
Mark Kilgard, July 24

SIGGRAPH 2016, Anaheim

NVIDIA OpenGL in 2016

2

Mark Kilgard

• Principal System Software Engineer
OpenGL driver and API evolution
Cg (“C for graphics”) shading language
GPU-accelerated path rendering & web browser

rendering

• OpenGL Utility Toolkit (GLUT) implementer
• Specified and implemented much of OpenGL
• Author of OpenGL for the X Window System
• Co-author of Cg Tutorial
• Worked on OpenGL for 25 years

My Background

3

NVIDIA’s OpenGL Leverage

Debugging with
Nsight

Programmable
Graphics

Tegra

Quadro

OptiX

GeForce

Adobe Creative Cloud

Jeff Kiel - Manager, Graphics Tools

NSIGHT VSE AND OPENGL VR

5

AGENDA

Intro to Nsight & Developer Tools

VR debugging

GPU Range Profiling

Roadmap

6

C/C++ JetPack

NVTX
NVIDIA Tools eXtension

Compile Debug Profile

Trace

Hardware Support

IDE Integration Standalone and CLI

Getting Started…

7

NSIGHT VISUAL STUDIO EDITION 5.2

•New Range Profiler, including OpenGL and DirectX12

•Vulkan Support

•New Geometry View

•Oculus VR SDK support, OpenGL and DX11

•CUDA 8.0 support

•VR, Vulkan, and Advanced Graphics Profiling

8

UE4’S VR ENGINE
•Render pass per eye

View 0
Left

View 1
Right

Time

Depth Pass Lighting Pass

. . .
View 0
Left

View 1
Right

9

DEMO TIME!DEMO TIME!

10

ROADMAP

VR Goodness

OCULUS SDK, OpenGL and
Direct3D

OpenGL Multicast Rendering

Range Profiler (OpenGL & D3D)

Vulkan

Frame Debugging

BETA: Serialized Captures

DX12 Serialized Captures

When you get back from SIGGRAPH: 5.2 RC1

September, 2016: 5.2 Final

11

ROADMAP

More VR Goodness

More Profiler Screens & Metrics

Shader Perf Returns!

MS Hybrid Supporp & UWP

Q4 2016: 5.3

Vulkan Profiling

Shader Source Correlated Performance
Information

Shader Debugging on Maxwel & Pascal

Pipeline Statistics

Compare API State/Profile Runs

Path Rendering

Your Feature Here…

The Future

Tell Me What You Need!?!?

12

NVIDIA’s OpenGL Leverage

Debugging with
Nsight

Programmable
Graphics

Tegra

Quadro

OptiX

GeForce

Adobe Creative Cloud

13

OpenGL Codebase Leverage

Same driver code base supports multiple APIs

OpenGL for Embedded,
Mobile, and Web

Multi-vendor, explicit, low-level graphics
from Khronos

14

Still the One Truly Common & Open 3D API

OS X
Linux

FreeBSD
Solaris

Android
Windows

15

NVIDIA OpenGL in 2016 Provides
OpenGL’s Maximally Available Superset

Pascal
Extensions

2015 ARB extensions

OpenGL 4.5
Core

Maxwell
Extensions

Legacy EXT & Other
Compatibility Extensions

OpenGL Complete
Compatibility

Path Rendering
Multi-GPU.

SLI

Approaching Zero
Driver Overhead

NVIDIA Multi-generation
GPU Initiatives

DirectX inter-op

Vulkan inter-op

ES Enhancements

Full OpenGL
ES 3.2

Khronos Standard

Expected Compatibility

NVIDIA Initiatives

GPU Generation Features

16

Background: NVIDA GPU Architecture Road Map

Our interest NVIDIA GPU architectures of interest: Maxwell & Pascal

What are Maxwell and Pascal mentioned on last slide?

17

OpenGL’s Recent Advancements

2014 2015 2016

New ARB Extensions
3 standard extensions, beyond 4.5
• ARB_sparse_buffer
• ARB_pipeline_statistics_query
• ARB_transform_feedback_overflow_query

Maxwell Extensions
• Novel graphics features
• 14 new extensions
• Global Illumination &

Vector Graphics focus

18

OpenGL’s Recent Advancements

2014 2015 2016

New ARB Extensions
3 standard extensions, beyond 4.5
• ARB_sparse_buffer
• ARB_pipeline_statistics_query
• ARB_transform_feedback_overflow_query

New ARB 2015 Extension Pack
• Shader functionality

• ARB_ES3_2_compatibility (shading
language support)

• ARB_parallel_shader_compile
• ARB_gpu_shader_int64
• ARB_shader_atomic_counter_ops
• ARB_shader_clock
• ARB_shader_ballot

• Graphics pipeline operation
• ARB_fragment_shader_interlock
• ARB_sample_locations
• ARB_post_depth_coverage
• ARB_ES3_2_compatibility (tessellation

bounding box + multisample line width
query)

• ARB_shader_viewport_layer_array

• Texture mapping
functionality

• ARB_texture_filter_minmax
• ARB_sparse_texture2
• ARB_sparse_texture_clamp

Maxwell Extensions
• Novel graphics features
• 14 new extensions
• Global Illumination &

Vector Graphics focus

19

OpenGL’s Recent Advancements

2014 2015 2016

New ARB Extensions
3 standard extensions, beyond 4.5
• ARB_sparse_buffer
• ARB_pipeline_statistics_query
• ARB_transform_feedback_overflow_query

Maxwell Extensions
• Novel graphics features
• 14 new extensions
• Global Illumination &

Vector Graphics focus

New ARB 2015 Extension Pack
• Shader functionality

• ARB_ES3_2_compatibility (shading
language support)

• ARB_parallel_shader_compile
• ARB_gpu_shader_int64
• ARB_shader_atomic_counter_ops
• ARB_shader_clock
• ARB_shader_ballot

• Graphics pipeline operation
• ARB_fragment_shader_interlock
• ARB_sample_locations
• ARB_post_depth_coverage
• ARB_ES3_2_compatibility (tessellation

bounding box + multisample line width
query)

• ARB_shader_viewport_layer_array

• Texture mapping
functionality

• ARB_texture_filter_minmax
• ARB_sparse_texture2
• ARB_sparse_texture_clamp

Pascal Extensions
• Novel graphics features
• 5 new extensions
• Virtual Reality focus

