

Mark Kilgard

My Background

Principal System Software Engineer
OpenGL driver and API evolution
Cg (“C for graphics”) shading language
GPU-accelerated path rendering & web browser
rendering

OpenGL Utility Toolkit (GLUT) implementer
Specified and implemented much of OpenGL
Author of OpenGL for the X Window System
Co-author of Cg Tutorial

Worked on OpenGL for 25 years

NVIDIA’s OpenGL Leverage

[THE WAY |
<A NVIDIA., |

| IT’S MEANT TO BE PLAYED"|

Programmable
Graphics e
Tegra Fa
‘e /\\/\ Debugging with
Nsight

Quadro

&‘

Adobe Creative Cloud

NSIGHT VSE
Jeff Kiel - Man

Intro to Nsight & Developer Tools

VR debugging
AGENDA GPU Range Profiling

Roadmap

UNREAL

—~y

Compile Debug Profile Getting Started...

P =\
BiroctX Goaol o GoeGLes (G G’

an3201> C/C++ JetPack

Trace

. &
o CUDNN NIX_ e

IDE Integration Standalone and CLI ’
g
bq Visual Studic @ ecllpse == & S Zag

NSIGHT VISUAL STUDIO EDITION 5.2

VR, Vulkan, and Advanced Graphics Profiling

ew Range Profiler, includ

ulkan Support

ew Geometry View

culus VR SDK support, Op
CUDA 8.0 support

ing OpenGL and DirectX12 —

enGL

and DX11

scrubb
Scaling: | Event D -
Betn) 200 4000 600 S000 10000 12000 14000 6000 18000 20000 2000 24000 26000 28000 000 32000 3400
MEews 000000 0000 0 T
=

m
PerfMarkers

n

B Views [Hierarchica Arguments | Varisble + Value _+| Marker APE |NVTX ~ Oculus
2 Producttiam Oakus ARz
Event: 57705 | Fiter: owr_ (@matches) K. =] [ewinsabber] | 1o itacturer: e
Event FSID |Desciption Vendorld: 10291
8 8 ovr_GetTimelnSeconds() = 371207.719053 Productsé >
11 ove GetTimelnSeconds) = 371207719800 SeriaMumber: 267020
18 18 ovr_GetPredictedDisplayTime(ovrSession session = 0x066c4fa8, GLint64 framelndex = 718) = 371204.3: FirmwareMajor: 2
20 20 ovr_(=05 4fa8, 371204331301, ovrBool late{ FirmwareMinor: 2
134 133 owr_GetPredictedDisplayTime(owSession session = IESCifaS, GLint4 frameindex = 717) = 7120431 | CamerafrustumHFovinRadians: 1.23
135 1335 owr 1 = 717) = 3712043
1336 1336 ovr GetTrackingState(ovSession session = (x066cHs5, double sbeTime = 371204 317965, ovrBool lstel | CamerafrustumlearZIntieters: 0.40
51697 S76... ovr. Submit ~ oG5t m,

Geometry X
N =]

1D3D11DeviceContext1:Drawlndexed{UINT IndexCount = 25752, LINT StartindexLocation = 0, INT BaseVertexL ocation = 0x00000000)

Graphical | Memory

AvailableHmdCaps: 0x00000000
DefaultHmdCaps: 0x00000000
AvailableTrackingCaps: 413216
DefaultTrackingCaps: 413216

Defaulteyerov: (.33, 133, 1.06, 109)(1.33, 1.33, 1.09, 1.06)
HaxgyeFov: (187, 187, 1.62, L6917, 167, 163, 162)
Resolution: (1920.00, 1089.00)

DisplayRefreshRate: 7500

CustomEyeRender -1
DebugHudstereoGuidelnfofnzble -1

PlayerHeight - 157

Eyehieight 176

NeckEyeDistance - (008, 008)

EyeToMoseDist - {003,003
DebugHudstereoGuideSize2f - (100, 100}
DebugHudstereoGuidePosition3f - { 0.00, 000, -L50 }
DebugHudstereoGuideYawPitchRol3f - {000, 000,000}

Frame peier

Ranoe nlo

P Pt Tl)
Shas P (Tetalivg)

[r—

2| Dispoch Coll Court-

Blendng & 75

% 132632832_FLOAT) >,

wa

8GEBBAB_UNORM) -
GEBBAS_LNORM) ¥

tte Configuration

Reset Camera
Render Mode:
Wireframe Color D Raster Size D
u

Render Normal Vectors

[MormalScale 0.50 [

Rendering Options:

Diffuse Color

Mormal Color

DebugHudstereoGuideColor - { 100, 050,010,080 }
3

EyeReliefDisl

UE4’S VR ENGINE

Render pass per eye

Dynamic (273ns)

All Events

StaticOpaguelightmappe;

Dynamic (370ns)

I LB [e] oisto [PostProcessil
JRRRTL]) [vewd
oo 1 1 G

I 11

Depth Pass

View 0

Left

View 1
Right

Lighting Pass
i

View 0
Left

View 1

DEMO TIME!

ROADMAP

When you get back from SIGGRAPH: 5.2 RC1

VR Goodness Vulkan
OCULUS SDK, OpenGL and Frame Debugging
Direct3D

BETA: Serialized Captures
OpenGL Multicast Rendering

Range Profiler (OpenGL & D3D)

DX12 Serialized Captures

September, 2016: 5.2 Final

ROADMAP

Q4 2016: 5.3
More VR Goodness Shader Perf Returns!
More Profiler Screens & Metrics MS Hybrid Supporp & UWP
The Future
Vulkan Profiling Pipeline Statistics

Shader Source Correlated Performance Compare API State/Profile Runs

Information
Path Rendering

Shader Debugging on Maxwel & Pascal
Your Feature Here...

Tell Me What You Need!?!?

