image

Classification

AlexNet

DenseNet

Inception

MobileNet

NASNet

ResNet

ResNeXt

VGG

XCeption

Detection / Segmentation

DeepLab

Faster R-CNN

Mask R-CNN

Multibox SSD

NVIDIA Automotive

RetinaNet

UNET

Generative Models

(Images)

DLSS

Partial Image Inpainting

Progress GAN

Pix2Pix

Speech

Deep Speech 2

Tacotron

WaveNet

WaveGlow

Language Modeling

BERT

BigLSTM

8k mLSTM (NVIDIA)

Translation

FairSeq (convolution)

GNMT (RNN)

Transformer

(self-attention)
Recommendation

DeepRecommender

NCF

11

MIXED PRECISION SPEEDUPS
Not limited to image classification

Model FP32 -> M.P. Speedup Comments

ResNet-50 v1.5 Image Recognition 3.5x Iso-batch size

FairSeq

Transformer
Translation

2.9x

4.9x

Iso-batch size

2x lr + larger batch

BERT SQuAD (fine-tuning) 1.9x Iso-batch size

Deep Speech 2 Speech recognition 4.5x Larger batch

Tacotron 2 +

WaveGlow
Speech synthesis

1.2x

1.9x
Iso-batch size

Nvidia

Sentiment
Language modeling 4.0x Larger batch

NCF Recommender 1.8x Iso-batch size

trained to SAME ACCURACY as FP32 model

No hyperparameter changes, except as noted

12

TECHNICAL DETAILS OF
MIXED PRECISION

1313

MIXED PRECISION TRAINING
Three-part methodology

• Model conversion:

• Switch everything to run on FP16 values

• Insert casts to FP32 for loss functions and normalization/pointwise ops that need full precision

• Master weights:

• Keep FP32 model parameters, update at each iteration

• Use an FP16-casted copy for both forward pass and backpropagation

• Loss scaling:

• Scale the loss value, un-scale the gradients (in FP32!)

• Check gradients at each iteration for overflow – adjust loss scale and skip update, if needed

14

MIXED PRECISION TRAINING

GEMMs, Convolutions can use Tensor Cores

Most pointwise ops (e.g. add, multiply):
1/2X memory storage for intermediates,
2X memory throughput

Assign each operation its optimal precision & performance

Weight updates benefit from precision

Loss functions (often reductions) benefit
from precision and range

Softmax, norms, some other ops benefit
from precision and range

Before Mixed Precision

Conv ReLU SoftMax Loss

FP32

15

MIXED PRECISION TRAINING

GEMMs, Convolutions can use Tensor Cores

Most pointwise ops (e.g. add, multiply):
1/2X memory storage for intermediates,
2X memory throughput

Assign each operation its optimal precision & performance

Weight updates benefit from precision

Loss functions (often reductions) benefit
from precision and range

Softmax, norms, some other ops benefit
from precision and range

FP16 FP32

Conv ReLU SoftMax Loss

FP16 FP32 Type Casting

16

AUTOMATIC MIXED PRECISION

• Allows to implement the three part methodology automatically:

• The framework software can transform existing model code to run with mixed precision
fully automatically

• No new code required should result in no new bugs

• Two components:

• Automated casting: operation-level logic to insert casts between FP32 and FP16,
transparent to the user

• Automatic loss scaling: wrapper class for the optimizer object the can scale the loss,
keep track of the loss scale, and skip updates as necessary

Concepts

17

AUTOMATIC CASTING

Divide the universe of operations into three kinds

Whitelist: ops for which FP16 can use Tensor Cores (MatMul, Conv2d)

Blacklist: ops for which FP32 is required for accuracy (Exp, Sum, Softmax)

Everything else: ops that can run in FP16, but only worthwhile if input is already FP16

(ReLU, pointwise Add, MaxPool)

Lists are framework-specific, since each framework has its own abstractions

TensorFlow:

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/optimizers/a

uto_mixed_precision_lists.h

PyTorch: https://github.com/NVIDIA/apex/tree/master/apex/amp/lists

MXNET: https://github.com/apache/incubator-

mxnet/blob/master/python/mxnet/contrib/amp/lists/symbol.py

Operation Classification

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/optimizers/auto_mixed_precision_lists.h
https://github.com/NVIDIA/apex/tree/master/apex/amp/lists
https://github.com/apache/incubator-mxnet/blob/master/python/mxnet/contrib/amp/lists/symbol.py

18

KEEP FP32 MASTER WEIGHTS
•

… …

No-op weight update

19

LOSS SCALINING
Precision of Weights & Gradients

Gradients
Vanishing

Loss Scale !!