OpenGL SPIR-V Support
• Standard Shader

Intermediate Representation
• ARB_gl_spirv
• Vulkan interoperability

20

Maxwell OpenGL Extensions

• Voxelization, Global Illumination, and
Virtual Reality

NV_viewport_array2

NV_viewport_swizzle

AMD_vertex_shader_viewport_index

AMD_vertex_shader_layer

• Vector Graphics extensions
NV_framebuffer_mixed_samples

EXT_raster_multisample

NV_path_rendering_shared_edge

• Advanced Rasterization
NV_conservative_raster

NV_conservative_raster_dilate

NV_sample_mask_override_coverage

NV_sample_locations,
now ARB_sample_locations

NV_fill_rectangle

• Shader Improvements
NV_geometry_shader_passthrough

NV_shader_atomic_fp16_vector

NV_fragment_shader_interlock,
now ARB_fragment_shader_interlock

EXT_post_depth_coverage,
now ARB_post_depth_coverage

Requires GeForce 950, Quadro M series, Tegra X1, or better

New Graphics Features of NVIDIA’s Maxwell GPU Architecture

21

Background: Viewport Arrays

Several Maxwell (and Pascal) extensions build
on Viewport Arrays

Viewport arrays introduced to OpenGL
standard by OpenGL 4.1

Feature of Direct3D 11
First introduced to OpenGL by

NV_viewport_array extension

Each viewport array element contains
Viewport transform
Scissor box and enable
Depth range

Provides N mappings of clip-space to
scissored window-space

Original conception
Geometry shader could “steer” primitives into
any of 16 viewport array elements

Geometry shader would set the viewport index
of a primitive

Result: primitive is rasterized based on the
indexed viewport array state

0
1
2
...
15

xv yv wv hv n,f xs ys ws hs es

0 0 640 480 0,1 0,0,640,480,0

640 0 640 480 0,1 0,0,640,480,0

640 480 640 480 0,1 0,0,640,480,0

...

Viewport array state

Indexed Array of Viewport & Scissor State

22

Viewport Arrays Visualized

vertex
shader

geometry
shader

vertex
shader

vertex
shader

view
frustum
clipping

viewport &
depth range

transform

scissored
rasterizer

Viewport array state

0
1
2
...
15

xv yv wv hv n,f xs ys ws hs es

viewport index = 0

viewport index = 1

viewport index = 2

assembled
triangle

geometry
shader

primitive
output stream
(3 triangles)

0 0 640 480 0,1 0,0,640,480,0

640 0 640 480 0,1 0,0,640,480,0

640 480 640 480 0,1 0,0,640,480,0

...

resulting framebuffer

23

Viewport Index Generalized to Viewport Mask

• Geometry shaders & viewport index
approach proved limiting...

• Common use of geometry shaders: view
replication

One stream of OpenGL commands  draws N
views

But inherently expensive for geometry
shader to replicate N primitives

Underlying issue: one thread of execution
has to output N primitives

• First fix
Replace scalar viewport index per primitive
with a viewport bitmask

• Viewport mask does the primitive
replication

Viewport mask lets geometry shader output
primitive to all, some, or none of viewport
indices

Examples
0xFFFF would replicate primitive 16 times,
one primitive for each respective viewport
index

0x0301 would output a primitive to viewport
indices 9, 8, and 0

Maxwell’s NV_viewport_array2 extension

Analogy: forcing too much
water through a hose

geometry shader

24

Geometry Shader Allowed to
“Pass-through” of Vertex Attributes

Geometry shaders are very general!

1 primitive input 
N primitives output, where N is capped but still
dynamic

input vertex attributes can be arbitrarily
recomputed

Not conducive to executing efficiently

Applications often just want 1 primitive in 
constant N primitives out

with NO change of vertex attributes

though allowing for computing & output of per-
primitive attributes

NV_geometry_shader_passthrough supports
a simpler geometry shader approach

Hence more efficient
Particularly useful when viewport mask
allows primitive replication

Restrictions
1 primitive in, 1 primitive out
BUT writing the per-primitive viewport mask
can force replication of 0 to 16 primitives,
one for each viewport array index
No modification of per-vertex attributes

Allowances
Still get to compute per-primitive outputs
Examples: viewport mask and texture array
layer

Maxwell’s NV_geometry_shader_passthrough Extension

25

Analogy for Geometry Shader
“Pass-through” of Vertex Attributes

Geometry shader just computes
per-primitive attributes and passes along primitive

“Pass-through” of vertex attributes
means geometry shader cannot modify them

Full service geometry shader

Efficient, low touch Slower, high touch

Requires good
behavior, many

restrictions apply

Fully general,
anyone can
use this line

26

Example Pass-through Geometry Shader

layout(triangles) in;
layout(triangle_strip) out;
layout(max_vertices=3) out;

in Inputs {
vec2 texcoord;

vec4 baseColor;
} v_in[];
out Outputs {

vec2 texcoord;
vec4 baseColor;

};

void main() {
int layer = compute_layer(); // function not shown

for (int i = 0; i < 3; i++) {
gl_Position = gl_in[i].gl_Position;
texcoord = v_in[i].texcoord;

baseColor = v_in[i].baseColor;
gl_Layer = layer;
EmitVertex();

}
}

#extension GL_NV_geometry_shader_passthrough : require

layout(triangles) in;

// No output primitive layout qualifiers required.

// Redeclare gl_PerVertex to pass through "gl_Position".

layout(passthrough) in gl_PerVertex {
vec4 gl_Position;

};

// Declare "Inputs" with "passthrough" to copy members attributes
layout(passthrough) in Inputs {
vec2 texcoord;

vec4 baseColor;
};

// No output block declaration required

void main() {

// The shader simply computes and writes gl_Layer. We don't
// loop over three vertices or call EmitVertex().
gl_Layer = compute_layer();

}

Simple Example: Sends Single Triangle To Computed Layer

BEFORE: Conventional geometry shader (slow) AFTER: Passthrough geometry shader (fast)

27

Outputting Layer Allows Layered Rendering

• Example: Bind to particular level of 2D texture array with glFramebufferTexture
Then gl_Layer output of geometry shader renders primitive to designated layer (slice)

Allows Rendering to 3D Textures and Texture Arrays

Texture array index for texturing, or gl_Layer for layered rendering

0 1 2 3 4

0

1

2

3
4

M
ip

m
a

p
 l
e
ve

l
in

d
e
x

Example
2D texture
array with
5 layers

28

Aside: Write Layer and Viewport Index
from a Vertex Shader

• Originally only geometry shaders could
write the gl_ViewportIndex and gl_Layer
outputs

• Disadvantages
Limited use of layered rendering and
viewport arrays to geometry shader

Often awkward to introduce a geometry
shader for just to write these outputs

GPU efficiency is reduced by needing to
configure a geometry shader

• AMD_vertex_shader_viewport_index
allows gl_ViewportIndex to be written from
a vertex shader

• AMD_vertex_shader_layer allows gl_Layer
to be written from a vertex shader

• Good example where NVIDIA adopts vendor
extensions for obvious API additions

Generally makes OpenGL code more
portable and life easier for developers in the
process

Maxwell’s AMD_vertex_shader_viewport_index &
AMD_vertex_shader_layer Extensions

29

Further Extending Viewport Array State with
Position Component Swizzling

• Original viewport array state
viewport transform
depth range transform
scissor box and enable

• Maxwell extension adds new state
four position component swizzle modes
one for clip-space X, Y, Z, and W

