MARCH 2016: 1ST RAY-TRACED SHADOWS IN GAMES
Now available as GameWorks module; shipped in Tom Clancy’s The Division

Left: Hybrid Frustum Traced Shadows (HFTS)
Right: Percentage Closer Soft Shadows (PCSS)
WHO?

Joint work:

- Chris Wyman, NVIDIA Research
- Jon Story, NVIDIA DevTech
- UbiSoft’s Massive, developers of The Division
WHO?

Joint work:

- Chris Wyman, NVIDIA Research
- Jon Story, NVIDIA DevTech
- UbiSoft’s Massive, developers of The Division

An NVIDIA success story of transitioning research to product
WHO?

Joint work:

- Chris Wyman, NVIDIA Research
- Jon Story, NVIDIA DevTech
- UbiSoft’s Massive, developers of The Division

An NVIDIA success story of transitioning research to product

May not know:

- NVIDIA has research division of 100+ researchers
- Covering graphics, VR, machine learning, AI, compilers, vision, circuits, etc.
WHO?

Joint work:

- Chris Wyman, NVIDIA Research (2+ years effort)
- Jon Story, NVIDIA DevTech (6+ months effort)
- UbiSoft’s Massive, developers of The Division

An NVIDIA success story of transitioning research to product

May not know:

- NVIDIA has research division of 100+ researchers
- Covering graphics, VR, machine learning, AI, compilers, vision, circuits, etc.

NVIDIA enables researchers and engineers to spend time addressing important graphics problems
But there’s more!

Today, GameWorks supports 1 ray per pixel.

The research extends to 32+ rays per pixel
(For a 2x increase in cost)
Today: talk about the road to productization and research tech transfer
STORY

Today: talk about the road to productization and research tech transfer

Up to 5 billion shadow rays/sec in fully dynamic scenes, incl. data structure build

- Specialized algorithm for ray traced hard shadows
- Fits in raster pipeline; no extra ray tracing library
STORY

Today: talk about the road to productization and research tech transfer

Up to 5 billion shadow rays/sec in fully dynamic scenes, incl. data structure build

- Specialized algorithm for ray traced hard shadows
- Fits in raster pipeline; no extra ray tracing library

Builds on a “irregular z-buffer” for ray acceleration

- Not a traditional BVH or kd-tree
- Irregular z-buffers regarded as a dead end 3 years ago
WHY IS THIS WORTH INVESTIGATING?

Shadow aliased (exaggerated)
WHY IS THIS WORTH INVESTIGATING?

Cause:
- Precompute shadow map
- Has fixed resolution
- Multiple adjacent pixels query same texel, get same answer
ALIASES EVEN WITH HIGH RESOLUTION

Missing contact shadows
ALIASES EVEN WITH HIGH RESOLUTION

No shadows from nearly coplanar surfaces
FILTERING SHADOW MAPS HELP
FILTERING SHADOW MAPS HELP
FILTERING SHADOW MAPS HELP

Lose fine geometric details
AND BLOCKS STILL VISIBLE AFTER FILTERING!

And they move and flicker during animation...
HIGH QUALITY RAY TRACING

Antialiased shadows

Keep shadows from nearly coplanar surfaces

Nice contact shadows
HIGH QUALITY SHADOW MAP

1 or 32 samples per pixel
HIGH QUALITY RAY TRACING

- Antialiased shadows
- Keep shadows from nearly coplanar surfaces
- Nice contact shadows
USING RAY TRACING TODAY

Requires separate ray tracing libraries, APIs, and acceleration structures:

- May need separate geometric representation
- Data structure rebuild traditionally costly (for dynamic scenes)
USING RAY TRACING TODAY

Requires separate ray tracing libraries, APIs, and acceleration structures:

- May need separate geometric representation
- Data structure rebuild traditionally costly (for dynamic scenes)

Our goals:

- Specialize ray tracing for hard shadows
- Build on existing APIs (DirectX, OpenGL, Vulkan) and geometric representations
- Quickly build a new data structure each frame
WHAT IS RAY TRACING?