NVIDIA’s OpenGL Leverage

[THE WAY |
<A NVIDIA., |

| IT’S MEANT TO BE PLAYED"|

Programmable
Graphics e
Tegra Fa
‘e /\\/\ Debugging with
Nsight

Quadro

&‘

Adobe Creative Cloud

OpenGL Codebase Leverage

Same driver code base supports multiple APIs

penGL

< ™
‘
QGoenGLES. Tvulican.
OpenGL for Embedded, Multi-vendor, explicit, low-level graphics

Mobile, and Web from Khronos

Still the One Truly Common & Open 3D API

ha
‘ , g .

r\\ Windows
Android
penG L
>
g - e
debian ©pen
Mac s “‘J('fedOI"Q9] U Mandriva O«
Li
OS X SOla rIS Inux
Solaris

FreeBSD

NVIDIA OpenGL in 2016 Provides
OpenGL’s Maximally Available Superset

2015 ARB extensions NVIDIA Multi-generation
GPU Initiatives

Path Rendering

OpenGL 4.5 Approaching Zero

Core Priver Overhead DirectX inter-og

ulkan inter-op

Legacy EXT & Other Pascal
Compatibility Extensions ES Enhancements Extensions
Khronos Standard

OpenGL Complete Full OpenGL Maxwell Expected Compatibility
Compatibility ES 3.2 Extensions NVIDIA Initiatives

GPU Generation Features

Background: NVIDA GPU Architecture Road Map

B

" Pascal

Mixed Precision
30 Memory
MNVLink

Our interest NVIDIA GPU architectures of interest: Maxwell & Pascal

OpenGL’s Recent Advancements

Q95

New ARB Extensions

3 standard extensions, beyond 4.5
» ARB_sparse_buffer

* ARB_pipeline_statistics_query

« ARB fransform feedback overflow_query

Maxwell Extensions

» Novel graphics features

R * 14 new extensions

2014 * Global lllumination & 2015 2016
Vector Graphics focus

OpenGL’s Recent Advancements

ARB_ES3_2_ compatibility (shading
language support)
ARB_parallel_shader_compile

New ARB 2015 Extension Pack
CG L » Shader functionality |
. 5 ARB_gpu_shader_int64

New ARB Extensions

3 standard extensions, beyond 4.5
» ARB_sparse_buffer

* ARB_pipeline_statistics_query

* ARB transform feedback overflow_query

Maxwell Extensions)
» Novel graphics features .
* 14 new extensions :
» Global lllumination &

Vector Graphics focus

ARB_shader_atomic_counter_ops
ARB_shader_clock
ARB_shader_ballot

. Graphlcs pipeline operation

ARB_fragment_shader_interlock
ARB_sample_locations
ARB_post_depth_coverage
ARB_ES3_2 compatibility (tessellation
bounding box + multisample line width

query)
ARB_shader_viewport_layer_array

* Texture mapping
functionality

ARB_texture_filter_minmax
ARB_sparse_texture2
ARB_sparse_texture clamp

2015

2016

OpenGL’s Recent Advancements

ARB_ES3_2_ compatibility (shading
language support)
ARB_parallel_shader_compile

New ARB 2015 Extension Pack
CG L - Shader functionality
o 5 ARB_gpu_shader_int64

New ARB Extensions

3 standard extensions, beyond 4.5 y
« ARB_sparse_buffer *
* ARB_pipeline_statistics_query

* ARB transform feedback overflow_query

* 14 new extensions :
* Global lllumination &
Vector Graphics focus

ARB_shader_atomic_counter_ops
ARB_shader_clock
ARB_shader_ballot

» Graphics pipeline operation

ARB_fragment_shader_interlock
ARB_sample_locations
ARB_post_depth_coverage
ARB_ES3_2 compatibility (tessellation
bounding box + multisample line width

query)
ARB_shader_viewport_layer_array

* Texture mapping

i Maxwell Extensions functionality
VEIRTE . + ARB_texture_filter_minmax
jri ° NOVG' graphICS featureS « ARB_sparse_texture2

ARB_sparse_texture clamp

2015

OpenGL SPIR-V Support

« Standard Shader

Intermediate Representation
ARB_gl spirv
Vulkan interoperability

Pascal Extensions

* Novel graphics features
* 5 new extensions
* Virtual Reality focus

2016

Maxwell OpenGL Extensions

Voxelization, Global Illumination, and Advanced Rasterization

Virtual Reality NV_conservative_raster
NV_viewport_array2 NV_conservative_raster_dilate
NV_viewport_swizzle NV_sample_mask_override_coverage
AMD_vertex_shader_viewport_index NV_sample_locations,
AMD_vertex_shader_[ayer now ARB_sample_locations

Vector Graphics extensions NV_fill_rectangle
NV_framebuffer_mixed_samples Shader Improvements
EXT_raster_multisample NV_geometry_shader_passthrough

NV_path_rendering_shared_edge NV_shader_atomic_fp16_vector
NV_fragment_shader_interlock,
now ARB_fragment_shader_interlock
EXT_post_depth_coverage,
now ARB_post_depth_coverage

Background: Viewport Arrays

Several Maxwell (and Pascal) extensions build Original conception

on Viewport Arrays Geometry shader could “steer” primitives into
any of 16 viewport array elements

of a primitive
Result: primitive is rasterized based on the
indexed viewport array state

standard by OpenGL 4.1
Feature of Direct3D 11

First introduced to OpenGL by
NV_viewport_array extension

Each viewport array element contains X, Yy Wy hy N X ys Wy h e
Viewport transform O | 00640480 0,1 0,0,640,480,0

Scissor box and enable
6400640480 0,1 0,0,640,480,0

ochih ange 2 | 6404806404800,1 0,0,640,480,0
Provides N mappings of clip-space to 1 0,0,640,200,

scissored window-space

—

15

Viewport array state

Viewport Arrays Visualized

vertex
shader

vertex
shader

vertex
shader

assembled
triangle

geometry
shader

Xy Yv Wy hv n,f Xs ¥Ys Ws hs s
0 0 0 640480 0,1 0,0,640,480,0
viewport index = 0 1 640 0 640480 0,1 0,0,640,480,0
l 2 640 480 640 480 0,1 0,0,640,480,0
15
viewport index = ::
l : :
—>
view L viewport & | scissored
frustum depth range | :
. N rasterizer
viewport index = 2 C|Ipplng transform

l/

geometry
shader
primitive
output stream
(3 triangles)

resulting framebuffer

Viewport Index Generalized to Viewport Mask

Geometry shaders & viewport index
approach proved limiting...