• Eight allowed modes
GL_VIEWPORT_SWIZZLE_POSITIVE_X_NV
GL_VIEWPORT_SWIZZLE_NEGATIVE_X_NV
GL_VIEWPORT_SWIZZLE_POSITIVE_Y_NV
GL_VIEWPORT_SWIZZLE_NEGATIVE_Y_NV
GL_VIEWPORT_SWIZZLE_POSITIVE_Z_NV
GL_VIEWPORT_SWIZZLE_NEGATIVE_Z_NV
GL_VIEWPORT_SWIZZLE_POSITIVE_W_NV
GL_VIEWPORT_SWIZZLE_NEGATIVE_W_NV

Maxwell’s NV_viewport_swizzle extension

Viewport array state

0
1
2
...
15

xv yv wv hv n,f xs ys ws hs es xswyswzswwws

0 0 128 128 0,1 0,0,128,128,0 x+,y+,z+,w+

0 0 128 128 0,1 0,0,128,128,0 y+,z+,x+,w+

0 0 128 128 0,0 0,0,128,128,0 z+,x+,y+,w+

...

standard viewport array state NEW swizzle state

30

Reminder of Cube Map Structure

• Cube map is essentially 6 images
Six 2D images arranged like the faces of a
cube

+X, -X, +Y, -Y, +Z, -Z

• Logically accessed by 3D (s,t,r) un-
normalized vector

Instead of 2D (s,t)

Where on the cube images does the vector
“poke through”?

That’s the texture result

• Interesting question
Can OpenGL efficiently render a cube
map in a single rendering pass?

Cube Map Images are Position Swizzles Projected to 2D

31

Example of Cube Map Rendering

32

Example of Cube Map Rendering

+X −X

+Z

−Z

+Y−Y

0 123

4

5

Faces Labeled and Numbered by Viewport Index

33

Layer to Render Can Be
Relative to Viewport Index

• Geometry shader can “redeclare” the layer to be relative to the viewport index
GLSL usage

layout(viewport_relative) out highp int gl_Layer;

• After viewport mask replication, primitive’s gl_Layer value is biased by its viewport index
Allows each viewport index to render to its “own” layer

• Good for single-pass cube map rendering usage
Use passthrough geometry shader to write 0x3F (6 bits set, views 0 to 5) to the viewport mask

Usage: gl_ViewportMask[0] = 0x3F; // Replicate primitive 6 times
Set swizzle state of each viewport index to refer to proper +X, -X, +Z,-Y, +Z, -Z cube map faces

Requires NV_viewport_swizzle extension
Caveat: Force the window-space Z to be an eye-space planar distance for proper depth testing

Requires inverse W buffering for depth testing
Swizzle each view’s “Z” into output W
Make sure input clip-space W is 1.0 and swizzled to output Z
Means window-space Z will be one over W or a planar eye-space distance from eye, appropriate for depth

testing
Requires to have floating-point depth buffer for W buffering

Bonus Feature of Maxwell’s NV_viewport_array2 extension

34

(Naïve) Fast Single-pass Cube Map Rendering

#define pX GL_VIEWPORT_SWIZZLE_POSITIVE_X_NV
#define nX GL_VIEWPORT_SWIZZLE_NEGATIVE_X_NV
#define pY GL_VIEWPORT_SWIZZLE_POSITIVE_Y_NV

#define nY GL_VIEWPORT_SWIZZLE_NEGATIVE_Y_NV
#define pZ GL_VIEWPORT_SWIZZLE_POSITIVE_Z_NV
#define nZ GL_VIEWPORT_SWIZZLE_NEGATIVE_Z_NV

#define pW GL_VIEWPORT_SWIZZLE_POSITIVE_W_NV

glDisable(GL_SCISSOR_TEST);

glViewport(0, 0, 1024, 1024);
glViewportSwizzleNV(0, nZ, nY, pW, pX); // positive X face
glViewportSwizzleNV(1, pZ, nY, pW, nX); // negative X face

glViewportSwizzleNV(2, pX, pZ, pW, pY); // positive Y face
glViewportSwizzleNV(3, pX, nZ, pW, nX); // negative Y face
glViewportSwizzleNV(4, pX, nY, pW, pZ); // positive Z face

glViewportSwizzleNV(5, nX, nY, pW, nZ); // negative Z face

#extension GL_NV_geometry_shader_passthrough : require
#extension GL_NV_viewport_array2 : require

layout(triangles) in;
// No output primitive layout qualifiers required.

layout(viewport_relative) out highp int gl_Layer;

// Redeclare gl_PerVertex to pass through "gl_Position".
layout(passthrough) in gl_PerVertex {
vec4 gl_Position;

};
// Declare "Inputs" with "passthrough" to copy members

attributes
layout(passthrough) in Inputs {
vec2 texcoord;
vec4 baseColor;

};

void main() {
gl_ViewportMask[0] = 0x3F; // Replicate primitive 6 times
gl_Layer = 0;

}

With Maxwell’s NV_viewport_array2 & NV_viewport_swizzle

Viewport array state configuration Passthrough geometry shader
non-naïve version would perform per-face culling in shader

Getting swizzles from this table from
the OpenGL 4.5 specification ensures
your swizzles matches OpenGL’s
cube map layout conventions

35

GPU Voxelization, typically for Global Illumination

• Concept: desire to sample the volumetric coverage within a scene
Ideally sampling the emittance color & directionality from the scene too

Input: polygonal meshes

Output: 3D grid (texture image) where voxels hold attribute values + coverage

The Other Main Justification for Viewport Swizzle

Voxelization pipeline

Passthrough geometry shader + viewport swizzle makes this fast

36

What’s Tricky About Voxelization

• Not your regular rasterization into a 2D image!

• Instead voxelization needs rasterizing into a 3D grid
Represented on the GPU as a 3D texture or other 3D array of voxels

• BUT our GPU and OpenGL only know how to rasterize in 2D
So exploit that by rasterizing into a “fake” 2D framebuffer

ARB_framebuffer_no_attachments extension allows rasterizing to
framebuffer lacking any attachments for color or depth-stencil

The logical framebuffer has a width & height, but no pixel storage

• Approach: Rasterize a given triangle within the voxelization
region on an orthogonal axis direction where triangle has the
largest area (X, Y, or Z axis)

Then fragment shader does (atomic) image stores to store coverage
& attributes at the appropriate (x,y,z) location in 3D grid

Caveat: Use conservative rasterization to avoid missing features

Skip rendering a 2D image with pixels... because we need a 3D result

Exact details are involved, but a fast geometry shader & viewport swizzling make Dominant Axis Selection efficient

37

What’s the Point of Voxelization?

Direct lighting feels over dark

Feeds a GPU Global Illumination Algorithm

38

What’s the Point of Voxelization?

Feeds a GPU Global Illumination Algorithm

Global illumination with ambient occlusion avoids the over-dark feel

39

Direct lighting feels over dark

What’s the Point of Voxelization?

Feeds a GPU Global Illumination Algorithm

40

Global Illumination with specular effects capture subtle reflections in floor too

What’s the Point of Voxelization?

