Y N A
A
= ¢

’\

<ANVIDIA. *°

GETTING MORE DL TRAINING WITH
TENSOR CORES AND AMP

et = 2t | Solutions Architect | jahan@nvidia.com

 What is Automatic Mixed Precision
« AMP Technical Details

AGENDA . * Getting started on AMP

e Performance Guide

 Additional Resources

IIIIIII

BACKGROUD: TENSOR CORES

vs 15.7 TFlops in FP32 (8x speed-up)

PASCAL VOLTA TENSOR CORES

Inherently mixed precision: 32bit accumulation
Available in and architecture GPUs

Optimized dot operation (GEMM)

)
D — Memory Savings
» Half Storage Requirements (larger batch size)
» Half the memory traffic by reducing size of
) gradient/activation tensors

FP16 or FP32 FP16 or FP32

3 NVIDIA.

WHAT IS
*sAUTOMATIC MIXED PRECISION

MAXIMIZING MODEL PERFORMANCE

FP32 with Tensor Cores
1x compute throughput compute throughput
1x memory throughput memory throughput

1X memory storage memory storage

IIIIIII

MIXED PRECISION TRAINING

Reduced precision (16-bit floating point) for speed or scale

Full precision (32-bit floating point) to maintain task-specific accuracy

Maximize use of reduced precision
while matching accuracy of full precision training

No changes to hyperparameters

6 NVIDIA.

AUTOMATIC MIXED PRECISION

Speedup Your Network Across Frameworks With Just Two Lines of Code

“This easy integration enables TensorFlow
developers to literally flip a switch in their Al model
and get up to 3X speedup with mixed precision

training while maintaining model accuracy.”

Rajat Monga, Engineering Director, TensorFlow

T O @

Models
CNN, RNN, GAN, --_]
RL, NCF...

Frameworks ------- -

NVIDIA === -

AMP

Tensor -------- --

Cores

7 <ANVIDIA.

AUTOMATIC MIXED PRECISION IN TENSORFLOW

4x
3Ix

o

m

a

™

@ 2X

-8

=

p=

@

k]

a

7]
X
Ox

ResNet-50v1.5 SSD-RN50-FPN-640 NCF BERT - Q&A GNMT

TensorFlow Medium Post:

All models can be found at:

, except for ssd-rn50-fpn-640, which is here:
All performance collected on 1xV100-16GB, except bert-squadqa on 1xV100-32GB.

Speedup is the ratio of time to train for a fixed number of epochs in single-precision and Automatic Mixed Precision. Number of epochs for each model was matching the literature or common practice (it was also confirmed that both training sessions achieved the same model
accuracy).

NVIDIA.
Batch sizes:. rn50 (v1.5): 128 for FP32, 256 for AMP+XLA; ssd-rn50-fpn-640: 8 for FP32, 16 for AMP+XLA; NCF: 1M for FP32 and AMP+XLA; bert-squadqa: 4 for FP32, 10 for AMP+XLA; GNMT: 128 for FP32, 192 for AMP.

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow
https://github.com/tensorflow/models/tree/master/research/object_detection
https://medium.com/tensorflow/automatic-mixed-precision-in-tensorflow-for-faster-ai-training-on-nvidia-gpus-6033234b2540?linkId=64995850

MIXED PRECISION TRAINING

8GPU training of ResNet-50
(ImageNet classification) on DGX-1

NVIDIA mxnet-18.08-py3 container

Total time to run full training
schedule in mixed precision is well
under four hours

over FP32 training

No hyperparameters changed

Minibatch = 256 per GPU

Train Loss (salid)

10

[=]

RN-50 Time To Train {(MXMNet, 8-GPU, Batch=256/GPU)

FP32
Mixed Precision

‘\n-...._

- 0.7

[=1 [=1 = =
Lad E =Y (¥, [=1]
Validation Accuracy {dashed)

[=]
Pud

T
[=]
=

- 0.0

100

200 300 400
Elapsed Training Time (minutes)

500

600

NVIDIA.

MIXED PRECISION IS GENERAL PURPOSE

Models trained to match FP32 results (same hyperparameters)

AlexNet
DenseNet
Inception
MobileNet
NASNet
ResNet
ResNeXt
VGG

XCeption

DeeplLab DLSS BERT
Faster R-CNN Partial Image Inpainting BigLSTM
Mask R-CNN Progress GAN 8k mLSTM (NVIDIA)

Retinahet Deep Speech 2 GNMT (RNN)

Tacotron Transformer
(self-attention)

UNET

DeepRecommender WaveGlow

NCF

10 <ANVIDIA.

MIXED PRECISION SPEEDUPS

Not limited to image classification

ResNet-50 v1.5 Image Recognition 3.5x Iso-batch size

FairSeq Translation 2.9x Iso-batch size
Transformer 4.9x 2x Ir + larger batch
BERT SQUAD (fine-tuning) 1.9x Iso-batch size
Deep Speech 2 Speech recognition 4.5x Larger batch

Tacotron 2 + . 1.2X)
Speech synthesis 1 9% Iso-batch size

Nvidia ,
Language modeling 4.0x Larger batch

trained to SAME ACCURACY as FP32 model

No hyperparameter changes, except as noted i nvion

TECHNICAL DETAILS OF
MIXED PRECISION

MIXED PRECISION TRAINING

Switch everything to run on FP16 values

Insert casts to FP32 for loss functions and normalization/pointwise ops that need full precision

Keep FP32 model parameters, update at each iteration

Use an FP16-casted copy for both forward pass and backpropagation

Scale the loss value, un-scale the gradients (in FP32!)