Loss Distribution

20

AUTOMATIC LOSS SCALING

All frameworks implement some kind of optimizer wrapper

Internally, tracks the current loss scale and history of overflows

Provides the loss scale when needed for backpropagation

Overrides optimizer step to instead checking overflow

No overflow, then increase grads and pass to wrapped optimizer step

overflow, then decrease loss scale and don’t called wrapped optimizer step

21

AUTOMATIC LOSS SCALE

Internally, tracks the current loss scale and history of overflows

Provides the loss scale when needed for backpropagation

If an Inf or a NaN is present in the gradient, decrease the scale
And skip the update, including optimizer state

If no Inf or NaN has occurred for some time, increase the scale

22

MIXED PRECISION MAINTAINS ACCURACY
Benefit From Higher Throughput Without Compromise

Mixed Precision - Same hyperparameters and learning rate schedule as FP32
ILSVRC12 classification top-1 accuracy.
(Sharan Narang, Paulius Micikevicius et al., "Mixed Precision Training“, ICLR 2018)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

AlexNet VGG-D GoogleNet
(Inception v1)

Inception v2 Inception v3 Resnet50

M
o
d
e
l
A
c
c
u
ra

c
y

FP32 Mixed Precision

23

GETTING STARTED AUTO
MIXED PRECISION

2424

AUTOMATIC MIXED PRECISION

Insert ~ two lines of code
to introduce Automatic Mixed-Precision and get upto 3X speedup

AMP uses a graph optimization technique to determine FP16 and FP32 operations

Support for TensorFlow, PyTorch and MXNet

Easy to Use, Greater Performance and Boost in Productivity

Unleash the next generation AI performance and get faster to the market!

More details: https://developer.nvidia.com/automatic-mixed-precision

https://developer.nvidia.com/automatic-mixed-precision

25

TENSORFLOW AMP
A simple method

Designed to work with existing float32 models, with minimal changes

Support since NGC TensorFlow Container 19.03

If your training script uses a tf.train.Optimizer to compute and apply gradients

Both Loss Scaling and mixed precision graph conversion can be enabled with a single env var.

If your model does not use a tf.train.Optimizer, then

You must add loss scaling manually to your model, then enable the grappler pass as follows

export TF_ENABLE_AUTO_MIXED_PRECISION=1

python training_script.py

export TF_ENABLE_AUTO_MIXED_PRECISION_GRAPH_REWRITE=1

python training_script.py

26

TENSORFLOW AMP
A more explicit

Since NGC TensorFlow Container 19.07 (TF 1.14+)

Supports an explicit optimizer wrapper to perform loss scaling

Enables auto casting / loss scaling and mixed precision graph optimizer

import tensorflow as tf

opt = tf.train.GradientDescentOptimizer(0.5)

opt = tf.train.experimental.enable_mixed_precision_graph_rewrite(opt)

27

PYTORCH AMP

N, D_in, D_out = 64, 1024, 512
x = torch.randn(N, D_in, device="cuda")
y = torch.randn(N, D_out, device="cuda")

model = torch.nn.Linear(D_in, D_out).cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)

for to in range(500):
y_pred = model(x)
loss = torch.nn.functinoal.mse_loss(y_pred, y)

optimizer.zero_grad()

loss.backward()
optimizer.step()

28

PYTORCH AMP
from apex import amp
N, D_in, D_out = 64, 1024, 512
x = torch.randn(N, D_in, device="cuda")
y = torch.randn(N, D_out, device="cuda")

model = torch.nn.Linear(D_in, D_out).cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")

for to in range(500):
y_pred = model(x)
loss = torch.nn.functinoal.mse_loss(y_pred, y)

optimizer.zero_grad()
with amp.scale_loss(loss, optimizer) as scaled_loss:

scaled_loss.backward()
optimizer.step()

* Use apex.parallel.DistributedDataParallel for multi-GPU training

29

PYTORCH OPTIMIZATION LEVEL

OPT_LEVEL=“O0”

FP32 training.
Your incoming model should be FP32 already,
so this is likely a no-op. O0 can be useful to establish
an accuracy baseline.