Feeds a GPU Global Illumination Algorithm

41

What’s the Point of Voxelization?

Improving the Ambient Contribution on Surfaces

Flat ambient (no diffuse or specular directional lighting shown)

42

What’s the Point of Voxelization?

Improving the Ambient Contribution on Surfaces

Screen-space ambient occlusion improves the sense of depth a little

43

What’s the Point of Voxelization?

Improving the Ambient Contribution on Surfaces

True global illumination for ambient makes the volumetric structure obvious

44

Example Voxelization

Sample scene

45

Example Voxelization

Voxelized directional coverage

46

Example Voxelization

Voxelized opacity

47

Example Voxelization

Voxelized opacity, downsampled

48

Example Voxelization

Voxelized opacity, downsampled twice

49

Complete Global Illumination is Complex

• Complete implementation
included in NVIDIA VXGI

Implements Voxel Cone Tracing
Part of Visual FX solutions

• Implemented for DirectX 11
But all the underlying GPU
technology is available as OpenGL
extensions

NV_viewport_array2
NV_viewport_swizzle
NV_geometry_shader_passthrough
NV_conservative_raster

NVIDIA Provides Implementations

50

Conservative Rasterization

• Mentioned on last slide as an extension used for global illumination
Easy to enable: glEnable(GL_CONSERVATIVE_RASTERIZATION_NV);
Additional functionality: Also provides ability to provide addition bits of sub-pixel precision

• Conventional rasterization is based on point-sampling
Pixel is covered if the pixel’s exact center is within the triangle
Multisample antialiasing = multiple pixel locations per pixels
Means rasterization can “miss” coverage if sample points for pixels or multisample locations are
missed
Point sampling can under-estimate ideal coverage

• Conservative rasterization
Guarantees coverage if any portion of triangle intersects (overlaps) the pixel square

Caveat: after sub-pixel snapping to the sub-pixel grid

However may rasterize “extra” pixels not overlapping pixel squares intersected by the triangle
Conservative rasterization typically over-estimates ideal coverage
Intended for algorithms such as GPU voxelization where missing coverage results in rendering
artifacts—and be tolerant of over-estimated coverage

Maxwell’s NV_conservative_raster extension

51

Conservative Rasterization Visualized

• Green pixel squares have their pixel center covered by the triangle

• Pink pixel squares intersect the triangle but do NOT have their pixel centered
covered

Consider Conventional Rasterization of a Triangle

Pink pixel square indicate some
degree of under-estimated
coverage

52

Conservative Rasterization Visualized

• Push triangle edges away from the triangle center (centroid) by half-pixel width

• Constructs a new, larger (dilated) triangle covering more samples

Consider Conventional Rasterization of a Dilated Triangle

Notice all the pink pixel squares
are within the dilated triangle

53

Conservative Rasterization Visualized

• Yellow pixel square indicate pixels within dilated triangle but not intersected by
the original triangle

Overestimated Rasterization of a Dilated Triangle

Notice all the yellow pixel squares
are within the dilated triangle

54

Caveats Using Conservative Rasterization

• Shared edges of non-overlapping rasterized
triangles are guaranteed not to have either

Double-hit pixels
Pixel gaps

• Rule is known as “watertight rasterization”
Very useful property in practice
Example: avoids double blending at edges
Coverage can be under-estimated; long,
skinny triangles might cover zero samples

• Interpolation at a covered pixel center (or
sample locations when multisampling) are
guaranteed to return values within bounds
of primitives vertex attributes

• Conservative rasterization makes no such
guarantee against double-hit pixels

• Indeed double-hit pixels are effective
guaranteed along shared triangle edges

• Algorithms using conservative rasterization
must be tolerant of over-estimated
coverage

Long, skinny triangles have more dilation
over-estimated coverage error

• Interpolation can become extrapolation
when interpolation location is not within
the original primitive!

You have been warned

shared edge

55

Conservative Rasterization Dilate Control

Provides control to increase the amount of conservative dilation when
GL_CONSERVATIVE_RASTERIZATION_NV is enabled

Straightforward usage

glConservativeRasterParameterfNV (GL_CONSERVATIVE_RASTER_DILATE_NV, 0.5f);

0.5 implies an additional half-pixel offset to the dilation, so extra conservative

Actual value range is [0, 0.75] in increments of 0.25

Initial value is 0.0

Maxwell’s NV_conservative_raster_dilate extension

56

Conservative Rasterization versus Polygon Smooth

• OpenGL supports polygon smooth rasterization mode since OpenGL 1.0
Example usage: glEnable(GL_POLYGON_SMOOTH)

• glEnable(GL_CONSERVATIVE_RASTERIZATION_NV) is different from
glEnable(GL_POLYGON_SMOOTH)?

Subtle semantic difference

• NVIDIA implements GL_POLYGON_SMOOTH by computing point-inside-primitive
tests at multiple sample locations within each pixel square

So computes fractional coverage used to modulate alpha component post-shading
Typically recommended for use with glBlendFunc(GL_SRC_ALPHA_SATURATE, GL_ONE)

blending enabled
Polygon smooth should not over-estimate fractional coverage

• Conservative rasterization works by dilation, as explained
Conservative rasterization does not compute a fractional coverage
So there is no modulation of alpha by the fractional coverage

What’s the difference?

57

Maxwell Vector Graphics Improvements

• Simple idea: mixed sample counts
Improve antialiasing quality & performance
of vector graphics rendering
Every color samples gets N stencil/depth
samples

• Notion of stencil-depth test changes
OLD notion: stencil & depth tests must
either fail or pass, Boolean result
NEW notion: multiple stencil & depth values
per color sample mean the stencil & depth
test can “fractionally pass”

• GPU automatically modulates post-shader
RGBA color by fractional test result

Assumes blending configured
Similar to fractional coverage blending in
CPU-based vector graphics

• Advantages
Works very cleanly with NV_path_rendering
Much reduced memory footprint

¼ at same coverage quality

Much less memory bandwidth
Superior path rendering anti-aliasing quality,
up to 16x
Minimal CPU overhead

Maxwell provides super- efficient “cover”
operation

Maxwell’s NV_framebuffer_mixed_samples Extension

glCoverageModulationNV(GL_RGBA);

58

16:1 Fractional Stencil Test Example

87.5% fractional
stencil test
(14 of 16)

1 color sample,
16 stencil samples

100% fractional
stencil test
(16 of 16)

0% fractional
stencil test
(0 of 16)

37.5% fractional
stencil test
(6 of 16)

Examine Fractional Stencil Test Results

59

4 color samples,
16 stencil samples

Each color sample
separately modulated
and blended!