Check gradients at each iteration for overflow - adjust loss scale and skip update, if needed

13 NVIDIA.

MIXED PRECISION TRAINING

FP32
, olutions can use Tensor Cores updates benefit from precision
Most (e.g. add, multiply): functions (often reductions) benefit

1/2X memory storage for intermediates, from precision and range

2X memory throughput ,
, horms, some other ops benefit

from precision and range

14

NVIDIA.

MIXED PRECISION TRAINING

Assign each operation its optimal precision & performance

FP16

QQ

S J

== FP16 FP32 (Q Type Casting

» GEMMs, Convolutions can use Tensor Cores > Weight updates benefit from precision

> Most pointwise ops (e.g. add, multiply): > Loss functions (often reductions) benefit
1/2X memory storage for intermediates, from precision and range

2X memory throughput ,
> Softmax, norms, some other ops benefit

from precision and range

15 <ANVIDIA.

AUTOMATIC MIXED PRECISION

The framework software can transform existing model code to run with mixed precision
fully automatically

No new code required should result in no new bugs

Two components:

: operation-level logic to insert casts between FP32 and FP16,
transparent to the user

: wrapper class for the optimizer object the can scale the loss,
keep track of the loss scale, and skip updates as necessary

16

NVIDIA.

AUTOMATIC CASTING

Operation Classification

> Divide the universe of operations into three kinds

> Whitelist: ops for which FP16 can use Tensor Cores (MatMul, Conv2d)
> Blacklist: ops for which FP32 is required for accuracy (Exp, Sum, Softmax)

> Everything else: ops that can run in FP16, but only worthwhile if input is already FP16
(ReLU, pointwise Add, MaxPool)

> Lists are framework-specific, since each framework has its own abstractions

> TensorFlow:

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/optimizers/a
uto mixed precision lists.h

> PyTorch: https://github.com/NVIDIA/apex/tree/master/apex/amp/lists

» MXNET: https://github.com/apache/incubator-
mxnet/blob/master/python/mxnet/contrib/amp/lists/symbol.py

17 <ANVIDIA.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/optimizers/auto_mixed_precision_lists.h
https://github.com/NVIDIA/apex/tree/master/apex/amp/lists
https://github.com/apache/incubator-mxnet/blob/master/python/mxnet/contrib/amp/lists/symbol.py

KEEP FP32 MASTER WEIGHTS

= At each iteration of training, perform a weight update of the form w,,, = w, — &'
w,’s are weights; V,’s are gradients; « is the learning rate

As a rule, gradients are smaller than weights, and learning rate is less than one

- Consequence: weight update can be a no-op, since you can’t get to next representable
value

- Conservative solution: keep a high-precision copy of weights so small updates accumulate
across iterations

/\ No-op weight update
‘ | | | | ‘ .

‘] — ‘

A

1.0 YT 1024 15 1022 2.0

18 <ANVIDIA.

Percentage of all activation gradient values

Gradien

ﬂVanishin

32 BegP

LOSS SCALINING

Precision of Weights & Gradients

ts Loss Distribution

FP16 Representablerange

o .
- L

_| FP16 denorms.

1/8
1/16
1/32
1/64
1/128
1/256

1/512

Loss™S

-36 -32 g-29 -27 g2 -23 -21 -19 -17 -15%-13 -11 49 -7 &5 -3 -1 1 3 5 7 9 i1 13 15
ta)lé -1' 4 -21 -0 -18 -16 -14 -12 -10 -B & -4 -2 0 2 4] B 10 12 14 16
L J

log,(magnitude)

19

<A NVIDIA.

AUTOMATIC LOSS SCALING

All frameworks implement some kind of optimizer wrapper
Internally, tracks the current loss scale and history of overflows
Provides the loss scale when needed for backpropagation

Overrides optimizer step to instead checking overflow
No overflow, then increase grads and pass to wrapped optimizer step

overflow, then decrease loss scale and don’t called wrapped optimizer step

20 NVIDIA.

AUTOMATIC LOSS SCALE

Internally, tracks the current loss scale and history of overflows

Provides the loss scale when needed for backpropagation

If an Inf or a NaN is present in the gradient,
And skip the update, including optimizer state

If no Inf or NaN has occurred for some time,

67,108,864
33,554,432
— 16,777,216

8,388,608
L1 0 1

4,194,304

e

the scale

the scale

2,097,152
1,048,576
524,288

Loss sca

Iteration

=

21

NVIDIA.