Common use of geometry shaders: view
replication
One stream of OpenGL commands - draws N
views
But inherently expensive for geometry
shader to replicate N primitives

Underlying issue: one thread of execution
has to output N primitives

First fix

Replace scalar viewport index per primitive
with a viewport bitmask

Viewport mask does the primitive
replication
Viewport mask lets geometry shader output
primitive to all, some, or none of viewport
indices
Examples

OxFFFF would replicate primitive 16 times,
one primitive for each respective viewport
index

0x0301 would output a primitive to viewport
indices 9, 8, and 0

Geometry Shader Allowed to
“Pass-through” of Vertex Attributes

Geometry shaders are very general!

1 primitive input ->
N primitives output, where N is capped but still
dynamic

input vertex attributes can be arbitrarily
recomputed

Not conducive to executing efficiently

Applications often just want 1 primitive in >
constant N primitives out

with NO change of vertex attributes

though allowing for computing & output of per-
primitive attributes

NV_geometry_shader_passthrough supports
a simpler geometry shader approach

Hence more efficient

Particularly useful when viewport mask
allows primitive replication

Restrictions
1 primitive in, 1 primitive out
BUT writing the per-primitive viewport mask

can force replication of 0 to 16 primitives,
one for each viewport array index

No modification of per-vertex attributes

Allowances
Still get to compute per-primitive outputs

Examples: viewport mask and texture array
layer

Analogy for Geometry Shader
“Pass-through” of Vertex Attributes

Efficient, low touch Slower, high touch

Fully general,
anyone can
use this line

Requires good
behavior, many
restrictions apply

TSA Pref

Enter Here

Geometry shader just computes

per-primitive attributes and passes along primitive Full service geometry shader
“Pass-through” of vertex attributes
means geometry shader cannot modify them

Example Pass-through Geometry Shader
Simple Example: Sends Single Triangle To Computed Layer

Tayout(triangles) 1in;
Tayout(triangle_strip) out;
Tayout(max_vertices=3) out;

in Inputs {
vec2 texcoord;
vec4 basecColor;

} v_in[];

out outputs {
vec2 texcoord;
vec4 basecolor;

s

void main() {
int Tayer = compute_layer(); // function not shown
for (int i =0; i < 3; i++) {
gl_Position = gl_in[i].gl_Position;
texcoord = v_in[i].texcoord;
baseColor = v_in[i].baseColor;
gl_Layer = layer;
Emitvertex();
h
3

BEFORE: Conventional geometry shader (slow)

#extension GL_NV_geometry_shader_passthrough : require

Tayout(triangles) 1in;
// No output primitive layout qualifiers required.

// Redeclare gl_Pervertex to pass through "gl_Position".
Tayout(passthrough) in gl_Pervertex {

vec4 gl_Position;
};
// Declare "Inputs" with "passthrough”™ to copy members attributes
Tayout(passthrough) in Inputs {

vec2 texcoord;

vec4 basecColor;

};
// No output block declaration required

void main() {
// The shader simply computes and writes gl_Layer. We don't
// loop over three vertices or call EmitVertex().
gl_Layer = compute_Tlayer();

}

AFTER: Passthrough geometry shader (fast)

Outputting Layer Allows Layered Rendering

Allows Rendering to 3D Textures and Texture Arrays

Example: Bind to particular level of 2D texture array with glFramebufferTexture
Then gl_Layer output of geometry shader renders primitive to designated layer (slice)

Texture array index for texturing, or gl_Layer for layered rendering

Example
2D texture
array with
5 layers

Mipmap level index

Aside: Write Layer and Viewport Index
from a Vertex Shader

Originally only geometry shaders could
write the gl_Viewportindex and gl_Layer
outputs

Disadvantages

Limited use of layered rendering and
viewport arrays to geometry shader

Often awkward to introduce a geometry
shader for just to write these outputs

GPU efficiency is reduced by needing to
configure a geometry shader

AMD_vertex_shader_viewport_index
allows gl_Viewportindex to be written from
a vertex shader

AMD_vertex_shader_layer allows gl_Layer
to be written from a vertex shader

Good example where NVIDIA adopts vendor
extensions for obvious APl additions
Generally makes OpenGL code more

portable and life easier for developers in the
process

Further Extending Viewport Array State with
Position Component Swizzling

Original viewport array state
viewport transform
depth range transform
scissor box and enable
XV yV WV hV n’f XS yS WS hS eS XSWySWZSWWWS
Maxwell extension adds new state 0
four position component swizzle modes
one for clip-space X, Y, Z, and W

00128 128 0,1 0,0,128,128,0 X+,y+,z+,w+

00128128 0,1 0,0,128,128,0 y+z+x+w+
2 | 00128128 0,0 0,0,128,128,0 z+x+y+w+

—

Eight allowed modes
GL_VIEWPORT_SWIZZLE_POSITIVE_X_NV o
GL_VIEWPORT_SWIZZLE_NEGATIVE_X_NV 15
GL_VIEWPORT_SWIZZLE_POSITIVE_Y_NV
GL_VIEWPORT_SWIZZLE_NEGATIVE_Y_NV
GL_VIEWPORT_SWIZZLE_POSITIVE_Z_NV
GL_VIEWPORT_SWIZZLE_NEGATIVE_Z_NV
GL_VIEWPORT_SWIZZLE_POSITIVE_W_NV
GL_VIEWPORT_SWIZZLE_NEGATIVE_W_NV

Reminder of Cube Map Structure Q

' »
\
kA
¥,

Cube map is essentially 6 images F | |

Six 2D images arranged like the faces of a
cube

+X, -X, +Y, =Y, +Z, -Z
Logically accessed by 3D (s,t,r) un-
normalized vector
Instead of 2D (s,t)
Where on the cube images does the vector

1
|
|
I
“poke through”? %] +1
That’s the texture result X _L"—rg;_{ L™
S " I
: . = y -1 :
Interesting question S :
. . I
Can OpenGL efficiently render a cube . T
map in a single rendering pass? = ¢ /