O1

Mixed Precision
Patches Torch functions to internally carry out Tensor
Core-friendly ops in FP16, and ops that benefit from
additional precision in FP32. Also uses dynamic loss
scaling. Because cats occur in functions, model
weights remain FP32

O2

“Almost FP16” Mixed Precision.
FP16 model and data with FP32 batchnorm, FP32
master weights, and dynamic loss scaling. Model
weights, except batchnorm weights, are cast to
FP16.

O3

FP16 training.
O3 can be useful to establish the “speed of light” for
your model. If your model uses batch normalization,
and keep_batchnorm_fp32=True, which enables
cudnn bachnorm.

30

PYTORCH OPTIMIZATION LEVEL

OPT_LEVEL=“O0”

FP32 training.
Your incoming model should be FP32 already,
so this is likely a no-op. O0 can be useful to establish
an accuracy baseline.

O1

Mixed Precision
Patches Torch functions to internally carry out Tensor
Core-friendly ops in FP16, and ops that benefit from
additional precision in FP32. Also uses dynamic loss
scaling. Because cats occur in functions, model
weights remain FP32

O2

“Almost FP16” Mixed Precision.
FP16 model and data with FP32 batchnorm, FP32
master weights, and dynamic loss scaling. Model
weights, except batchnorm weights, are cast to
FP16.

O3

FP16 training.
O3 can be useful to establish the “speed of light” for
your model. If your model uses batch normalization,
and keep_batchnorm_fp32=True, which enables
cudnn bachnorm.

31

MXNET AMP

net = get_network()
trainer = mx.gluon.Trainer(...)

for data in dataloader:
with autograd.record(True):

out = net(data)
l = loss(out, label)

autograd.backward(scaled_loss)
trainer.step()

32

MXNET AMP

From mxnet.contrib import amp
amp.init()
net = get_network()
trainer = mx.gluon.Trainer(...)
amp.init_trainer(trainer)
for data in dataloader:

with autograd.record(True):
out = net(data)
l = loss(out, label)
with amp.loss_scale(loss, trainer) as scaled_loss:

autograd.backward(scaled_loss)
trainer.step()

33

TENSOR CORES
PERFORMANCE GUIDE

34

GETTING MORE FROM TENSOR CORES

Matrix Multiplication

All the dimensions (M, N, K) should be multiples of 8

Recommended to be a multiple of 8

Input size, output size, batch size

Linear layer dimensions

Convolution layer channel counts (NCHW format)

Pad the sequence length For sequence problems

Ensure good Tensor Cores GEMM efficiency

Choose the above dimensions as multiples of 64/128/256

Finally, Double the batch size

32 CUDA threads

35

AM I USING TENSOR CORES?”

cuBLAS and cuDNN are optimized for Tensor Cores, coverage always increasing

Run with nvprof and look for “s[some digits]” in kernel name

Eg: volta_fp16_s884gemm_fp16_128x128_ldg8_f2f_nn

36

BERT FP32 BENCHMARK
HuggingFace’s pretrained BERT

API List

~460 ms

~60% GEMM

37

BERT FP16 BENCHMARK
HuggingFace’s pretrained BERT

Tensor Cores

APIs

~222 ms

2.1x Speed up

3838

NVIDIA NGC MODEL SCRIPTS
Tensor Core Optimized Deep Learning Examples

16 Available today!

● Tensor Core optimized for greater performance

● Test drive automatic mixed precision

● Actively updated by NVIDIA

● State-of-the-art accuracy using Tensor Cores

● Serves as a reference implementation

● Exposes hyperparameters and source code for further adjustment

Accessible via:

● NVIDIA NGC https://ngc.nvidia.com/catalog/model-scripts

● GitHub https://www.github.com/NVIDIA/deeplearningexamples

● NVIDIA NGC Framework containers https://ngc.nvidia.com/catalog/containers

NEW

https://ngc.nvidia.com/catalog/model-scripts
https://www.github.com/Nvidia/deeplearningexamples
https://www.github.com/NVIDIA/deeplearningexamples
https://ngc.nvidia.com/catalog/containers

3939

NVIDIA NGC MODEL SCRIPTS
Tensor Core Examples Built for Multiple Use Cases and Frameworks