MIXED PRECISION MAINTAINS ACCURACY

Benefit From Higher Throughput Without Compromise

80.00%

70.00%

60.00%

) 50.00%
o
S

3 40.00%
<<

3 30.00%
2

20.00%

10.00%

0.00%

AlexNet VGG-D GoogleNet Inception v2 Inception v3 Resnet50
(Inception v1)

mFP32 m Mixed Precision

GETTING STARTED AUTO
MIXED PRECISION

AUTOMATIC MIXED PRECISION

Easy to Use, Greater Performance and Boost in Productivity

TRAIMING LAYER AUTOMATIC MIXED PRECISION ACCELERATED BY GPU
CLASSIFIER
-
{:J Horma “;, i I FP3z
) Pood2
—_—
A
© Poodl O " »
p— &
Run On Tensor Cores

to introduce Automatic Mixed-Precision and get upto 3X speedup
AMP uses a graph optimization technique to determine FP16 and FP32 operations

Support for TensorFlow, PyTorch and MXNet

More details: https://developer.nvidia.com/automatic-mixed-precision 24 ZnVIDIA

https://developer.nvidia.com/automatic-mixed-precision

TENSORFLOW AMP

Designed to work with existing float32 models, with minimal changes

Support since NGC TensorFlow Container 19.03

If your training script a tf.train.Optimizer t0 compute and apply gradients
Both Loss Scaling and mixed precision graph conversion can be enabled with a single env var.

python training_script.py

If your model does a tf.train.Optimizer, then
You must add loss scaling manually to your model, then enable the grappler pass as follows

python training_script.py

25 NVIDIA.

TENSORFLOW AMP

Since NGC TensorFlow Container 19.07 (TF 1.14+)
Supports an explicit optimizer wrapper to perform loss scaling

Enables auto casting / loss scaling and mixed precision graph optimizer

import tensorflow as tf

opt = tf.train.GradientDescentOptimizer(0.5)

26 NVIDIA.

PYTORCH AMP

N, D_in, D out = 64, 1024, 512
x = torch.randn(N, D _in, device="cuda")
y = torch.randn(N, D out, device="cuda")

model = torch.nn.Linear(D_in, D _out).cuda()

optimizer = torch.optim.SGD(model.parameters(), lr=le-3)

for to in range(500):
y pred = model(x)
loss = torch.nn.functinoal.mse _loss(y_pred, y)

optimizer.zero grad()

loss.backward()
optimizer.step()

27 NVIDIA.

PYTORCH AMP

N, D_in, D out = 64, 1024, 512

x = torch.randn(N, D _in, device="cuda")

y = torch.randn(N, D out, device="cuda")

model = torch.nn.Linear(D_in, D_out).cuda()

optimizer = torch.optim.SGD(model.parameters(), lr=le-3)

for to in range(500):
y pred = model(x)
loss = torch.nn.functinoal.mse_loss(y_pred, y)

optimizer.zero grad()

optimizer.step()

* Use for multi-GPU training

28 NVIDIA.

PYTORCH OPTIMIZATION LEVEL

FP32 training.

Your incoming model should be FP32 already,
so this is likely a no-op. can be useful to establish
an accuracy baseline.

“Almost FP16” Mixed Precision.

FP16 model and data with FP32 batchnorm, FP32
master weights, and dynamic loss scaling. Model
weights, except batchnorm weights, are cast to
FP16.

Mixed Precision

Patches Torch functions to internally carry out Tensor
Core-friendly ops in FP16, and ops that benefit from
additional precision in FP32. Also uses dynamic loss
scaling. Because cats occur in functions, model
weights remain FP32

FP16 training.

can be useful to establish the “speed of light” for
your model. If your model uses batch normalization,
and keep batchnorm fp32=True, wWhich enables
cudnn bachnorm.

NVIDIA.

PYTORCH OPTIMIZATION LEVEL

FP32 training.

Your incoming model should be FP32 already,
so this is likely a no-op. can be useful to establish
an accuracy baseline.

“Almost FP16” Mixed Precision.

FP16 model and data with FP32 batchnorm, FP32
master weights, and dynamic loss scaling. Model
weights, except batchnorm weights, are cast to
FP16.

Mixed Precision

Patches Torch functions to internally carry out Tensor
Core-friendly ops in FP16, and ops that benefit from
additional precision in FP32. Also uses dynamic loss
scaling. Because cats occur in functions, model
weights remain FP32

FP16 training.

can be useful to establish the “speed of light” for
your model. If your model uses batch normalization,
and keep batchnorm fp32=True, wWhich enables
cudnn bachnorm.

NVIDIA.

MXNET AMP

net = get_network()

trainer = mx.gluon.Trainer(...
g

for data in dataloader:
with autograd.record(True):
out = net(data)

| = loss(out, label)

autograd.backward(scaled_loss)

trainer.step()

31 <ANVIDIA.

MXNET AMP

From mxnet.contrib importamp
amp.init()
net = get_network()
trainer = mx.gluon.Trainer(...)
amp.init_trainer(trainer)
for data in dataloader:
with autograd.record(True):
out = net(data)
| = loss(out, label)
with amp.loss_scale(loss, trainer) as scaled_loss:
autograd.backward(scaled_loss)

trainer.step()

32 <ANVIDIA.

TENSOR CORES
PERFORMANCE GUIDE

GETTING MORE FROM TENSOR CORES

. . e . 32 CUDﬁa’Fhreads
Matrix Multiplication P

» All the dimensions (M, N, K) should be multiples of 8 éééé(‘éé(‘ééééééééé%%%é%%é%é

Recommended to be a multiple of & (-](.

> Input size, output size, batch size

- Linear layer dimensions 135555555555500555535505455856484

> Convolution layer channel counts (NCHW format)
» Pad the sequence length For sequence problems D = -] [L
Ensure good Tensor Cores GEMM efficiency P16 or FP32 FPis FP16 or FP32

> Choose the above dimensions as multiples of 64/128/256

Finally, Double the batch size

34 <ANVIDIA.