0%, 100%, 0%, 50%
fractional stencil test
(1 of 4, 4 of 4,
0 of 4, 1 of 4)

0%, 0%, 0%, 0%
fractional stencil test
(0 of 4, 0 of 4,
0 of 4, 0 of 4)

100%, 100%, 100%, 100%
fractional stencil test
(4 of 4, 4 of 4,
4 of 4, 4 of 4)

100%, 100%, 100%, 50%
fractional stencil test
(4 of 4, 4 of 4,
4 of 4, 2 of 4)

16:4 Fractional Stencil Test Example
Examine Fractional Stencil Test Results

60

Mixed Sample Configurations

8:8

8:4

8:2

8:1

8x1x 2x 4x 16x

1x 1:1 2:1 4:1 16:1

2x 2:2 4:2 16:2

4x 4:4 16:4

8x 16:8

Coverage/stencil samples per pixel

C
o
lo

r
sa

m
p
le

s
p
e
r

p
ix

e
l

Maxwell’s NV_framebuffer_mixed_samples Extension

61

N = 1 2 4 8 16

M = 1

2

4

8
= pixel region

LEGEND

= color sample

= sample location

Mixed Samples Visualized
Application determines the quality/performance/memory; many choices

62

Better Vector Graphics Performance

Tiger SVG Scene

GK204 (Kepler) vs.

GM204 (Maxwell2) vs.

GM204 with NV_framebuffer_mixed_samples

0.00

0.50

1.00

1.50

2.00

2.50

3.00

10

0x
10

0

20

0x
20

0

30

0x
30

0

40

0x
40

0

50

0x
50

0

50

0x
50

0

60

0x
60

0

70

0x
70

0

80

0x
80

0

90

0x
90

0

 1
00

0x
10

00

 1
10

0x
11

00

Window Resolution

M
il

li
s
e
c
o

n
d

s
 p

e
r

fr
a
m

e

GK104 16:16

GM20416:16

GM204 16:4

GM204 16:1

Kepler
conventional 16x

Maxwell 2
conventional 16x

Maxwell 2, 16:4 & 16:1
Faster & ¼ memory footprint

While Using Much Less Framebuffer Memory

63

Fast, Flexible Vector Graphics Results
NV_framebuffer_mixed_samples + NV_path_rendering combined

Web pages
Flash type games

Text, even in
with perspective

Emojis! 

Illustrations

Mapping

All rendering shown at 16:1 quality

64

NVIDIA OpenGL Features Integrated in
Google’s Skia 2D Graphics Library

• Skia is Google’s 2D graphics library
• Primarily for web rendering

• Used by Chromium, Firefox, and Google’s Chrome browser

• Skia has support today for GPU-acceleration with OpenGL exploiting
• NV_path_rendering for vector graphics filling & stroking

• NV_framebuffer_mixed_samples for efficient framebuffer representation

• EXT_blend_func_extended for extended Porter-Duff blending model

• KHR_blend_equation_advanced for advanced Blend Modes

65

Naïve Mixed Sample Rendering Causes Artifacts

• Easy to render paths with NV_path_rendering +
NV_framebuffer_mixed_samples

• Reason: two-step “Stencil, then Cover”
approach guarantees proper coverage is fully
resolved in first “stencil” pass, then color is
updated in “cover” pass

• Just works by design

• But what if you want to render a simple convex
shape like a rectangle with conventional
rasterization & mixed samples?

• Draw rectangle as two triangles
• Into 16:1 mixed sample configuration

• But fractional coverage modulation causes
seam along internal edge!

Requires Careful use of NV_framebuffer_mixed_samples

4x pixel magnification

double blending
crack 

 great 16x antialiasing
on external edges

66

Examine the Situation Carefully

• Two triangles A and B
• Where A is 100% fine

• Where B is 100% fine

• External edge of A is properly antialiased

• External edge of B is properly antialiased

• PROBLEM is shared edge

• Both triangles claim fractional coverage
along this edge

• Causes Double Blending

• Can we “fix” rasterization so either A or B,
but never both claim the shared edge?

• YES, Maxwell GPUs can

• Using NV_sample_mask_override_coverage
extension

Maxwell’s NV_sample_mask_override_coverage Extension Helps

100% A

100% B

A’s antialiased edge

B’s antialiased edge

Problematic
double-blended

shared edge

67

Solution: Triangle A Claims Coverage or B Claims,
But not Both

void main() {

gl_FragColor = gl_Color;

}

#version 400 compatibility

#extension GL_NV_sample_mask_override_coverage : require

layout(override_coverage) out int gl_SampleMask[];

const int num_samples = 16;

const int all_sample_mask = 0xffff;

void main() {

gl_FragColor = gl_Color;

if (gl_SampleMaskIn[0] == all_sample_mask) {

gl_SampleMask[0] = all_sample_mask;

} else {

int mask = 0;

for (int i=0; i<num_samples; i++) {

vec2 st;

st = interpolateAtSample(gl_TexCoord[0].xy, i);

if (all(lessThan(abs(st),vec2(1))))

mask |= (1 << i);

}

int otherMask = mask & ~gl_SampleMaskIn[0];

if (otherMask > gl_SampleMaskIn[0])

gl_SampleMask[0] = 0;

else

gl_SampleMask[0] = mask;

}

}

Handle in fragment shader: by overriding the sample mask coverage

BEFORE: Simply output interpolated color AFTER: Interpolate color + resolve overlapping coverage claims

trivial
fragment shader

68

Solution: Triangle A Claims Coverage or B Claims,
But not Both

void main() {

gl_FragColor = gl_Color;

}

#version 400 compatibility

#extension GL_NV_sample_mask_override_coverage : require

layout(override_coverage) out int gl_SampleMask[];

const int num_samples = 16;

const int all_sample_mask = 0xffff;

void main() {

gl_FragColor = gl_Color;

if (gl_SampleMaskIn[0] == all_sample_mask) {

gl_SampleMask[0] = all_sample_mask;

} else {

int mask = 0;

for (int i=0; i<num_samples; i++) {

vec2 st;

st = interpolateAtSample(gl_TexCoord[0].xy, i);

if (all(lessThan(abs(st),vec2(1))))

mask |= (1 << i);

}

int otherMask = mask & ~gl_SampleMaskIn[0];

if (otherMask > gl_SampleMaskIn[0])

gl_SampleMask[0] = 0;

else

gl_SampleMask[0] = mask;

}

}

Handle in fragment shader: by overriding the sample mask coverage

BEFORE: Simply output interpolated color AFTER: Interpolate color + resolve overlapping coverage claims

additional

re-rasterization epilogue

early

accept
optimization

sample mask override coverage
support

69

NV_sample_mask_override_coverage

• BEFORE: Fragment shaders can access sample mask for multisample rasterization
• Indicates which individual coverage samples with a pixel are covered by the fragment
• Fragment shader can also “clear” bits in the sample mask to discard samples
• But in standard OpenGL, no way to “set” bits to augment coverage

• Fragment’s output sample mask is always bitwise AND’ed with original sample mask

• NOW: Maxwell’s NV_sample_mask_override_coverage allows overriding coverage!
• The fragment shader can completely rewrite the sample mask
• Clearing bits still discards coverage
• BUT setting bits not previously set augments coverage

• Powerful capability enables programmable rasterization algorithms
• Like example in previous slide to fix double blending artifacts

What does it allow?