A dedicated hub to download Tensor Core Optimized Deep Learning Examples on NGC

https://ngc.nvidia.com/catalog/model-scripts?quickFilter=deep-learning

https://ngc.nvidia.com/catalog/model-scripts?quickFilter=deep-learning

4040

MODEL SCRIPTS FOR VARIOUS APPLICATIONS
https://developer.nvidia.com/deep-learning-examples

Computer Vision Speech & NLP

Recommender

Systems

● SSD PyTorch

● SSD TensorFlow

● UNET-Industrial TensorFlow

● UNET-Medical TensorFlow

● ResNet-50 v1.5 MXNet

● ResNet-50 PyTorch

● ResNet-50 TensorFlow

● Mask R-CNN PyTorch

● GNMT v2 TensorFlow

● GNMT v2 PyTorch

● Transformer PyTorch

● BERT (Pre-training and Q&A)

TensorFlow

● NCF PyTorch

● NCF TensorFlow

Text to Speech

● Tacotron2 and WaveGlow

PyTorch

https://developer.nvidia.com/automatic-mixed-precision

4141

ENABLING AUTOMATIC MIXED PRECISION
Add Just A Few Lines of Code, Get Upto 3X Speedup

More details: https://developer.nvidia.com/automatic-mixed-precision

TensorFlow

os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1'

OR

export TF_ENABLE_AUTO_MIXED_PRECISION=1

NVIDIA Container 19.07+ and TF 1.14+, explicit optimizer wrapper available:

opt = tf.train.experimental.enable_mixed_precision_graph_rewrite(opt)

GA

PyTorch

model, optimizer = amp.initialize(model, optimizer,

opt_level="O1")

with amp.scale_loss(loss, optimizer) as scaled_loss:

scaled_loss.backward()

GA

MXNet

amp.init()

amp.init_trainer(trainer)

with amp.scale_loss(loss, trainer) as scaled_loss:

autograd.backward(scaled_loss)

GA
Coming

Soon

https://developer.nvidia.com/automatic-mixed-precision

42

GTC SESSION RECORDINGS 2019

Overview

(E8494) Mixed precision training with Deep Neural Networks

(S91022) Text-to-speech: Overview of latest research using Tacotron and Waveglow

PyTorch

(S9998) Automatic Mixed Precision in PyTorch

(S9832) Taking advantage of mixed precision to accelerate training in PyTorch

TensorFlow

(S91029) Automatic mixed precision tools for TensorFlow Training

MXNet

(S91003) MXNet Computer Vision and Natural Language Processing Models Accelerated with NVIDIA Tensor
Cores

Recommended on-demand-gtc.gputechconf.com Talks

43

TAKEAWAY

Getting 3x math performance with Tensor Cores

Reduced memory usage larger batch size

Achieves the same accuracy of FP32 training

Just need a 2-3 lines of codes

16 samples in NGC, nvidia/DeepLearningExamples
in CV, NLP, Speech, and Recommendation

Increasing providing samples, we do first for you

https://github.com/NVIDIA/DeepLearningExamples/

tree/master/TensorFlow/LanguageModeling/BERT

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT

44

GETTING MORE IN TRAINING

• Deep Learning Research of NAVER Clova for AI-Enhanced Business

• Mixed Precision’s contribution to LarVa (Language Representations by Clova) research

• Track 1, Session 2 (13:50 - 14:30), 하정우리더 (CLOVA AI Research 리더)

• GPU를활용한 Image Augmentation 가속화방안 - DALI

• Track 1, Session 4 (15:40 - 16:20), 한재근과장 (NVIDIA Solutions Architect)

• GPU Profiling 기법을통한 Deep Learning 성능최적화기법소개

• Track 3, Session 5 (16:30 - 17:10), 홍광수과장 (NVIDIA Solutions Architect)

Deep learning training acceleration

46

SUPPLEMENTS:
TENSOR CORES API

47

TENSOR CORE
Mixed Precision Matrix Math
4x4 matrices

D = AB + C

D =

FP16 or FP32 FP16 FP16 FP16 or FP32

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3

C0,0 C0,1 C0,2 C0,3

C1,0 C1,1 C1,2 C1,3

C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2 C3,3

48

TENSOR SYNCHRONIZATION

Warp-synchronizing operation

Full Warp 16x16 Matrix Math

Composed Matrix Multiply and
Accumulate for 16x16 matrices

Result distributed across warp

warp

49

CUDA TENSOR CORE PROGRAMMING
16x16x16 Warp Matrix Multiply and Accumulate (WMMA)

wmma::mma_sync9Dmat, Amat, Bmat, Cmat);