AM | USING TENSOR CORES?”

cuBLAS and cuDNN are optimized for Tensor Cores, coverage always increasing

Run with nvprof and look for “s[some digits]” in kernel hame

Eg: volta_fp16_s884gemm_fp16_128x128_ldg8_f2f_nn

- ga% Kerr'e'S - , .' L .."...I. .I-I.I'Ill'h"|IIII'IIIII|'I|I'III|. : b

b 24% elementwise_kernel

+ 10% volta_fp16_sB8B84gemm_fp16_128x128_|ldg8_f2f_nn
b 8% kernelPointwiseApply2

» 7% volta_fp16_sBB84gemm_fp16_256x128_ldg8_f2f_nt
» 7% volta_fp16_sBB84gemm_fp16_128x128_Ildg8_f2f_tn

35

NVIDIA.

BERT FP32 BENCHMARK

HuggingFace’s pretrained BERT

® |bert—fp18.qdrep ® N -LLai-ErEed. [CL. e 3 bert-fp16-nvbr.gdrep %

O l;':'. . . & 1error, 23

warnings, 19 messages

esla V100-DGXS-16GB, 0000:07:00.0)

~ 84% Default stream (7)

-

98% Kernels

19% elementwise_kernel

13% volta_sgemm_128x32_tn
12% volta_sgemm_128x32_nn
8% volta_sgemm_128x64_nt
6% volta_sgemm_32x128_nt

26 kprnel groups hidden...
emory

~60% GEMM

m 306
hidden...

S|P 111111111
“_u.-.lu.— ETTTITTITTITIIFTITTN Py P 1y) Sy oy oy i—ll..l.ll—

ottt La Ll Dl bl la bl lals
[N AN NNENNNHN
EhEhh bbbk bk

ol ol o o o ol e W WA

sl il o
lddddad aannd 1]
b A dddddd LY}

-

36

<A NVIDIA.

BERT FP16 BENCHMARK

HuggingFace’s pretrained BERT

bert-fp32.qdrep % |bert—fp18.qdrep % | bert-fp32-nvix.qdrep ¥ J-Lla@i-gGE TR LIETI

O l;':'. . . & 1error, 23

warnings, 19 messages

= Timeline View - |
B87s) +4EI{}ms . +En?rns . +55!:lrns . +60?rns) +GEI£Ims . +?nf)ms . +?5;Dms . +E-n;l:)rns . +sEPrns . +90;Drns) +95Iﬂms -~

~ CUDA (Tesla V100-DGXS-16GB) e Sl el 0 L b = —deembd il bl | S, N b LR e R R
~ 91% Default stream (7) S = g — Aprtpreasti b w1 _— 1l __ e o LRI et S S & —Aprrrn
1 98% Kernels sl lsihedlbeoubbh BOOMERGONEN 0 0 ocliediidel) Balbl oMY O 0 L
b 24% elementwise_kernel Wt Dibenadabory Lok eleh— Limed o] R Lo e Lk vl btk Lol linad e e et L |1 L Ll

b 10% volta_fp16_sBB84gemm_fp16_128x128_|dg8_f2f_nn sl] bt] e et e, et 1] L
» 8% kernelPointwiseApply2 e e

b 7% volta_fp16_sBB4gemm_fp16_256x128 Idg8_f2f nt cheldudasllda. v wanlldas
b 7% volta_fp16_sB884gemm_fp16_128x128_Idg8_f2f_tn R T T e e et ta e e st aLd
25 kgrnel groups hidden... e 1B Lbliianl Ll . dedsssdaasad ——— Cdammltalvaad . wawtd saseswd LB Ctaa
/%nnry - — E— - — e
L —T T L) EEETRIERY
Tensor Cores) (T e e T G DO) — JL.o s

m 306 — T . L
APIs hidden... = - - Y -

~222 ms

2.1x Speed up

37

<A NVIDIA.

NVIDIA NGC MODEL SCRIPTS &

Tensor Core Optimized Deep Learning Examples

16 Available today!

e Tensor Core optimized for greater performance

e Test drive automatic mixed precision

o Actively updated by NVIDIA

e State-of-the-art accuracy using Tensor Cores

e Serves as a reference implementation

e Exposes hyperparameters and source code for further adjustment
Accessible via:

e NVIDIANGC https://ngc.nvidia.com/catalog/model-scripts

o GitHub https://www.github.com/NVIDIA/deeplearningexamples

e NVIDIA NGC Framework containers https://ngc.nvidia.com/catalog/containers

38 <ANVIDIA.

https://ngc.nvidia.com/catalog/model-scripts
https://www.github.com/Nvidia/deeplearningexamples
https://www.github.com/NVIDIA/deeplearningexamples
https://ngc.nvidia.com/catalog/containers

NVIDIA NGC MODEL SCRIPTS

Tensor Core Examples Built for Multiple Use Cases and Frameworks

L oo

Metropolis Object Detect...
TensorFlow | FP32

L s o

Clara Al Medical Imagin...

TensorAow | FP32

UNET-Industrial for Ten...

TensorAow | FP16, FP32

LS R

S &

SSD for TensorFlow

TensorFlow | FP16, FP32

S ¥

ResNet-50 v1.5 for PyTor...