Query visibility along arbitrary rays
WHAT IS RAY TRACING?

Query visibility along arbitrary rays

To shadow each pixel, test ray to light

- If occluded, pixel shadowed
- If unoccluded, pixel lit
WHAT IS RAY TRACING?

Query visibility along arbitrary rays

To shadow each pixel, test ray to light

- If occluded, pixel shadowed
- If unoccluded, pixel lit

Avoids problems with shadow maps

- Light visibility not precomputed
- Computations exactly match pixel locations
MAKING SHADOW RAY TRACING FAST

Typical ray tracer is extremely general

- 10s, 100s, or 1000s of rays per pixel
- Incoherent memory access
- Unknown reflectance of surfaces in scene

From WikiPedia
MAKING SHADOW RAY TRACING FAST

Typical ray tracer is extremely general

- 10s, 100s, or 1000s of rays per pixel
- Incoherent memory access
- Unknown reflectance of surfaces in scene

Specializing for shadows helps

- Only care about binary visibility per ray

From WikiPedia
MAKING SHADOW RAY TRACING FAST

Typical ray tracer is extremely general
- 10s, 100s, or 1000s of rays per pixel
- Incoherent memory access
- Unknown reflectance of surfaces in scene

Specializing for shadows helps
- Only care about binary visibility per ray

Specializing for **hard** shadows helps even more
- Know all rays go to same location (i.e., the point light)
- Starts to look like raster, with irregular samples

From Wikipedia
DATA STRUCTURE: IRREGULAR Z-BUFFER

Accelerates queries emanating from a point

Can efficiently build and traverse in parallel
 ➢ Fully rebuilds in < 1 ms per frame
DATA STRUCTURE: IRREGULAR Z-BUFFER

Accelerates queries emanating from a point

Can efficiently build and traverse in parallel
 - Fully rebuilds in < 1 ms per frame

A type of ray caching
 - Stores ray endpoints rather than triangles
 - Reorders rays; allows ray tracing via raster hardware
 - Leverage shadow map techniques for more perf wins
WHY HAS NOBODY ELSE DONE THIS?

Irregular z-buffering is **hard**

- 3 years ago, was a “dead end” in academic research
- Our 1st prototype cost >2 sec for this frame (now <5 ms; a 400x speedup)
WHY HAS NOBODY ELSE DONE THIS?

Irregular z-buffering is **hard**

- 3 years ago, was a “dead end” in academic research
- Our 1st prototype cost >2 sec for this frame (now <5 ms; a 400x speedup)

Bad: Costs increased linearly with # pixels & polygons
WHY HAS NOBODY ELSE DONE THIS?

Irregular z-buffering is \textit{hard}

- 3 years ago, was a “dead end” in academic research
- Our 1st prototype cost >2 sec for this frame (now <5 ms; a 400x speedup)

Bad: Costs increased linearly with \# pixels \& polygons

Worse: Performance could vary 100:1 between frames
MAKING IRREGULAR Z-BUFFERS USABLE

IZBs *eliminate* aliasing, *converting* it to performance variability
IZBs eliminate aliasing, converting it to performance variability

- If shadow maps alias, many pixels correspond to one texel
- IZBs have to enumerate, cache, and reorder these pixels
- Coverts aliasing into a parallel load balancing problem
- Poor load balancing = poor GPU performance
IZBs *eliminate* aliasing, *converting* it to performance variability

- If shadow maps alias, many pixels correspond to one texel
- IZBs have to enumerate, cache, and reorder these pixels
- Coverts aliasing into a parallel load balancing problem
- Poor load balancing = poor GPU performance

Our research:

- First, identified this problem
- Second, proposed a simple solution implementable today
HOW TO LOAD BALANCE