70

Other Sample Mask Coverage Override Uses

• Handles per-sample stencil test for high-quality sub-pixel clipping

• These techniques integrated today into Skia

Works for general
quadrilaterals,

even in drawn in
perspective

Adapts well
to drawing circles

and ellipses

And even
rounded rectangles

Example:
16x quality

blended ellipses

71

Maxwell OpenGL Extensions

• Voxelization, Global Illumination, and
Virtual Reality

NV_viewport_array2

NV_viewport_swizzle

AMD_vertex_shader_viewport_index

AMD_vertex_shader_layer

• Vector Graphics extensions
NV_framebuffer_mixed_samples

EXT_raster_multisample

NV_path_rendering_shared_edge

• Advanced Rasterization
NV_conservative_raster

NV_conservative_raster_dilate

NV_sample_mask_override_coverage

NV_sample_locations,
now ARB_sample_locations

NV_fill_rectangle

• Shader Improvements
NV_geometry_shader_passthrough

NV_shader_atomic_fp16_vector

NV_fragment_shader_interlock,
now ARB_fragment_shader_interlock

EXT_post_depth_coverage,
now ARB_post_depth_coverage

Requires GeForce 950, Quadro M series, Tegra X1, or better

New Graphics Features of NVIDIA’s Maxwell GPU Architecture

Lacked time to talk about these extensions

72

• Graphics pipeline
operation
• ARB_fragment_shader_interlock
• ARB_sample_locations
• ARB_post_depth_coverage
• ARB_ES3_2_compatibility

• Tessellation bounding box
• Multisample line width query

• ARB_shader_viewport_layer_array

• Texture mapping functionality
• ARB_texture_filter_minmax
• ARB_sparse_texture2
• ARB_sparse_texture_clamp

• Shader
functionality
• ARB_ES3_2_compatibility

• ES 3.2 shading language support
• ARB_parallel_shader_compile
• ARB_gpu_shader_int64
• ARB_shader_atomic_counter_ops
• ARB_shader_clock
• ARB_shader_ballot

2015: In Review
OpenGL in 2015 ratified 13 new standard extensions

73

Need a Full Refresher on 2014 and 2015 OpenGL?

• Honestly, lots of functionality in 2014 & 2015 if you’ve not followed carefully

Available @ http://www.slideshare.net/Mark_Kilgard

74

Pascal GPU OpenGL Extensions

• Pascal has 5 new OpenGL extensions
• Major goal: improving Virtual Reality support

• Several extensions used in combination
• NV_stereo_view_rendering

• efficiently render left & right eye views in single rendering pass

• NV_viewport_array2 + NV_geometry_shader_passthrough—discussed already
• NV_clip_space_w_scaling

• extends viewport array state with per-viewport re-projection

• EXT_window_rectangles
• fast inclusive/exclusive rectangle testing during rasterization
• Multi-vendor extension supported on all modern NVIDIA GPUs

• High-end Virtual Reality with two GPUs
• New explicit NV_gpu_multicast extension

• Render left & right eyes with distinct GPUs

New for 2016

75

Basic question

Why should the Virtual Reality (VR) image shown in a Head
Mounted Display (HMD) feel real?

Ignoring head tracking and the realism of the image itself...
just focused on the image generation

76

Why HMD’s Image ≈ Perception of Reality

≈ lens(lens-1(rendered image))

≈ lens(screen)

HMD image ≈ lens image

screen ≈ lens-1(rendered image)

≈ rendered image

rendered image ≈ pin hole image

pin hole image ≈ eye view

eye view ≈ perception of reality

by warping

by rendering model

by anatomy

by psychology

by optics
lens image = lens(screen)

≈ pin hole image

≈ eye view

≈ perception of reality

image ≈ lens(lens-1(image))
by composition

Portion of
transformation
involving GPU
rendering &
resampling

Twin goals
1. Minimize HMD

resampling error
2. Increase rendering

efficiency

77

Goal of Head Mounted Display (HMD) Rendering

•Goal: perceived HMD image ≈ visual perception of reality
• Each image pair on HMD screen, as seen through its HMD lens, should be

perceived as images of the real world

•Assume pin hole camera image ≈ real world
• Traditional computer graphics assumes this

• Perspective 3D rasterization idealizes a pin hole camera

• Human eye ball also approximately a pin hole camera

•perceived HMD image = lens(screen image)
• Function lens() warps image as optics of HMD lens does

•screen image = lens-1(pin hole camera image)
• Function lens-1() is inverse of the lens image warp

•perceived image ≈ lens(lens-1(pin hole camera image))
•pin hole camera image ≈ eye view

78

Pin Hole Camera Ideal

Albrecht Dürer: Artist Drawing with Perspective Device

Normal computer graphics
generally good at rendering
“pin hole” camera images

And people are good
at interpreting such
images as 3D scenes

But HMDs have a
non-linear image warping
due to lens distortion

79

Lens Distortion in HMD

•Head-mounted Display (HMD)
magnifies its screen with a lens

•Why is a lens needed?
• To feel immersive

• Immersion necessitates a wide field-
of-view

• So HMD lens “widens” the HMD
screen’s otherwise far too narrow
field-of-view

•Assume a radial symmetric magnify
• Could be a fancier lens & optics

• BUT consumer lens should be
inexpensive & lightweight

Graph paper viewed & magnified through HMD lens

80

Example HMD Post-rendering Warp

81

Lens Performs a Radial Symmetric Warp

Adding circles to image shows distortion increases as the
radius increases

Original Image Overlaid with circles

82

Pin-hole Camera Image Assumptions

•Assume a conventionally rendered perspective image
• In other words a pin-hole camera image

•r is the distance of a pixel (x,y) relative to the center of the image at
(0,0) so

•Theta is the angle of the pixel relative to the origin

•Assume pin hole camera image has maximum radius of 1
• So the X & Y extent of the images is [-1..1]

22 yxr 





sin

cos

ry

rx





83

Radius Remapping
for an HMD Magnifying Lens

• A lens in an HMD magnifies the image
• What is magnification really?

• Magnifying takes a pixel at a given radius and “moves it out” to a larger radius in the
magnified image

• In the HMD len’s image, each pin-hole camera pixel radius r is mapped to alternate
radius rlensImage

• This maps each pixel (x,y) in the pin-hole camera image to an alternate location
(xlensImage,ylensImage)

• Without changing theta

agedisplaylensImage rrkrkr Im
4

2
2

1 ...)1(

...1 4
2

2
1 


rkrk

r
r

lensImage

gedisplayIma

Essentially a Taylor series
approximating actual optics of lens

84

Lens Function Coefficients for Google Cardboard

Lens coefficients k1 & k2 are values that can be measured
Additional coefficients (k3, etc.) are negligible

Coefficients for typical lens in Google Cardboard
k1 = 0.22
k2 = 0.26

Big question
Can we render so the amount of resampling necessary to invert a
particular lens’s distortion is minimized?