PyTorch | FP16, FP32

-

NCF for PyTorch

PyTorch | FP16, FP32

built by NVIDIA 05/20/19 built by NVIDIA 05720119 built by NVIDIA 0472319 built by NVIDIA 03/20/19 built by NVIDIA 031819 built by NVIDIA 0371819
B ° & ® & E] ° & EZ' ® & ® & S &
GNMT v2 for PyTorch ResNet-50 v1.5 for MXNet Tacotron 2 and WaveGlo... GNMT v2 for Tensorflow SSD for PyTorch NCF for TensorFlow

PyTorch | FP16, FP32 MXNet | FP16, FP32 PyTorch | FP16, FP32 TensorFlow | FP16, FP32 PyTorch | FP16, FP32 TensorFlow | FP16, FP32

built by NVIDIA 03/1819 built by NVIDIA 03718119 built by NVIDIA 031819 built by NVIDIA 03/1819 built by NVIDIA 03/18/19 built by NVIDIA 0371819

E] ® &

Transformer for PyTorch
PyTorch | FP16, FP32

built by NVIDIA 031819

N

ResNet-50 v1.5 for Tens...

TensorHow | FP16, FP32

built by NVIDIA 0371819

E] ® &

BERT for TensorFlow

TensorFlow | FP16, FP32

built by NVIDIA 0371819

® &

Mask R-CNN for PyTorch

PyTorch | FP16, FP32

built by NVIDIA 03118119

https://ngc.nvidia.com/catalog/model-scripts?quickFilter=deep-learning

39 <A NVIDIA.

https://ngc.nvidia.com/catalog/model-scripts?quickFilter=deep-learning

MODEL SCRIPTS FOR VARIOUS APPLICATIONS

https://developer.nvidia.com/deep-learning-examples

Computer Vision

SSD PyTorch

SSD TensorFlow
UNET-Industrial TensorFlow
UNET-Medical TensorFlow
ResNet-50 v1.5 MXNet
ResNet-50 PyTorch

ResNet-50 TensorFlow
Mask R-CNN PyTorch

Speech & NLP

GNMT v2 TensorFlow
GNMT v2 PyTorch

Transformer PyTorch
BERT (Pre-training and Q&A)

TensorFlow

Recommender
Systems

NCF PyTorch
NCF TensorFlow

Text to Speech

Tacotron2 and WaveGlow
PyTorch

40 <ANVIDIA.

https://developer.nvidia.com/automatic-mixed-precision

ENABLING AUTOMATIC MIXED PRECISION

Add Just A Few Lines of Code, Get Upto 3X Speedup

os.environ['TF ENABLE AUTO MIXED PRECISION'] = '1'
OR
export TF ENABLE AUTO MIXED PRECISION=1
TensorFlow
NVIDIA Container 19.07+ and TF 1.14+, explicit optimizer wrapper available:
opt = tf.train.experimental.enable mixed precision graph rewrite (opt)
model, optimizer = amp.initialize (model, optimizer,

opt level="01")
with amp.scale loss(loss, optimizer) as scaled loss:
scaled loss.backward()

amp.init ()

amp.init trainer (trainer)

with amp.scale loss(loss, trainer) as scaled loss:
autograd.backward(scaled loss)

More details: https://developer.nvidia.com/automatic-mixed-precision 41 <INVIDIA

https://developer.nvidia.com/automatic-mixed-precision

GTC SESSION RECORDINGS 2019

Overview
(E8494) Mixed precision training with Deep Neural Networks
(591022) Text-to-speech: Overview of latest research using Tacotron and Waveglow

PyTorch
(59998) Automatic Mixed Precision in PyTorch
(59832) Taking advantage of mixed precision to accelerate training in PyTorch

TensorFlow
(591029) Automatic mixed precision tools for TensorFlow Training

MXNet

(591003) MXNet Computer Vision and Natural Language Processing Models Accelerated with NVIDIA Tensor
Cores

4 NVIDIA.

TAKEAWAY

BERT Network Training Optimizations > Gett]ng 3X math performance W]th Tensor COI’eS

30 > Reduced memory usage - larger batch size

b
wn

> Achieves the same accuracy of FP32 training

]
o

17.7

» Just need a 2-3 lines of codes

[
wn

Examples / second

=
o

7.8

» 16 samples in NGC, nvidia/DeeplLearningExamples
in CV, NLP, Speech, and Recommendation

w

Baseline Mixed Precision Higher Batch XLA

> Increasing providing samples, we do first for you

https://github.com/NVIDIA/DeeplearningExamples/
tree/master/TensorFlow/LanguageModeling/BERT

43 <ANVIDIA.

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT

GETTING MORE IN TRAINING

Mixed Precision’s contribution to LarVa (Language Representations by Clova) research
Track 1, Session 2 (13:50 - 14:30), 51’3 2| (CLOVA Al Research 2|)

Track 1, Session 4 (15:40 - 16:20), A= Jt& (NVIDIA Solutions Architect)

Track 3, Session 5 (16:30 - 17:10), =2t JI& (NVIDIA Solutions Architect)

44 NVIDIA.

<SINVIDIA

{ s
7
’./'\l >
/2 \ -
. 7 ’d_‘_iiiii 77 : <
A |
£ e —
4\ | E i | '\

4

SUPPLEMENTS:
TENSOR CORES API

TENSOR CORE

Mixed Precision Matrix Math
4x4 matrices

D =

FP16 or FP32 FP16 or FP32

47 <A NVIDIA.