Even well designed shadow map implementations alias badly from some views

- Nearby texels here 100:1 larger than distant ones
HOW TO LOAD BALANCE

Even well designed shadow map implementations alias badly from some views

- Nearby texels here 100:1 larger than distant ones
- Hence the use of cascaded shadow maps
- Cascades reduce *variability* in aliasing
HOW TO LOAD BALANCE

Even well designed shadow map implementations alias badly from some views

- Nearby texels here 100:1 larger than distant ones
- Hence the use of cascaded shadow maps
- Cascades reduce *variability* in aliasing

IZBs convert aliasing to poor load balancing

- Some texels cost 100x more than others
HOW TO LOAD BALANCE

Even well designed shadow map implementations alias badly from some views

- Nearby texels here 100:1 larger than distant ones
- Hence the use of cascaded shadow maps
- Cascades reduce *variability* in aliasing

IZBs convert aliasing to poor load balancing

- Some texels cost 100x more than others
- Cascaded IZBs *reduce this variability* (to <<2x)
- Other shadow map techniques apply too

 (E.g., adaptive, perspective, logarithm, etc.)
HOW TO GET SOFT SHADOWS

Unlike shadow maps, maintains high quality contact shadows when filtering
Irregular Z-buffer

PCSS

HFTS

Unlike shadow maps, maintains high quality contact shadows when filtering.
HOW TO COMBINE?

Multiple ways, but straightforward seems to work pretty well

See “Hybrid Ray Traced Shadows” from Jon Story at GDC 2015 for details
HFTS PERFORMANCE

GeForce GTX Titan X (2015) at Resolution: 1920x1080

Images from Tom Clancy's The Division
HFTS PERFORMANCE

GeForce GTX Titan X (2015) at Resolution: 1920x1080

Images from Tom Clancy’s The Division
HFTS PERFORMANCE

GeForce GTX Titan X (2015) at Resolution: 1920x1080

Images from Tom Clancy’s The Division
FURTHER TO GO

GameWorks version limited by in-game feasibility

- More advanced features available in budgets ~10-30 ms

Research prototype shows

- 32 samples per pixel ~2x cost of 1 sample
- Seamless shadows from transparent and alpha tested geometry
- Possibility of higher quality soft shadows
FURTHER TO GO

16 ms per frame
TAKEAWAYS

Can do fast ray traced shadows in games today
TAKEAWAYS

Can do fast ray traced shadows in games today

Eliminates shadow map aliasing larger than a pixel
TAKEAWAYS

Can do fast ray traced shadows in games today

Eliminates shadow map aliasing larger than a pixel

Introduces some variability to perf; cascades & other techniques reduce dramatically
TAKEAWAYS

Can do fast ray traced shadows in games today

Eliminates shadow map aliasing larger than a pixel

Introduces some variability to perf; cascades & other techniques reduce dramatically

Provides high quality input to shadow filters for approximate soft shadows
TAKEAWAYS

Can do fast ray traced shadows in games today

Eliminates shadow map aliasing larger than a pixel

Introduces some variability to perf; cascades & other techniques reduce dramatically

Provides high quality input to shadow filters for approximate soft shadows

HFTS available in NVIDIA GameWorks; shipped in Tom Clancy’s The Division
QUESTIONS?

Contact:

Chris Wyman
cwyman@nvidia.com
@_cwyman_

Jon Story
jons@nvidia.com
COME DO YOUR LIFE’S WORK
JOIN NVIDIA

We are looking for great people at all levels to help us accelerate the next wave of AI-driven computing in Research, Engineering, and Sales and Marketing.

Our work opens up new universes to explore, enables amazing creativity and discovery, and powers what were once science fiction inventions like artificial intelligence and autonomous cars.

Check out our career opportunities:

- www.nvidia.com/careers
- Reach out to your NVIDIA social network or NVIDIA recruiter at DeepLearningRecruiting@nvidia.com