RENDERING SPECULAR EFFECTS

Anton S. Kaplanyan

1 August 2016

SPECULAR ALIASING

- Specular highlight can be small
 - Gets brighter when gets smaller
 - Specular microdetails sparkle
- Specular aliasing
 - Emphasized on curved geometry
 - Does not go away even after many samples
- Pixel footprint spans a large area on the surface
 - Stretched on curved surfaces

RENDERING SPECULAR

Rendering equation: scattering at surface point x

$$L_o(\mathbf{x}) = \int_{\Omega} f_r(\mathbf{x}, \omega_i, \omega_o) L_i(\mathbf{x}) d\omega_i^{\perp}$$

Flux incident at the image pixel is

$$I_{j} = \int_{\mathcal{F}} W_{j} \, \underline{L}_{o}(\mathbf{x}) \, G \, d\mathbf{x}$$

ightharpoonup Want to integrate over the pixel footprint \mathcal{F}

MICROFACET BSDF

The BSDF $f_r(x, \omega_i, \omega_o)$ is a scattering function

$$h = \frac{\omega_i + \omega_o}{||\omega_i + \omega_o||}$$

Cook-Torrance microfacet BSDF is commonly used

$$f_r(\mathbf{x}, \omega_i, \omega_o) = \frac{G(\omega_i, \omega_o) F(\omega_i, \omega_o) D(h)}{4|\mathbf{n} \cdot \omega_i| |\mathbf{n} \cdot \omega_o|}$$

- ▶ Shadowing-masking and Fresnel (*G* and *F*) are [0;1] bounded
- ▶ The Normal Distribution Function (NDF)
 - Density of actively reflecting microfacets given h
 - Unbounded values!

THREE-POINTS TRANSPORT

- The half vector depends on three adjacent vertices: x, l, e
- ▶ The three-point transport with integration of NDF is

$$I_j \approx C_2 \int_{\mathcal{F}} D(h(x, l, e)) dx$$

VARIATION OF HALF VECTOR

Materials with Specular Microdetails

Joint work with Tobias Zirr

CONCEPT OF A MICRODETAIL

- Correlated clusters
 - Correlation both in NDF and on surface
 - Isotropic or anisotropic
 - Model with nested distributions
 - ▶ Glints, grooves in brushed metal, etc.

Results from [Yan et al.14]

PREVIOUS WORK

- Discrete Stochastic Microfacet Models [Jakob et al.14]
 - ▶ Hierarchical search
 - In spatial and half vector (slope) domain

- Hierarchical pruning of a filtered micronormal map
- In half vector domain, parallel light and eye rays

PREVIOUS WORK: REAL-TIME

- Sparkly but not too Sparkly! A Stable and Robust Procedural Sparkle Effect
 - SIGGRAPH AiRT'15, EGSR'16 (Studio Gobo)
 - 3D grid of sparkle kernels
 - Based on "Gettin' procedural" [Shopf10]
 - Sparse sparkles & glints
- Labs R&D: Rendering Techniques in Rise of the Tomb Raider
 - SIGGRAPH AiRT'15 (Eidos Montreal)
 - Simple procedural noise for sparkles

BISCALE NDF MODEL

- Nested NDF distribution
 - D_m selects a slope of a single microdetail
 - D₁ defines shape of a microdetail
- D_g is a resulting global NDF
 - Convolution of D_m and D_l

AUTHORING WITH BISCALE NDFS

- Powerful artistic control:
 - \triangleright Local roughness D_1 controls detail appearance
 - Global roughness D_a controls distant appearance

COHERENT STOCHASTIC PROCESS

- Stable texture-space power-of-two grids and anisotropic filtering:
 - One binomial draw per grid cell
 - ► Trilinear interpolation

VIEW DEPENDENCY (SHIMMERING)

- Search space 4D: Also need subdivision of microdetail orientations
- Paraboloid half vector grid
- Seed binomial using a 4D index <</p>
- Perturb half vector partitioning using texture grid index to avoid simultaneous change of sparkles