TENSOR SYNCHRONIZATION

Full Warp 16x16 Matrix Math

G

-

-

T

CUDA TENSOR CORE PROGRAMMING

16x16x16 Warp Matrix Multiply and Accumulate (WMMA)

D =

FP16 or FP32

wmma:mma_sync9Dmat, Amat, Bmat, Cmat);

FP16

\

f

FP16

D=AB +C

)

e

\ J

FP16 or FP32

WARP MATRIX API

Overview

Introduced in Volta as an abstraction layer
Provides CUDA C++ API that:
Defines fragment abstraction (array of values)
Load Matrix A/B from SMEM to Registers
Perform the *MMA operation
Store Accumulators from Registers to SMEM

More information in Programming Guide

a

FP16 or FP32

—_—
Shared Memary

Coo Co1 Coz
ci,o ci,I cl,l

Co G G

Go Gy Gy

Co3
Ci3
Cas

G

FP16 or FP32

L= e R AR nun i N
. -
Thread Black Tile Warp Tile Thread Tile EP_illFlﬁ'EIUD
ile
Register File CUDA/Tensor Cores SMEM

50

<ANVIDIA.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma

TURING TENSOR CORE

New Warp Matrix Functions

— WMMA 16x16x16
API operations now include 8-bit integer . - [.] [.J + [.}
Turing (sm_75) only 16216 16¢16 16516 16516
— WMMA 32x8x16
Sighed & unsigned 8-bit input
32-bit integer accumulator)
D
Match input/output dimensions with half 32x8 32x16 16x8 32x8
— WMMA 8x32x16
Experimental Sub-Byte Operations (4-bit, 1-
bit)

SUPPLEMENTS:
MIXED PRECISION PERFORMANCE

IMAGE CLASSIFICATION: MXNet ResNet-50 v1.5

DGX-1V
8GPU 16G

MXNet ResNet
FP32

MXNet ResNet

Time to Train
[Hours]

111

3.3

Train
AccuracyTop
1%

76.67%

76.49%

Perf.

2,957
Img/sec

10,263
Img/sec

Data set

ImageNet

Source:

GPU: 1xV100-16GB | DGX-1V | Batch Size: 208 (FP16), 96 (FP16)

ResNet-50 v1.5 for MXNet

Publisher prom Version Last Modified Training Framework
NVIDIA Classification 1 March 18, 2019 MXNet

Model Format Precision
MXNet params + json FP16, FP32

Description

MXNet scripts for defining, training and using ResNet-50 v1.5 model optimized for Tensor Cores. With modified architecture and initialization this ResNets0 version gives ~0.5% better accuracy than original.

Labels

DEEP LEARNING | TRAINING

The ResNetS0 v1.5 model is a modifi sion of the

The difference between v1 and v1.5 is in the bottleneck blocks which require downsampling. ResNet v1 has stride = 2 in the first 1x1 convolution, whereas v1.5 has stride = 2 in the 3x3 convolution

This difference makes ResNet50 v1.5 slightly more accurate (-0.5% top1) than v1, but comes with a small performance drawback (-5% imgs/sec)

This model trains for 90 epochs. with the standard ResNet v1.5 setup:
o 5GD with momentum (0.9)
o Learning rate = 0.1 for 256 batch size, for other batch sizes we linearly scale the learning rate.
« Learning rate decay - multiply by 0.1 after 30, 60, and 80 epochs

o Linear warmup of the learning rate during fir:

ochs according to

© Weight decay: Te-4

During training, we perform the following augmentation techniques:

* Normalization

See data. py for more info.

53 NVIDIA.

https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_mxnet
https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5

SPEECH SYNTHESIS: Tacotron 2 And WaveGlow v1.0

DGX-1V
16G

Tacotron 2
FP32

Tacotron 2

WaveGlow
FP32

WaveGlow

Time to 44 33.14 109.96 54.83

Train @ 1500 @ 1500 @ 1000 @ 1000
[Hours] epochs epochs epochs epochs
Train 0.3629 0.3645 -6.1087 -6.0258
Accuracy

Loss
(@1000
Epochs)

Perf.

10,843
tokens/sec

12,742
tokens/sec

257,687(*)
samples/sec

500,375(*)
samples/sec

Data set

LJ Speech Dataset

(*) With sampling rate equal to 22050, one second of audio is generated from 22050 samples

Source:

GPU:1xV100-16GB | DGX-1V | Batch Size: 208 (FP16), 96 (FP16)

Tacotron 2 and WaveGlow for PyTorch

Publisher Application Version Last Modified
NVIDIA Text To Speech 1 March 18, 2019 PyTorch

Training Framework

Model Format Precision

Pytorch PTH FP16, FP32
Description
PyTorch scripts for defining, training and using Tacotron 2 and WaveGlow model optimized for Tensor Cores. The Tacotron 2 and Wav

eGlow model form a text-to-speech system that enables user to synthesise a natural sounding speech from raw transcripts.

Labels

DEEP LEARNING | | TRAINING

This text-to-speech (TTS) system is a combination of two neural network models:

+ amodified Tacotron 2 model from the paper and
+ aflow-based neural network model from the paper.

The Tacotron 2 and WaveGlow model form a text-to-speech system that enables user to synthesise a natural sounding speech from
raw transcripts without any additional prosody information.

Our implementation of Tacotron 2 model differs from the model described in the paper. Our implementation uses Dropout instead of
Zoneout to regularize the LSTM layers. Also, the original text-to-speech system proposed in the paper used the model to
synthesize waveforms. In our implementation, we use the WaveGlow model for this purpose.