85

Radius Remapping
for Lens Matched Shading (LMS)

• Assume a conventionally rendered
perspective image

• In other words a pin-hole camera image

• r is the distance of a pixel (x,y) relative to
the center of the image at (0,0) so

• Theta is the angle of the pixel relative to
the origin

• Lens Matched Shading provides an alternate
radius rLMS for the same pixel (xLMS,yLMS)

• This maps each pixel (x,y) to an alternate
location

• Without changing theta





sin

cos

LMSLMS

LMSLMS

ry

rx









sin

cos

ry

rx





 sincos1 rprp

r
rLMS




22 yxr 

OLD: Conventional “pin hold” camera rendering NEW: Lens Matched Shading rendering

86

Concentric circles in pin hole camera view gets “squished” by inverse lens transform

HMD’s Inverse Lens Warp

pin hole camera view
(conventionally rendered image)

inverse lens warp view
(HMD screen)

k1 = 0.22

k2 = 0.26

4
2

2
1 21 rkrk

r
r

lensImage

gedisplayIma




87

Lens Matched Shading

p = 0.26007

 sincos1 rprp

r
rLMS




pin hole camera view Lens Matched Shading
(rendered framebuffer image)

Concentric circles in pin hole camera view gets “projected” towards origin

88

Complete Process of
Lens Matched Shading

ideal
pin hole

camera view

rendered
image

with lens matched
shading

lens warped
image

image as
perceived

viewed through
HMD lens

while different, these two images
are “well matched” so warp between

them minimizes pixel movement and resampling

89

What is Optimal Value for p?

A reasonable measure of optimality is root mean square error of difference between
LMS and inverse lens warp radii over entire lens

So what p minimizes this integral for a particular lens’s coefficients

When k1 = 0.22 & k2 = 0.26, optimal p ≈ 0.26007






ddrr
rprp

r

rkrk

r
2

2

0

1

0

4
2

2
1 sincos121  



















* Analysis assumes a Google Cardboard-type device; Oculus has asymmetric visible screen region

90

Matched Overlap of Lens Matched Shading
and Lens Warped Image

k1 = 0.22

k2 = 0.26

p = 0.26007

Root Mean Square (RMS) error = 0.0598

91

Much Worse Overlap of Conventional
Projection and Lens Warped Image

Root Mean Square (RMS) error = 0.273

k1 = 0.22

k2 = 0.26

p = 0

92

Advantages of Lens Matched Shading

•What is rendered by GPU is closer (less error) to what the HMD needs
to display than conventional “pin hole” camera rendering

•Means less resampling error
• There’s still a non-linear re-warping necessary
• However the “pixel movement” for the warp is greatly reduced

•Another advantage: fewer pixels need be rendered for same wide
field of view

•Also want application to render left & right views with LMS in a single
efficient rendering pass

93

Single-eye Scene

Simple 3D scene

94

Stereo Views of Same Scene

Left and Right eye view of same simple scene

Two scenes are slightly different if compared

95

Swapped Stereo Views

Right and Left (swapped) eye view of same simple scene

Two scenes are slightly different if compared

96

Image Difference of Two Views

− + 0.5 =

Left eye view Right eye view

Clamped difference image

97

Lens Matched Shading

Same left & right eye view but rendered with w scaling

98

Lens Matched Shading
Quadrants

Same left & right eye view but rendered with w scaling

Each quadrant gets different projection to “tilt to center”

99

Visualization of Lens Matched Shading Rendering

100

Warped Lens Matched Shaped

Warped version of lens shading to match HMD lens

101

Lens Matched Shading
with Window Rectangle Testing

Same Lens Matched Shading but with EXT_window_rectangles

Nothing in black corners is shaded or even rasterized

102

Lens Matched Shading
with Window Rectangle Testing

Nothing in black corners is shaded or even rasterized

Yellow lines show overlaid 8 inclusive window rectangles
Same 8 window rectangles “shared” by each view’s texture array layer

103

Standard OpenGL Per-fragment Operations

104

NEW Window Rectangles Test in Per-fragment
Operations

Window
Rectangles

Test

NEW
stage

105

Straightforward API

• glWindowRectanglesEXT(GLenum mode, GLsizei count, const GLint rects[]);
• mode can be either GL_INCLUSIVE_EXT or GL_EXCLUSIVE_EXT

• count can be from 0 to maximum number of supported window rectangles
• Must be at least 4 (for AMD hardware)

• NVIDIA hardware supports 8

• Rectangles allowed to overlap and/or disjoint
• Each rectangle is (x,y,width,height)

• width & height must be non-negative

• Initial state
• GL_EXCLUSIVE_NV with zero rectangles

• Excluding rendering from zero rectangles means nothing is discarded by window
rectangles test

Multi-vendor EXT_window_rectangles Extension

106

Lens Matched Shading
with Window Rectangle Testing

Nothing in black corners is shaded or even rasterized

Yellow lines show overlaid 8 inclusive window rectangles
Same 8 window rectangles “shared” by each view’s texture array layer

107

Warped Lens Matched Shading
with Window Rectangle Testing during Rendering

Identical as “Lens Matched Shading” despite corners not being
rasterized because corners don’t contribute to warped version

108

Warped Lens Matched Shading
with Win. Rect. Testing during Rendering & Warping

Same prior image, but warp now uses window rectangles

Avoids wasting time warping corners not visible through lens

109

Visualizing Warp Window Rectangles

Point: Window rectangle testing used TWICE
#1 during Lens Matched Shading rendering pass
#2 during warping pass

110

VR Rendering Pipeline

LMS Right Eye View Warped Right Eye View

LMS Left Eye View Warped Left Eye View

Scene

Displayed within HMD

Single Rendering Pass
Single Pass Stereo +

Lens Matched Shading +
Window Rectangle Testing

Drawn with Single Triangle
Fragment Shader Warping
Window Rectangle Testing

Perception to user is linear rendering

HMD lens “undoes” warping to provide a
perceived wide field-of-view

Pascal does all this
efficiently in a single
rendering pass!