Example of Cube Map Rendering

Example of Cube Map Rendering

Faces Labeled and Numbered by Viewport Index

-— -
’— —

Layer to Render Can Be
Relative to Viewport Index

Geometry shader can “redeclare” the layer to be relative to the viewport index

GLSL usage
Tayout(viewport_relative) out highp int gl_Layer;

After viewport mask replication, primitive’s gl_Layer value is biased by its viewport index
Allows each viewport index to render to its “own” layer

Good for single-pass cube map rendering usage
Use passthrough geometry shader to write Ox3F (6 bits set, views 0 to 5) to the viewport mask

Usage: gl_viewportMask[0] = Ox3F; // Replicate primitive 6 times

Set swizzle state of each viewport index to refer to proper +X, -X, +Z,-Y, +Z, -Z cube map faces
Requires NV_viewport_swizzle extension

Caveat: Force the window-space Z to be an eye-space planar distance for proper depth testing
Requires inverse W buffering for depth testing

Swizzle each view’s “Z” into output W
Make sure input clip-space W is 1.0 and swizzled to output Z
Means window-space Z will be one over W or a planar eye-space distance from eye, appropriate for depth

testing
Requires to have floating-point depth buffer for W buffering

(Naive) Fast Single-pass Cube Map Rendering

With Maxwell’s NV_viewport_array2 & NV_viewport_swizzle

#define pX GL_VIEWPORT_SWIZZLE_POSITIVE_X_NV
#define nX GL_VIEWPORT_SWIZZLE_NEGATIVE_X_NV
#define pY GL_VIEWPORT_SWIZZLE_POSITIVE_Y_NV
#define nY GL_VIEWPORT_SWIZZLE_NEGATIVE_Y_NV
#define pzZ GL_VIEWPORT_SWIZZLE_POSITIVE_Z_NV
#define nZ GL_VIEWPORT_SWIZZLE_NEGATIVE_Z_NV
#define pW GL_VIEWPORT_SWIZZLE_POSITIVE_W_NV

g]DiSab1e(GL_SCISSOR_TEST);

glviewport(0, 0, 1024, 1024);
glviewportswizzleNnv(0, nz, ny,
glviewportswizzleNnv(l, pz, nvy,
glviewportswizzleNv(2, pX, pzZ,
glviewportswizzleNv(3, pX, nz,
glviewportswizzleNv(4, pX, nY,
glviewportswizzleNv(5, nX, nY,

Getting swizzles from this table from
the OpenGL 4.5 specification ensures
your swizzles matches OpenGL’s
cube map layout conventions

pX); // positive X face

nxX); // negative X face

pY); // positive Y face

nx); // negative Y face

pz); // positive z face

nz); // negative z face
8.13. CUBE MAP TEXTURE SELECTION
Major Axis Direction | Target te
+ry TEXTURE_CUBE_MAP_POSITIVE_X > Ty T
e TEXTURE_CUBE_MAP_NEGATIVE_X | T Ty T
+1‘y TEXTURE_CUBE_MAP_POSITIVE_Y Ty

-y

MAP_NEGATIVE

==
5w

—r,

+72

TEXTURE_CUBE_] | _Y
TEXTURE_CUBE_MAP_POSITIVE_Z

—r, | T

—r,

TEXTURE_CUBE_MAP_NEGATIVE_Z

z | Ty

Viewport array state configuration

Table 8.19: Selection of cube map images based on major axis direction of texture
coordinates.

#extension GL_NV_geometry_shader_passthrough
#extension GL_NV_viewport_array?2 require

require

Tayout(triangles) in;
// No output primitive Tayout qualifiers required.

Tayout(viewport_relative) out highp int gl_Layer;

// Redeclare gl_Pervertex to pass through "gl_Position".
Tayout(passthrough) in gl_Pervertex {
vec4 gl_Position;
s
// Declare "Inputs" with "passthrough" to copy members
attributes

Tayout(passthrough) in Inputs {
vec2 texcoord;
vec4 basecolor;

}s

void main() {
gl_viewportMask[0] = Ox3F;
gl_Layer = 0;

// Replicate primitive 6 times

}

Passthrough geometry shader
non-naive version would perform per-face culling in shader

GPU Voxelization, typically for Global lllumination

The Other Main Justification for Viewport Swizzle

Concept: desire to sample the volumetric coverage within a scene
|deally sampling the emittance color & directionality from the scene too
Input: polygonal meshes
Output: 3D grid (texture image) where voxels hold attribute values + coverage

Voxelization pipeline

Triangle Voxel

: Triangle Conservative ,
me Dominant mm 00" U Attributes
Axis Selection rojection R Computation

' proj

, % =)ﬁl
/ ,A NJ L!p’ﬁgj g A

\ J
A4

Passthrough geometry shader + viewport swizzle makes this fast

What’s Tricky About Voxelization

Skip rendering a 2D image with pixels... because we need a 3D result

Not your regular rasterization into a 2D image!

Instead voxelization needs rasterizing into a 3D grid
Represented on the GPU as a 3D texture or other 3D array of voxels

BUT our GPU and OpenGL only know how to rasterize in 2D
So exploit that by rasterizing into a “fake” 2D framebuffer

ARB_framebuffer_no_attachments extension allows rasterizing to
framebuffer lacking any attachments for color or depth-stencil

The logical framebuffer has a width & height, but no pixel storage
Approach: Rasterize a given triangle within the voxelization

region on an orthogonal axis direction where triangle has the
largest area (X, Y, or Z axis)

Then fragment shader does (atomic) image stores to store coverage
& attributes at the appropriate (x,y,z) location in 3D grid

Caveat: Use conservative rasterization to avoid missing features

Exact details are involved, but a fast geometry shader & viewport swizzling make Dominant Axis Selection efficient

What’s the Point of Voxelization?
Feeds a GPU Global Illumination Algorithm

Direct lighting feels over dark

What’s the Point of Voxelization?
Feeds a GPU Global Illumination Algorithm

Global illumination with ambient occlusion avoids the over-dark feel
3 , } ‘ -Z":_f_'_.:.-'j_."

What’s the Point of Voxelization?

Direct lighting feels over dark

What’s the Point of Voxelization?
Feeds a GPU Global Illumination Algorithm

Global Illumination with specular effects capture subtle reflections in floor too

What’s the Point of Voxelization?