Both models are based on implementations of NVIDIA GitHub repositories and
available

, and are trained on a publicly

This model trains with mixed precision tensor cores on Volta, therefore researchers can get results much faster than training without
tensor cores. This model is tested against each NGC menthly container release to ensure consistent accuracy and performance over

tima

54

NVIDIA.

https://ngc.nvidia.com/catalog/model-scripts/nvidia:tacotron_2_and_waveglow_for_pytorch
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2

DGX-1V
8GPU 32G

TF BERT
FP32

TF BERT

Time to Train
[Hours]

0.77

(BSXGPU = 4)

0.51
(BSXGPU = 4)

Train
F1 (mean)

90.83

90.99

Perf.
(BSxGPU =
4)

66.65

sentences/sec

129.16
sentences/sec

Data set

SQuab (fine-tuning)

Source:

GPU:8xV100-32GB | DGX-1 | Batch size per GPU: 4

LANGUAGE MODELING: BERT for TensorFlow

BERT for TensorFlow

Publisher Application Version Last Modified Training Framework
NVIDIA Translation 1 March 18,2019 TensorFlow

Model Format Precision

TensorFlow CKPT FP16, FP32
Description
TensorFlow scripts for defining, training and using BERT model optimized for Tensor Cores. BERT is a new method of pre-training

language representations which obtains state-of-the-art results on a wide array of NLP tasks.

Labels

DEEP LEARNING || TRAINING

BERT, or Bidirectional Encoder Representations from Transformers, is a new method of pre-training language representations
which obtains state-of-the-art results on a wide array of Natural Language Processing (NLP) tasks. This model is based on

paper. NVIDIA's BERT 19.03 is an optimized version
of , leveraging mixed precision arithmetic and tensor cores on V100 GPUS for faster training
times while maintaining target accuracy.

The repository also contains scripts to interactively launch data download, training, benchmarking and inference routines in a
Docker container for both pretraining and fine tuning for Question Answering. The major differences between the official
implementation of the paper and our version of BERT are as follows:

Mixed precision support with TensorFlow Automatic Mixed Precision (TF-AMP), which enables mixed precision training
without any changes to the code-base by performing automatic graph rewrites and loss scaling controlled by an
environmental variable.
Scripts to download dataset for

* Pretraining - ,

* Fine Tuning - (Stanford Question Answering Dataset), Pretrained Weights from Google

55

NVIDIA.

https://ngc.nvidia.com/catalog/model-scripts/nvidia:bert_for_tensorflow
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT

OBJECT DETECTION: TensorFlow SSD

DGX-1V TF SSD TF SSD

FP32
8GPU 16G

Time to Train 1h 37min 1h 19min

Accuracy 0.268 0.269
(map)

Perf. 569 752

gBZ)SxGPU = Img/sec Img/sec

Data set COCO 2017

Source:
GPU:8xV100-16GB | DGX-1V | Batch Size: 32 (FP32, Mixed)

SSD for TensorFlow

Publisher Application Version Last Modified Tralning Framework
NVIDIA e 1 March 20, 2019 TensorFlow

Model Format Precision
TensorFlow CKPT FP16, FP32

Description

TensorFlow sri i ptimized for Tensor Cores. With a ResNet-50 backbone and a number of architectural modifications, this version provides better accuracy and performance.

Labels

The 550320 +1.2 model Is based on the paper, which describes S50 a5 “a method for detecting objects n images using a single deep neural network

We have altered the network in order to improve accuracy and increase throughput. Changes we have made include
+ Replacing the VGG backbone with the more popular ResNets0.
Adding muiti-scale detection to the backbone using

* Replacing the original hard negative mining loss functicn with
Decreasing the input size to 320 x 320.

Our implement;

sed on the existing

This model trains with mixed precision tensor cores on NVIDIA Velta GPU:
and performance over time.

erefore you can get results much faster than training without tensor cores. This model is tested against each NGC monthly container release to ensure consistent accuracy

The following features were Impiemented In this modek

+ Data-parallel multi-GPU training with Horovod.
xed precision support

environmental variable
+ Tensor Core operations to maximize throughput using NVIDIA Volta GPUS,
« Dynamic loss scaling for ten

h TensorFlow Automatic Mixed Precision

MP), which enables mixed precision training withcut any changes to the code-base by

forming automatic graph rewrites and loss scaling controlled by an

ores (mixed precision) training.

Because of these enhancements, the 550320 1.2 model schieves higher accuracy.

rained the model for 12500 steps

chs) with the following setup:

h cosine decay learing rate
+ Learning rate base = 0.16
Momentum = 0.9

arm-up learning rate = 0.0693312
+ Warm-up steps = 1000

+ Batch size per GPU = 32

o Number of GPUs =&

56 NVIDIA.

https://ngc.nvidia.com/catalog/model-scripts/nvidia:ssd_for_tensorflow
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Detection/SSD

TRANSLATION: PyTorch GNMT

https://ngc.nvidia.com/catalog/model-scripts/nvidia:gnmt v2 for pytorch

PyTorch GNMT

PyTorch GNMT

DGX-2V ‘ o
FP32 Mixed Precision

16GPU 32G

Time to Train 58.6 26.3

[min]

Train Accuracy 24.16 24.22

BLEU score

Perf. 314.831 738,521
tokens/sec tokens/sec

Data set WMT16 English to German

NGC 19.01 PyTorch container

GNMT v2 for PyTorch

FP16, FP32

fining, training and using GNMT v2 model optimized for Tensor Cores. The GNMT v2 model is an improved version of the first Google's Neural Madl

Source: https://github.com/NVIDIA/DeeplLearningExamples/tree/master/PyTorch/Translation/GNMT

GPU:16xV100-32GB | DGX-2 | Batch size: 128 (FP32, Mixed)

paper.

hine Translation System with a modified attention mechanism.