8 viewports, 1 pass

111

OpenGL Extensions Used in LMS VR Pipeline

• Allows vertex shader to output two clip-space
positions

• (x1,y,z,w) and (x2,y,z,w)

• Results in TWO primitives
one for left eye & one for right eye

• New GLSL built-ins
• gl_SecondaryPositionNV

• Like gl_Position but for “second eye’s view”

• gl_SecondaryViewportMaskNV[]
• Like gl_ViewportMaskNV[] but for “second eye’s

view”

• Also can steer primitives to different texture
array slices

• layout(secondary_view_offset = 1) int gl_Layer;

Pascal’s NV_stereo_view_rendering Extension

112

OpenGL Extensions Used in LMS VR Pipeline

Adds a new set of state to viewport array elements

Each viewport index can recompute clip space as w = w + A x + B y

Pascal’s NV_clip_space_w_scaling Extension

Viewport array state

0
1
2
3
...
15

xv yv wv hv n,f xs ys ws hs es xswyswzswwws A,B

0 0 1024 1024 0,1 0,0, 512,512,1 x+,y+,z+,w+ −0.26,−0.26

0 0 1024 1024 0,1 512,0, 512,512,1 y+,z+,x+,w+ +0.26,−02.6

0 0 1024 1024 0,1 512,0, 512,512,1 z+,x+,y+,w+ −0.26,−0.26

...

standard viewport array state swizzle state NEW w scaling

0 0 1024 1024 0,1 512,512, 512,512,1 z+,x+,y+,w+ +0.26,+0.26

Four quadrants
for Lens Matched
Shading

113

Example Lens Matched Shading Rendered Image

Example image

A=+0.2, B=+0.2 A=−0.2, B=+0.2

A=−0.2, B=−0.2 A=+0.2, B=−0.2

114

More Information on
NVIDIA Virtual Reality GPU Support

Growing Software Development Kit (SDK) for
Virtual Reality

Focus on GPU efficiency

Whitepapers and sample code

Both OpenGL and Direct3D supported

https://developer.nvidia.com/vrworks

Get the VRWORKS 2.0 SDK

115

Still More Pascal OpenGL Extensions

NVX_blend_equation_advanced_multi_draw_buffers
• No API, simply relaxes error restriction so advanced blend modes from

KHR_blend_equation_advanced & NV_blend_equation_advanced work with more than
1 color attachment

• Important for CMYK rendering

NV_conservative_raster_pre_snap_triangles
• More Conservative Rasterization control

• Allows conservative rendering dilation
prior to sub-pixel snapping

NV_shader_atomic_float64
• Atomic shader operations on

double-precision values

CYMK color space rendering with multiple color attachments

Pascal’s non-Virtual Reality Enhancements

116

OpenGL extension exposing Khronos intermediate
language for parallel compute and graphics

New standard Khronos extension for OpenGL
Just announced! July 22, 2016

Allows compiled SPIR-V code to be passed directly to OpenGL driver
Accepts SPIR-V output from open source Glslang Khronos Reference compiler

https://github.com/KhronosGroup/glslang

Other compilers can target SPIR-V too

Khronos standard extension ARB_gl_spirv

+

117

SPIR-V Ecosystem

LLVM

Third party kernel and
shader Languages

•SPIR-V
•Khronos defined and controlled
cross-API intermediate language

•Native support for graphics
and parallel constructs

•32-bit Word Stream
•Extensible and easily parsed

•Retains data object and control
flow information for effective

code generation and translation

OpenCL C++OpenCL C

GLSL
Khronos has open sourced
these tools and translators

IHV Driver
Runtimes

Other
Intermediate

Forms

SPIR-V Validator

SPIR-V (Dis)Assembler LLVM to SPIR-V
Bi-directional

Translator

Khronos plans to open
source these tools soon

https://github.com/KhronosGroup/SPIR/tree/spirv-1.1

Open source C++
front-end released

HLSL
Khronos has open sourced
these tools and translators

Khronos plans to open
source these tools soon

Khronos has open sourced
these tools and translators HLSL

Khronos plans to open
source these tools soon

Khronos has open sourced
these tools and translators GLSLHLSL

Khronos plans to open
source these tools soon

Khronos has open sourced
these tools and translators

OpenCL C

GLSLHLSL

Khronos plans to open
source these tools soon

Khronos has open sourced
these tools and translators

OpenCL C++OpenCL C

GLSLHLSL

Khronos plans to open
source these tools soon

Khronos has open sourced
these tools and translators

LLVM to SPIR-V
Bi-directional

Translator

OpenCL C++OpenCL C

GLSLHLSL

Khronos plans to open
source these tools soon

Khronos has open sourced
these tools and translators

SPIR-V Validator

LLVM to SPIR-V
Bi-directional

Translator

OpenCL C++OpenCL C

GLSLHLSL

Khronos plans to open
source these tools soon

Khronos has open sourced
these tools and translators

SPIR-V (Dis)Assembler

SPIR-V Validator

LLVM to SPIR-V
Bi-directional

Translator

OpenCL C++OpenCL C

GLSLHLSL

Khronos plans to open
source these tools soon

Khronos has open sourced
these tools and translators

New with
ARB_gl_spirv

118

NVIDIA’s SIGGRAPH Driver Update

•NVIDIA historically releases a “developer” driver at SIGGRAPH with
support for all Khronos standard extensions announced at SIGGRAPH

• This year too 

•Monday (July 25, 2016) NVIDIA will put out a new SIGGRAPH driver
• ARB_gl_spirv

• Major extension in terms of compiler infrastructure & shader support

• EXT_window_rectangles

• Updates to Pascal OpenGL extensions

• For Windows and Linux operating systems

Developed driver with ARB_gl_spirv extension

https://developer.nvidia.com/opengl-driver

119

GLEW Support Available NOW

GLEW = The OpenGL Extension Wrangler Library
Open source library

Pre-built distribution: http://glew.sourceforge.net/
Source code: https://github.com/nigels-com/glew

Your one-stop-shop for API support for all OpenGL extension APIs

Just released GLEW 2.0 (July 2016) provides API support for
ARB_gl_spirv
EXT_window_rectangles
All of NVIDIA’s Maxwell extensions
All of NVIDIA’s Pascal extensions
All other NVIDIA multi-GPU generation initiatives

Examples: NV_path_rendering, NV_command_list, NV_gpu_multicast

Thanks to Nigel Stewart, GLEW maintainer, for this

120

NVIDIA OpenGL in 2016 Provides
OpenGL’s Maximally Available Superset

Pascal
Extensions

2015 ARB extensions

OpenGL 4.5
Core

Maxwell
Extensions

Legacy EXT & Other
Compatibility Extensions

OpenGL Complete
Compatibility

Path Rendering
Multi-GPU.

SLI

Approaching Zero
Driver Overhead

NVIDIA Multi-generation
GPU Initiatives

DirectX inter-op

Vulkan inter-op

ES Enhancements

Full OpenGL
ES 3.2

Khronos Standard

Expected Compatibility

NVIDIA Initiatives

GPU Generation Features

121

Last Words

•Lots of new OpenGL features in NVIDIA’s 2016 Driver
•Highlights

• OpenGL 2015 Khronos standard extensions all supported by NVIDIA

• Maxwell’s features for
• GPU Voxelization & Global Illumination

• Vector Graphics

• And Pascal supports all these features too

• Pascal’s features for efficient Virtual Reality rendering

• NVIDIA supports new ARB_gl_spirv extension
• Provides shader compilation inter-operability for Vulkan and OpenGL

122

SIGGRAPH Paper Using OpenGL to Check Out

• Harnesses OpenGL-based GPU
tessellation

• Avoids the complex patch
splitting in current OpenSubdiv
approach

• Wednesday, July 27

• Ballroom C/D/E

• 3:45 to 5:55pm session