Improving the Ambient Contribution on Surfaces

Flat ambient (no diffuse or specular directional lighting shown)

What’s the Point of Voxelization?

Improving the Ambient Contribution on Surfaces

Screen-space ambient occlusion improves the sense of depth a little

What’s the Point of Voxelization?

Improving the Ambient Contribution on Surfaces

True global illumination for ambient makes the volumetric structure obvious

Example Voxelization

Sample scene

Example Voxelization

Example Voxelization

Voxelized opacity

Example Voxelization

Voxelized opacity, downsampled

Example Voxelization

Voxelized opacity, downsampled twice

Complete Global lllumination is Complex

«E;ZQnVIDIAGAMEWDRKS About ~ GeForce ~ SHIELD » GRID Support~ Blog Q «'Member Area

Complete implementation
included -in NVIDIA VXGI VisualFX~ PhysX~ CoreSDK~ OptiX~ Samples~ Tools ~
Implements Voxel Cone Tracing
Part of Visual FX solutions

Implemented for DirectX 11

But all the underlying GPU
technology is available as OpenGL
extensions

NVIDIA VXGI is an implementation of a global illumination algorithm known as Voxel Cone Tracing. Global
illumination computes all lighting in the scene, including secondary reflections of light of diffuse and
specular surfaces. Adding Gl to the scene greatly improves the realism of the rendered images. Modern
real-time rendering engines simulate indirect illumination using different approaches, which include
precomputed light maps [offline Gl), local light sources placed by artists, and simple ambient light.

Platferms PC

Key Features

« Indirect diffuse interreflections Dependencies DX11
+ Specular effects

+ Area lights Engines

» Ambient ccclusion

+ Dynamic geometry and lights Kinks
+ Reduces content creation time

* Scalable

Conservative Rasterization

Mentioned on last slide as an extension used for global illumination

Easy to enable: glEnable (GL_CONSERVATIVE_RASTERIZATION_NV) ;

Additional functionality: Also provides ability to provide addition bits of sub-pixel precision
Conventional rasterization is based on point-sampling

Pixel is covered if the pixel’s exact center is within the triangle

Multisample antialiasing = multiple pixel locations per pixels

Means rasterization can “miss” coverage if sample points for pixels or multisample locations are
missed

Point sampling can under-estimate ideal coverage
Conservative rasterization
Guarantees coverage if any portion of triangle intersects (overlaps) the pixel square
Caveat: after sub-pixel snapping to the sub-pixel grid
However may rasterize “extra” pixels not overlapping pixel squares intersected by the triangle
Conservative rasterization typically over-estimates ideal coverage

Intended for algorithms such as GPU voxelization where missing coverage results in rendering
artifacts—and be tolerant of over-estimated coverage

Conservative Rasterization Visualized

Consider Conventional Rasterization of a Triangle

Green pixel squares have their pixel center covered by the triangle

Pink pixel squares intersect the triangle but do NOT have their pixel centered
covered

Pink pixel square indicate some
degree of under-estimated
coverage

Conservative Rasterization Visualized

Consider Conventional Rasterization of a Dilated Triangle

Push triangle edges away from the triangle center (centroid) by half-pixel width
Constructs a new, larger (dilated) triangle covering more samples

Notice all the pink pixel squares
are within the dilated triangle

Conservative Rasterization Visualized

Overestimated Rasterization of a Dilated Triangle

Yellow pixel square indicate pixels within dilated triangle but not intersected by
the original triangle

Notice all the yellow pixel squares
are within the dilated triangle

Caveats Using Conservative Rasterization

Shared edges of non-overlapping rasterized
triangles are guaranteed not to have either

Double-hit pixels
Pixel gaps

Rule is known as “watertight rasterization”
Very useful property in practice
Example: avoids double blending at edges

Coverage can be under-estimated; long,
skinny triangles might cover zero samples

Interpolation at a covered pixel center (or
sample locations when multisampling) are
guaranteed to return values within bounds
of primitives vertex attributes

Conservative rasterization makes no such
guarantee against double-hit pixels

Indeed double-hit pixels are effective
guaranteed along shared triangle edges

Algorithms using conservative rasterization
must be tolerant of over-estimated
coverage

Long, skinny triangles have more dilation
over-estimated coverage error

Interpolation can become extrapolation
when interpolation location is not within
the original primitive!

Conservative Rasterization Dilate Control

Provides control to increase the amount of conservative dilation when
GL_CONSERVATIVE_RASTERIZATION_NYV is enabled

Straightforward usage

glConservativeRasterParameterfNV (GL_CONSERVATIVE_RASTER_DILATE_NV, 0.5f);

0.5 implies an additional half-pixel offset to the dilation, so extra conservative
Actual value range is [0, 0.75] in increments of 0.25

Initial value is 0.0

Conservative Rasterization versus Polygon Smooth

OpenGL supports polygon smooth rasterization mode since OpenGL 1.0
Example usage: glEnable(GL_POLYGON_SMOQOTH)

glEnable(GL_CONSERVATIVE_RASTERIZATION_NYV) is different from
glEnable(GL_POLYGON_SMOOTH)?

Subtle semantic difference
NVIDIA implements GL_POLYGON_SMOOTH by computing point-inside-primitive
tests at multiple sample locations within each pixel square

So computes fractional coverage used to modulate alpha component post-shading

Typically recommended for use with glBlendFunc(GL_SRC_ALPHA_SATURATE, GL_ONE)
blending enabled

Polygon smooth should not over-estimate fractional coverage

Conservative rasterization works by dilation, as explained
Conservative rasterization does not compute a fractional coverage
So there is no modulation of alpha by the fractional coverage

Maxwell Vector Graphics Improvements

Simple idea: mixed sample counts

Improve antialiasing quality & performance
of vector graphics rendering

Every color samples gets N stencil/depth
samples

Notion of stencil-depth test changes

OLD notion: stencil & depth tests must
either fail or pass, Boolean result

NEW notion: multiple stencil & depth values
per color sample mean the stencil & depth
test can “fractionally pass”

GPU automatically modulates post-shader
RGBA color by fractional test result
Assumes blending configured