57 <ANVIDIA.

https://ngc.nvidia.com/catalog/model-scripts/nvidia:gnmt_v2_for_pytorch
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/GNMT

RECOMMENDER: PyTorch Neural Collaborative Filter

PyTorch NCF

Score ﬁu,<m— Yui) Target

Log loss
// U\\\
/
NeuMF Layer
Concatenation
MLP Layer X
GMFlayer | . RelU
A MLP Layer 2
lement-wise Relw

Product MLP Layer 1

[MF User Vector| [MLP User Vector | MF Item Vector | | MLP Item Vector

[o[o o[olo]] [o]ofo o[l o] -]

User (u) Item (i)

racy.

DGX-1V PyTorch NCF
FP32

8GPU 16G

Time to 32.68 20.42

Accuracy

[seconds]

Accuracy 0.96 0.96

Hit Rate @10

Perf. 55,004,590 99,332,230
smp/sec smp/sec

Data set MovieLens 20M

Source:

GPU:8xV100-16GB | DGX-1 | Batch size: 1,048,576

58 NVIDIA.

https://ngc.nvidia.com/catalog/model-scripts/nvidia:ncf_for_pytorch
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF

INDUSTRIAL DEFECT DETECTION: TensorFlow U-Net

DGX-1V
8GPU 16G

TF U-Net
FP32

TF U-Net

Time to Train

1 min 44 sec

1 min 36 sec

IOU
(Th=0.75 Class #4)

0.965

0.960

[0]V)
(Th=0.75 Class #9)

0.988

0.988

Perf.

445
Img/sec

491
Img/sec

Data set

DAGM 2007

Source:

GPU:8xV100-16GB | DGX-1 | Batch size: 16
DAGM 2007 has 10 classes (for the competition). Each class has an independent IOU.

UNET-Industrial for TensorFlow

Publisher Application Version Last Modified Training Framework
NVIDIA Segmentation 1 April 23,2019 TensorFlow

Model Format Precision

TensorFlow CKPT FP16, FP32
Description
TensorFlow scripts for defining, training and using UNET-Industrial model optimized for Tensor Cores. This model is a convolutio

nal neural network for 2D image segmentation tuned to avoid overfitting.

Labels

DEEP LEARNING H TRAINING |

This U-Net model is adapted from the original version of the which is a convolutional aute-encoder for 2D image
segmentation. U-Net was first introduced by Olaf Ronneberger, Philip Fischer, and Thomas Brox in the paper:

This work proposes a modified version of U-Net, called TinyUNet which performs efficiently and with very high accuracy on the
industrial anomaly dataset . TinyUNet, like the original U-Net is composed of two parts:

® an encoding sub-network (left-side)
* a decoding sub-network (right-side).

It repeatedly applies 3 downsampling blocks composed of two 2D convolutions followed by a 2D max pooling layer in the
encoding sub-network. In the decoding sub-network, 3 upsampling blocks are composed of a upsample2D layer followed by a 2D
convolution, a concatenation operation with the residual connection and two 2D convolutions.

TinyUNet has been introduced to reduce the model capacity which was leading to a high degree of over-fitting on a small
dataset like DAGM2007. The complete architecture is presented in the figure below:

59

NVIDIA.

https://ngc.nvidia.com/catalog/model-scripts/nvidia:unet_industrial_for_tensorflow
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Industrial

Matching Accuracy for FP32 and Mixed Precision

BERT Q&A TensorFlow | SQuaD AMP 90.83 90.99 66.65 129.16 1.94
@ Top 1 Top 1 sentences/sec sentences/sec
SSD w/RN50 TensorFlow | COCO 2017 | AMP 0.268 0.269 569 752 1.32
@ mAP mAP images/sec images/sec
GNMT PyTorch WMT16 Manual 24.16 24.22 314,831 738,521 2.35
@ English to BLEU BLEU tokens/sec tokens/sec

German
Neural PyTorch MovieLens Manual 0.959 0.960 55,004,590 99,332,230 1.81
Collaborative 20M HR HR samples/sec items/sec
Filter
@
U-Net TensorFlow | DAGM 2007 | AMP 0.965-0.988 | 0.960-0.988 445 491 1.10
gll’)ldustl’la| images/sec images/sec
ResNet-50 v1.5 | MXNet ImageNet Manual 76.67 76.49 2,957 10,263 3.47
. Top 1% Top 1% images/sec images/sec
Tacotron 2/ PyTorch LJ Speech AMP 0.3629/ 0.3645/ 10,843 tok/s 12,742 tok/s 1.18/
WaveGlow 1.0 Dataset -6.1087 -6.0258 257,687 smp/s | 500,375 smp/s 1.94

M

Values are measured with model running on (1) DGX-1V 8GPU 16G, (2) DGX-1V 8GPU 32G or (3) DGX-2V 16GPU 32G

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Detection/SSD
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Translation/GNMT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Industrial
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Industrial
https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2