D = AB + C

50

WARP MATRIX API

Introduced in Volta as an abstraction layer

Provides CUDA C++ API that:

• Defines fragment abstraction (array of values)

• Load Matrix A/B from SMEM to Registers

• Perform the *MMA operation

• Store Accumulators from Registers to SMEM

• More information in Programming Guide

Overview

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma

51

TURING TENSOR CORE

API operations now include 8-bit integer

 Turing (sm_75) only

 Signed & unsigned 8-bit input

 32-bit integer accumulator

 Match input/output dimensions with half

 Experimental Sub-Byte Operations (4-bit, 1-
bit)

New Warp Matrix Functions

= +

A
32x16

B
16x8

C
32x8

D
32x8

WMMA 32x8x16

= +

WMMA 8x32x16

A
8x16

B
16x32

C
8x32

D
8x32

= +
A

16x16
B

16x16
C

16x16
D

16x16

WMMA 16x16x16

52

SUPPLEMENTS:
MIXED PRECISION PERFORMANCE

53

IMAGE CLASSIFICATION: MXNet ResNet-50 v1.5
https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_mxnet

NGC 18.12+ MXNet container

Source: https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5
GPU:1xV100-16GB | DGX-1V | Batch Size: 208 (FP16), 96 (FP16)

DGX-1V

8GPU 16G

MXNet ResNet

FP32

MXNet ResNet

Mixed Precision

Time to Train

[Hours]
11.1 3.3

Train

AccuracyTop

1%

76.67% 76.49%

Perf. 2,957

Img/sec

10,263

Img/sec

Data set ImageNet

https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_mxnet
https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5

54

SPEECH SYNTHESIS: Tacotron 2 And WaveGlow v1.0

https://ngc.nvidia.com/catalog/model-scripts/nvidia:tacotron_2_and_waveglow_for_pytorch

Source: https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2
GPU:1xV100-16GB | DGX-1V | Batch Size: 208 (FP16), 96 (FP16)

DGX-1V

16G

Tacotron 2

FP32

Tacotron 2

Mixed

Precision

WaveGlow

FP32

WaveGlow

Mixed

Precision

Time to

Train

[Hours]

44
@ 1500

epochs

33.14
@ 1500

epochs

109.96
@ 1000

epochs

54.83
@ 1000

epochs

Train

Accuracy

Loss

(@1000

Epochs)

0.3629 0.3645 -6.1087 -6.0258

Perf. 10,843

tokens/sec

12,742

tokens/sec

257,687(*)

samples/sec

500,375(*)

samples/sec

Data set LJ Speech Dataset

(*) With sampling rate equal to 22050, one second of audio is generated from 22050 samples

https://ngc.nvidia.com/catalog/model-scripts/nvidia:tacotron_2_and_waveglow_for_pytorch
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2

55

LANGUAGE MODELING: BERT for TensorFlow
https://ngc.nvidia.com/catalog/model-scripts/nvidia:bert_for_tensorflow

NGC 19.03 TensorFlow container

Source: https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT
GPU:8xV100-32GB | DGX-1 | Batch size per GPU: 4

DGX-1V

8GPU 32G

TF BERT

FP32

TF BERT

Mixed Precision

Time to Train

[Hours]
0.77

(BSxGPU = 4)

0.51

(BSxGPU = 4)

Train

F1 (mean)
90.83 90.99

Perf.

(BSxGPU =

4)

66.65

sentences/sec

129.16

sentences/sec

Data set SQuaD (fine-tuning)

https://ngc.nvidia.com/catalog/model-scripts/nvidia:bert_for_tensorflow
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT

56

OBJECT DETECTION: TensorFlow SSD

NGC 19.03 TensorFlow container

https://ngc.nvidia.com/catalog/model-scripts/nvidia:ssd_for_tensorflow

Source: https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Detection/SSD
GPU:8xV100-16GB | DGX-1V | Batch Size: 32 (FP32, Mixed)

DGX-1V

8GPU 16G

TF SSD

FP32

TF SSD

Mixed Precision

Time to Train 1h 37min 1h 19min

Accuracy

(map)
0.268 0.269

Perf.