Similar to fractional coverage blending in
CPU-based vector graphics

Advantages

Works very cleanly with NV_path_rendering
Much reduced memory footprint

4 at same coverage quality
Much less memory bandwidth

Superior path rendering anti-aliasing quality,
up to 16x

Minimal CPU overhead

Maxwell provides super- efficient “cover”
operation

glCoverageModulationNV(GL _RGBA);

16:1 Fractional Stencil Test Example
Examine Fractional Stencil Test Results

1 color sample, 100% fractional

16 stencil samples stencil test
(16 of 16)

0% fractional
stencil test
(0 of 16)

87.5% fractional
stencil test

37.5% fractional (14 of 16)
stencil test

(6 of 16)

16:4 Fractional Stencil Test Example

100%, 100%, 100%, 100%
fractional stencil test

(4 of 4, 4 of 4,

4 0of 4,4 of 4)

0%, 0%, 0%, 0%

fractional stencil test
(0 of 4, 0 of 4,
0 of 4,0 of 4)

4 color samples,
16 stencil samples

Each color sample
separately modulated
and blended!
0%, 100%, 0%, 50%
fractional stencil test
(10f4,4 of 4,
0of4,10f4)

100%, 100%, 100%, 50%
fractional stencil test

(4 of 4,4 of 4,

4 0of 4,2 0f4)

Color samples per pixel

Mixed Sample Configurations

Coverage/stencil samples per pixel

- N
1:1 2:1 4:1 8:1 16:1
2:2 4:2 8:2 16:2
4:4 8:4 16:4
8:8 16:8

Mixed Samples Visualized

ooooooooooooooooooooooooooooo

LEGEND

. - = pixel region

O =sample location *

%--oo--oo--oo--oo--oo--oo--:

0]

CACACACAICRCHCHCY
CACARCHECH

CACACACAICRCHICHCH

Better Vector Graphics Performance

Tiger SVG Scene
GK204 (Kepler) vs.
GM204 (Maxwell2) vs.

GM204 with NV_framebuffer_mixed_samples
3.00 Kepler L

('\6 conventional 16x
W\ .

250 —e— GK104 16:16 N <

900 —a— GM20416:16 6(0 e :

: | el <
—— GM204 16:4 (‘\
150 —8— GM204 16:1 .Lag\'e / / Maxwell 2
: &

conventional 16x

1.00 /{,é/ |
0.50 +— /// Maxwell 2,16:4-&16:1

Faster & %2 memory footprint

Milliseconds per frame

0-00 T T T T T T T T

Window Resolution

All rendering shown at 16:1 quality

Fast, Flexible Vector Graphics Results

NV_framebuffer_mixed_samples + NV_path_rendering combined

BOB NEEDS A NEW HOUSE

USE TOOLS TO GUIDE HIM

B c IDEBAR g ason Is
o T\m Decoding Court’s Reasoning When No Re: -
spatches e
veal that Glvefl

st LIPTAK 1136 AM ET .
“the Supreme Court has recently addressed cases 01

great issues of the day withouteven & whisper of

ainese leaders
ereso 7
pposed to the prospect of 2

on
emocratic Hong, Kong that explanati
invade.
hey threatened to inva
= WHAT'S INT? . — .
In Trick-or-Treat Bags: Variety Spurs ge)
JORE NEWS ck-or e
‘ ing rd effec
! W&“Elmn& Lend oy makersare embracing “the smor]g‘:\:;leo |
h‘PWUH“M say Theyll in stuffing yourself at buffets. (Article p)
: utors
Appeal Pistorius w4 Comments
Sentence 1231 PMET
speed: Plan : .
e Exs‘s ONTHE BLOGS st Wor
f"ml‘ H::“Es 2 * Bits: Digital Lessons From the M‘se:::Eﬂ s
oyt Motherlade: Should a Breadwinner
. Washington School
Shooting Claims Another

Vietim 237 PH ET

Web pages §

— ting Down but Net Out, &
. estigating ns
I‘is‘e"“fg o 'Faylnr l:];,a:;\gned Chemical Royals Have Reaso!
Swift’s‘1989" Weapons in Iraq for Hope -

e sain from

AP The Assecisted Press v

SREAKING: Sherft Washington teen sent textinv
{unoh fo victms, then shal them at table

off from Mid-A
6:45 pm., ot
¢ East Coa

Acommercial rocket will blast
Regional Spaceportin Virginia at
spectaie visible up and down th

Spage.com

Tittor quarterly revenues beat analysts’ i
expoctations, but user growth appeared todi
\Wall Street, Stock is down 9 percent

& Times

The New

canpir: i e by Y aeriaic
e i A i illbe di he residence i B one ey
s et = i " e
i o Teexsmt - Chapter Il: The Intemal Prosperity In The Age OF The Amtonines. Part1l, %%
e 4 e twoh
.m enpite,an impariant
- The cdhe
A ; o a .
s - et don Temnic: (e
i ol copuratns, o s e pefct el of e capil e i, e el yeaf e sprne
- . ‘ e P b lavws. Frorm the oot of ity of Calubria, al the asives of aly y}_"""
o Bslares, o h ! il
forer o Spun, riscnsier i o M gusge 5 Therspublic
Cinia i G, o Candt, Wit Cyps, and st o polc e ¥ Madshe oy
e slnds o ¢ Tuskish e, whilst he ke rock of Mala ; p ! wen
’ i umanens. of Mania; .
e Aol s L, was i ot anisotian s ond wory 1"
ingdoms michtalmasy 20Nt seies of Roman sictores The patio family of e Cefns cnerged from Tusculum;and thelile.
y townof Ampnum climed the double o o eoducing Maris and Ccer, e fmuc o whom descrvod, fee
b > ” Romulus and Camills, tobe syl the Thind Foondes of Rome; and the e, e saving bis cauniy from e
g s e egormen s eSS of Cat Hoconlend with Athens for the palm of eloguence. 27 C
i y 8 Bt tamper, aswell a knowedge,) ——
deari He may mprssajuster 1 : wimg ! !
ot ot e copie inive G, oo Sl of orconsitutionl fcedom. In Erus, n Gree, 28 and in'Gaul, 29 it was the frt care ofhe s to Gisove hose |
mits of D 10 M of Cancr it evended n ength more o e vowsand * i

by division,they mightbe resised 1
tude or penerosity permited for a while fo hod & recarious

o tho bt e S i o3 Cioning o e

e revarded with a

Text, evenin i

d to the most distant

e nd g e
e s O o Ephnes, i s i n it o e TemparteZane, et 2 417 THws s, whom s st of g
ot ifysich dgres fsorthem ces nd st it wassupposed o contain ot st s o i o
s sqare i, o te ot prt o e andwellcubivaed . 9

": The Internal Prosperity In The Age Of The Antonites. .