PERFORMANCE

- GeForce GTX 980, 1080p
- ► Maximum anisotropy: 16x

Scene	Polys	Isotropic footprint, ms	Grazing angle, ms
Full-screen pass	2	0.9	2.9
Snow	32k	2.5	4.0
Dress	100k	1.4	4.4
Car (grooves)	570k	2.5	3.9
Crytek Sponza	262k	3.0	5.9

- ► ALU variance:
 - ▶ 8-64 cells to shade, 412 static instructions, 204 within a loop for one cell
 - ▶ No texture fetches

EXAMPLE CODE & RESULTS

Example available online: https://www.shadertoy.com/view/ldVGRh

Specular Antialiasing

Joint work with Stephen Hill, Anjul Patney, and Aaron Lefohn

METHOD SUMMARY (SPOILERS!)

- Accurate and stable filtering of specular highlight on the pixel footprint
- Simple, real-time, robust
- Compatible with common real-time methods
- Deferred shading
- Normal maps and filtering thereof (e.g., LEAN/CLEAN, vMF)
- Support for Beckmann and GGX NDF models
- Requires models with high-quality shading normal

PREVIOUS WORK

THREE-POINTS TRANSPORT

- The half vector depends on three adjacent vertices: x, l, e
- ▶ The three-point transport with integration of NDF is

$$I_j \approx C_2 \int_{\mathcal{F}} D(h(x, l, e)) dx$$

- ▶ How does a half-vector h change w.r.t. x/l/e?
 - ▶ Use first-order 2x2 derivative matrix M of h w.r.t. x/l/e [Jakob12]

TRANSFORMING THE PIXEL FOOTPRINT

Dobtain variation of slopes due to finite area of pixel footprint

- \triangleright M is a mapping of pixel footprint to half-vector domain!
 - First transform ray differentials into Δx on surface
 - ▶ Then multiply by matrix M to get vectors Δh of \wp in slope domain $\wp \approx M(\mathcal{F})$
- ▶ NDF filtering is then a 2D integration over the region ℘!

CHANGE OF DOMAIN

We can filter the NDF based on the pixel footprint ${\mathcal F}$

$$\int_{\mathcal{F}} D(h(x)) dx = \int_{\mathcal{P}} D(h) \left| \frac{dh}{dx} \right| dh \approx \frac{|\mathcal{F}|}{|\mathcal{P}|} \int_{\mathcal{P}} D(h) dh$$

PRACTICAL NDF FILTERING

- ▶ How to compute M?
- Benefit from quad shading on GPU!
 - Use ddx/ddy to obtain the final value with finite differencing
 - Matrix $\wp = dh/duv = M(\mathcal{F})$ is first-order change of h induced by pixel footprint
 - Implicitly accounts for surface curvature with derivative of shading normal
- Robust temporal stability
 - Use an axis-aligned rectangle bounding the parallelogram
 - ightharpoonup Aligned along s and t axes of the slope domain
 - Overfilters the NDF

ALGORITHM

Compute half-vector in slope domain

```
void shade()
{
...
    // Compute plane-plane half vector in local shading frame (hpp)
    vec3 hppWS = hWS / dot(hWS, shadingNormal);
    vec2 hpp = vec2(dot(hppWS, shadingTangent), dot(hppWS, shadingBitangent));
```

ALGORITHM

Compute half-vector in slope domain

Compute its ddx/ddy derivatives

ALGORITHM

Compute half-vector in slope domain

Compute its ddx/ddy derivatives and rectangle

Integrate the NDF using resulting rectangle

RESULTS

RESULTS

CONCLUSION

- NDF filtering for stable specular shading
 - Integrate highlight across pixel footprint on a local shading quadric
 - Preserve highlight energy, find difficult and small highlights
 - Compatible and orthogonal to other methods, simple and readily usable
- Limitations
- Addresses only shading aliasing
 - No improvements for geometric aliasing
 - Can still alias with high-frequency bumpy geometry
- Relies on *properly modeled* shading normals

TAKE HOME MESSAGE

Filtering of diffuse illumination is well-established

Filter on surface, e.g., texture filtering

When filtering specular & glossy, always consider a 3-point transport

Specular constraint lives in local shading frame

Half vector depends on all three vertices of the path

Depends on the curvature of the surface

Thank you! Q&A