REDSHIFT

Production-quality, final-frame rendering on the GPU
What is Redshift?

• Not “just another GPU renderer”
 – Final-frame production quality
 – Features and flexibility of biased CPU renderers
 – Viable and practical for professionals
• High performance
 – Many times faster than CPU renderers
• Great scalability
 – 10s of millions of triangles in under GB of VRAM
 – Limited available VRAM not a problem...
• Deep DCC integration
2015 was a great year for Redshift!!

- Won 1st place in CGAwards “New Application” category
- Several great reviews!
- Market expansion:
 - 2014: Mostly freelancers, small 5-20 employee studios
 - 2015: A good few 100+ employee studios
 - 2016: In talks with several big-name studios
- Market types:
 - 2014/2015: Marketing, engineering
 - 2016: Netflix/Amazon original productions, feature-length productions
Redshift and the GPU in the industry

• Convincing the sceptics
 – “Are they going to be there next year?”
 – “Can the GPU render at the same quality as the CPU?”
 – “Can the GPU render large scenes?”
 – “Are there still tons of features missing - compared to a CPU renderer?”

• The tides are turning!
 – We’re seeing large companies reevaluating their assumptions about GPU rendering
 – Trojan horse
 • “Let’s try it on a few small projects” becomes
 • “Let’s make it our main renderer”
 – It’s a matter of time before GPU rendering dominates the industry
Last year

- Redshift 1.0 features
 - Round corners
 - 3-layer skin shader
 - Bicubic texture
 - Hair min pixels
 - Maya: Shave
 - Maya: Xgen shader
 - Xgen archives
 - VR: Stereo spa
 - Cubic comix
 - Linux support
 - Renders fast
 - SDK
 - redshiftCommandLine
 - Tons of performance/
Redshift 2.0 (1)

• Goal: close the CPU-GPU feature gap
 – Almost there!

• Done:
 – Multiple dome-lights
 – Baking light-maps
 – Improved model for SSS
 – Single Scattering
 – Ray marched volumetrics (OpenVDB, etc)
 – RS Procedural API
 – Nested Dielectrics
 • No need for complex IOR ratios anymore
Redshift 2.0 (2)

• New shading technology
 – Preparation for new Redshift Material
 – GGX and Cook-Torrance BRDFs
 – Physically-correct Fresnel
 • Correct for rough materials
 • Energy conserving
 – ‘alSurface’ shader emulation
Redshift 2.0 (3)

• Just around the corner:
 – Automatic VRAM management

• Coming soon:
 – Custom AOVs
 – Per-light AOVs
 – Ray-traced SSS
In More Detail: Redshift Material (2)

- Simpler layout
 - Advanced features kept separate
- Let's get rough!
 - Two reflection layers (Base and Coating)
 - Fake transmission between Base and Coating layer
 - Separate Coating bump
 - Flexible Fresnel reflectivity modes
 - Better metals
 - Correct dielectric edge color
 - ‘Metalness’ option for ‘PBR’ workflow
 - ‘PBR’ texture-ready with linear roughness/glossiness
In More Detail: Redshift Material (3)

- Sub-Surface Scattering
 - Multiple-scattering
 - 3 layer model for skin
 - Single scattering
 - Adds extra sub-surface lighting detail
 - Completes the sub-surface equation

- Dispersion / Chromatic Aberration
 - Not “poor man’s” three color hack
 - Rainbows are pretty!
In More Detail: Ray Marched Volumes (1)

- Homogeneous volumetric lighting is easy
 - Works great in Redshift!

- Ray marched volumetrics are harder

- Challenges:
 - Storage
 - Kernel execution
 - Importance sampling
 - Shading
In More Detail: Ray Marched Volumes (2)

- Storage:
 - Sparse tree
 - Quantization/dithering
 - LOD

- Execution incoherency:
 - Ray sorting / scheduling
 - Redshift is great at that!
In More Detail: Ray Marched Volumes (3)

– Importance-sampling

 • Naive solution
 – Sample based on grid density
 – Noisy results, unless you only have distant lights in your scene

 • Better solution:
 – Sample based on grid density and light BRDF
 – Tricky, requires special data structures
 – Much cleaner (and, therefore, faster) results!
In More Detail: Ray Marched Volumes (4)

– Shading
 • Many grid traversals during ray marching
 – Tens to hundreds
 – ...which means many shader executions!
 – Slow!
 • Solution: Limit shading capabilities
 – Expand it later
The Future

• New platforms
 – SideFX Houdini – just entered alpha!
 – Maxon Cinema4D. Alpha in a few months
 – Currently investigating MODO and Katana support

• More features
 – Shader SDK
 – Toon shading
 – Redshift custom viewport
 – Distributed/remote rendering
 – Optimized particle rendering
 – Custom per-object shading properties
 – Trace sets
 – Barndoor lighting
 – XGen instances
 – Maya curve support
Thanks!

• For more information, please contact us at info@redshift3d.com
• Or meet us right after this presentation (booth #377)!