W tesl ety OF T Roman Eniv, o The Age Of The Amtonines. invodaciegcok-

- L]
i s WA DErSPECIVE
o e porson of e gobe. I the seenthsummer ater s s of nedbyhioryand

s gesof vietory; and we

r;rmu;fpm mldml;am E}fdﬂ:t Hyphasis mli Wi rcssm;nmmry. S g e, e, st KL I 11 U UL 0 ASI, Ty ROusInd Komans were massacred i one &,
18 nice, Spread ther cruel devastations and transient empire from the Sea of China, by the cruel orders of Mithridates. 31 These voluntary exiles i

stand Gemany. 2 Buthe fim edifice of Roman power was ised and presered by he e st e e ok

.2 %09 D1

DD
DPETNA X2
o= s BT o

NVIDIA OpenGL Features Integrated in
Google’s Skia 2D Graphics Library

O
Skia is Google’s 2D graphics library s K_IJA
1

Primarily for web rendering .
. :) |
Used by Chromium, Firefox, and Google’s Chrome browser “ ~o e
Skia has support today for GPU-acceleration with OpenGL exploiting “ \
NV_path_rendering for vector graphics filling & stroking »
NV_framebuffer_mixed_samples for efficient framebuffer representation
EXT_blend_func_extended for extended Porter-Duff blending model
KHR_blend_equation_advanced for advanced Blend Modes \ \‘e,
\
\

\
N

Naive Mixed Sample Rendering Causes Artifacts

Easy to render paths with NV_path_rendering +
NV_framebuffer_mixed_samples
Reason: two-step “Stencil, then Cover”
approach guarantees proper coverage is fully

resolved in first “stencil” pass, then color is
updated in “cover” pass

Just works by design
But what if you want to render a simple convex
shape like a rectangle with conventional
rasterization & mixed samples?
Draw rectangle as two triangles
Into 16:1 mixed sample configuration

But fractional coverage modulation causes
seam along internal edge!

doubleiblending
crack

great 16x antialiasing
on external edges

4x pixel magnification

Examine the Situation Carefully

Two triangles A and B
Where A is 100% fine
Where B is 100% fine
External edge of A is properly antialiased
External edge of B is properly antialiased
PROBLEM is shared edge

Both triangles claim fractional coverage
along this edge

Causes Double Blending
Can we “fix” rasterization so either A or B,
but never both claim the shared edge?
YES, Maxwell GPUs can

Using NV_sample_mask_override_coverage
extension

A’s antialiased edge

100% A II double-blended
| o shared edge

B’s antialiased edge

Solution: Triangle A Claims Coverage or B Claims,
But not Both

Handle in fragment shader: by overriding the sample mask coverage

void main() {

gl FragColor = gl Color;

trivial
fragment shader

}

BEFORE: Simply output interpolated color

#version 400 compatibility

#extension GL_NV_sample_mask_override_coverage : require
layout(override_coverage) out int gl SampleMask[];

const int num_samples = 16;

const int all_sample_mask = Oxffff;

void main() {
gl_FragColor = gl_Color;

if (gl_SampleMaskIn[@] == all_sample_mask) {
gl SampleMask[@] = all_sample_mask;
} else {
int mask = 9;
for (int i=0; i<num_samples; i++) {
vec2 st;
st = interpolateAtSample(gl TexCoord[@].xy, i);
if (all(lessThan(abs(st),vec2(1))))
mask |= (1 << i);
}
int otherMask = mask & ~gl_SampleMaskIn[@];
if (otherMask > gl _SampleMaskIn[®@])
gl SampleMask[@] = ©;
else
gl SampleMask[@] = mask;
}
}

AFTER: Interpolate color + resolve overlapping coverage claims

Solution: Triangle A Claims Coverage or B Claims,
But not Both

Handle in fragment shader: by overriding the sample mask coverage

#version 400 compatibility
#extension GL_NV_sample_mask_override_coverage : require

Sample maSk Override Coverage layout(override_coverage) out int gl_SampleMask[];

5;[]‘)‘)()rf const int num_samples = 16;
const int all_sample_mask = Oxffff;

void main() {
void main() {

1 Frascol 1 ol gl_FragColor = gl_Color;
ragColor = olor;

girree & early

if (gl _SampleMaskIn[@] == all_sample_mask) {

gl SampleMask[@] = all_sample_mask; accept
} else { optimization
int mask = 9;
for (int i=0; i<num_samples; i++) {
vec2 st;
st = interpolateAtSample(gl TexCoord[@].xy, i);
additional if (all(lessThan(abs(st),vec2(1))))

mask |= (1 << i);
re-rasterization epilogue }
int otherMask = mask & ~gl_SampleMaskIn[@];
if (otherMask > gl SampleMaskIn[®@])
gl SampleMask[@] = ©;
else
gl SampleMask[@] = mask;
}
} }

BEFORE: Simply output interpolated color AFTER: Interpolate color + resolve overlapping coverage claims

NV_sample_mask_override_coverage

BEFORE: Fragment shaders can access sample mask for multisample rasterization
Indicates which individual coverage samples with a pixel are covered by the fragment
Fragment shader can also “clear” bits in the sample mask to discard samples

But in standard OpenGL, no way to “set” bits to augment coverage
Fragment’s output sample mask is always bitwise AND’ed with original sample mask

NOW: Maxwell’s NV_sample_mask_override_coverage allows overriding coverage!
The fragment shader can completely rewrite the sample mask
Clearing bits still discards coverage
BUT setting bits not previously set augments coverage