(BSxGPU =

32)

569

Img/sec

752

Img/sec

Data set COCO 2017

https://ngc.nvidia.com/catalog/model-scripts/nvidia:ssd_for_tensorflow
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Detection/SSD

57

TRANSLATION: PyTorch GNMT
https://ngc.nvidia.com/catalog/model-scripts/nvidia:gnmt_v2_for_pytorch

NGC 19.01 PyTorch container

Source: https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/GNMT
GPU:16xV100-32GB | DGX-2 | Batch size: 128 (FP32, Mixed)

DGX-2V

16GPU 32G

PyTorch GNMT

FP32

PyTorch GNMT

Mixed Precision

Time to Train

[min]
58.6 26.3

Train Accuracy

BLEU score
24.16 24.22

Perf. 314.831

tokens/sec

738,521

tokens/sec

Data set WMT16 English to German

https://ngc.nvidia.com/catalog/model-scripts/nvidia:gnmt_v2_for_pytorch
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/GNMT

58

RECOMMENDER: PyTorch Neural Collaborative Filter
https://ngc.nvidia.com/catalog/model-scripts/nvidia:ncf_for_pytorch

NGC 18.12 PyTorch container

Source: https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF
GPU:8xV100-16GB | DGX-1 | Batch size: 1,048,576

DGX-1V

8GPU 16G

PyTorch NCF

FP32

PyTorch NCF

Mixed Precision

Time to

Accuracy

[seconds]

32.68 20.42

Accuracy

Hit Rate @10
0.96 0.96

Perf. 55,004,590

smp/sec

99,332,230

smp/sec

Data set MovieLens 20M

https://ngc.nvidia.com/catalog/model-scripts/nvidia:ncf_for_pytorch
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF

59

INDUSTRIAL DEFECT DETECTION: TensorFlow U-Net
https://ngc.nvidia.com/catalog/model-scripts/nvidia:unet_industrial_for_tensorflow

NGC 19.03 TensorFlow container
Source: https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Industrial
GPU:8xV100-16GB | DGX-1 | Batch size: 16

DAGM 2007 has 10 classes (for the competition). Each class has an independent IOU.

DGX-1V

8GPU 16G

TF U-Net

FP32

TF U-Net

Mixed Precision

Time to Train 1 min 44 sec 1 min 36 sec

IOU
(Th=0.75 Class #4)

0.965 0.960

IOU
(Th=0.75 Class #9)

0.988 0.988

Perf. 445

Img/sec

491

Img/sec

Data set DAGM 2007

https://ngc.nvidia.com/catalog/model-scripts/nvidia:unet_industrial_for_tensorflow
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Industrial

60

Matching Accuracy for FP32 and Mixed Precision

Values are measured with model running on (1) DGX-1V 8GPU 16G, (2) DGX-1V 8GPU 32G or (3) DGX-2V 16GPU 32G

Model Script Framework Data Set Automatic or

Manual Mixed-

Precision

FP32

Accuracy

Mixed-

Precision

Accuracy

FP32

Throughput

Mixed-Precision

Throughput
Speedup

BERT Q&A
(2)

TensorFlow SQuaD AMP 90.83

Top 1

90.99

Top 1

66.65

sentences/sec

129.16

sentences/sec

1.94

SSD w/RN50
(1)

TensorFlow COCO 2017 AMP 0.268

mAP

0.269

mAP

569

images/sec

752

images/sec

1.32

GNMT
(3)

PyTorch WMT16

English to

German

Manual 24.16

BLEU

24.22

BLEU

314,831

tokens/sec

738,521

tokens/sec

2.35

Neural

Collaborative

Filter
(1)

PyTorch MovieLens

20M

Manual 0.959

HR

0.960

HR

55,004,590

samples/sec

99,332,230

items/sec

1.81

U-Net

Industrial
(1)

TensorFlow DAGM 2007 AMP 0.965-0.988 0.960-0.988 445

images/sec

491

images/sec

1.10

ResNet-50 v1.5
(1)

MXNet ImageNet Manual 76.67

Top 1%

76.49

Top 1%

2,957

images/sec

10,263

images/sec

3.47

Tacotron 2 /

WaveGlow 1.0
(1)

PyTorch LJ Speech

Dataset

AMP 0.3629/

-6.1087

0.3645/

-6.0258

10,843 tok/s

257,687 smp/s

12,742 tok/s

500,375 smp/s

1.18/

1.94

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Detection/SSD
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Translation/GNMT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Industrial
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Industrial
https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2