Powerful capability enables programmable rasterization algorithms
Like example in previous slide to fix double blending artifacts

Other Sample Mask Coverage Override Uses

Handles per-sample stencil test for high-quality sub-pixel clipping SKHA
These techniques integrated today into Skia -g

Works for general
quadrilaterals, Example:
even in drawn in 16x quality

perspective blended ellipses

Adapts well And even

to drawing circles rounded rectangles
and ellipses

Lacked time to talk about these extensions

Maxwell OpenGL Extensions
New Graphics Features of NVIDIA’s Maxwell GPU Architecture

Voxelization, Global lllumination, and Advanced Rasterization

Virtual Reality NV_conservative_raster
NV_viewport_array2 NV_conservative_raster_dilate
NV_viewport_swizzle NV_sample_mask_override_coverage
AMD_vertex_shader_viewport_index NV_sample_locations,
AMD_vertex_shader_layer now ARB_sample_locations

Vector Graphics extensions NV_fill_rectangle
NV_framebuffer_mixed_samples Shader Improvements
EXT_raster_multisample NV_geometry_shader_passthrough

NV_path_rendering_shared_edge NV_shader_atomic_fp16_vector

NV_fragment_shader_interlock,
now ARB_fragment_shader_interlock

EXT_post_depth_coverage,
now ARB_post_depth_coverage

" -"". Requ:res GeForce 950, Quadro M series, Tegra X1, or better

2015: In Review

OpenGL in 2015 ratified 13 new standard extensions

e Shader - . o

functionality @ © €
e« ARB_ES3_2_compatibility
» ES 3.2 shading language support
e ARB_parallel_shader_compile
e ARB_gpu_shader_inté64
e ARB_shader_atomic_counter_ops
e ARB_shader_clock
e ARB_shader_ballot

« Graphics pipeline
operation .
e ARB_fragment_shader_ mterlock
e ARB_sample_locations
e ARB_post_depth_coverage
e« ARB_ES3_2_compatibility
» Tessellation bounding box
o Multisample line width
e ARB_shader_viewport_layer_array

» Texture mapping functionality
\2@ % e ARB_texture_filter_minmax
e ARB_sparse_texture2
e ARB_sparse_texture_clamp

Need a Full Refresher on 2014 and 2015 OpenGL?

Honestly, lots of functionality in 2014 & 2015 if you’ve not followed carefully

<3 BESTOFGTC

NVIDIA

OpenGL for 2015
SG4121: OPENGL 4.5 UPDATE FOR & Kaigare Prineipal Systern Saftwars Eygiies
NVIDIA GPUS <A NVIDIA.

Mark Kilgard
Principal System Software Engineer, NVIDIA

Piers Daniell
Senior Graphi@gSoftware Engineer, NVIDIA

Available @

Pascal GPU OpenGL Extensions

Pascal has 5 new OpenGL extensions
Major goal: improving Virtual Reality support
Several extensions used in combination
NV_stereo_view_rendering
efficiently render left & right eye views in single rendering pass
NV_viewport_array2 + NV_geometry_shader_passthrough—discussed already
NV_clip_space_w_scaling
extends viewport array state with per-viewport re-projection
EXT_window_rectangles

fast inclusive/exclusive rectangle testing during rasterization
Multi-vendor extension supported on all modern NVIDIA GPUs

High-end Virtual Reality with two GPUs

New explicit NV_gpu_multicast extension

Render left & right eyes with distinct GPUs

VR SL|

Basic question

Why should the Virtual Reality (VR) image shown in a Head
Mounted Display (HMD) feel real?

Ignoring head tracking and the realism of the image itself...
just focused on the image generation

2 . .
corrected image lens display panel

Why HMD’s Image = Perception of Reality

HMD image = lens image

!

= |lens(screen)

(=

0

lens(lens-1(rendered image))

=

= rendered image

—

= pin hole image

—

= eye view

4

= perception of reality

by optics
lens image = lens(screen)

by warping
screen = lens-1(rendered image)

by composition
image = lens(lens-1(image))

by rendering model
rendered image = pin hole image

by anatomy
pin hole image = eye view

by psychology
eye view = perception of reality

\

Portion of
transformation
> involving GPU
rendering &
resampling

J

é‘
Twin goals
1. Minimize HMD
resampling error

2. Increase rendering
efficiency

Goal of Head Mounted Display (HMD) Rendering

Goal: perceived HMD image = visual perception of reality

Each image pair on HMD screen, as seen through its HMD lens, should be
perceived as images of the real world

Assume pin hole camera image = real world

Traditional computer graphics assumes this
Perspective 3D rasterization idealizes a pin hole camera
Human eye ball also approximately a pin hole camera

perceived HMD image = lens(screen image)
Function lens() warps image as optics of HMD lens does

screen image = lens'(pin hole camera image)
Function lens'() is inverse of the lens image warp

perceived image = lens(lens'(pin hole camera image))
pin hole camera image = eye view

Pin Hole Camera Ideal

Albrecht Diirer: Artist Drawing with Perspective Device

Normal computer graphics And people are good But HMDs have a
generally good at rendering at interpreting such non-linear image warping
“pin hole” camera images images as 3D scenes due to lens distortion

Lens Distortion in HMD

Head-mounted Display (HMD)
magnifies its screen with a lens

Why is a lens needed?

To feel immersive
Immersion necessitates a wide field-
of-view
So HMD lens “widens” the HMD
screen’s otherwise far too narrow
field-of-view
Assume a radial symmetric magnify
Could be a fancier lens & optics

BUT consumer lens should be
inexpensive & lightweight

Graph paper viewed & magnified through HMD lens

Example HMD Post-rendering Warp

Lens Performs a Radial Symmetric Warp

Adding circles to image shows distortion increases as the
radius increases

Original Image Overlaid with circles

Pin-hole Camera Image Assumptions

Assume a conventionally rendered perspective image
In other words a pin-hole camera image

r is the distance of a pixel (x,y) relative to the center of the image at
(0,0) so

r=afxt 4y
Theta is the angle of the pixel relative to the origin
X=rcost
y=rsinf

Assume pin hole camera image has maximum radius of 1
So the X & Y extent of the images is [-1..1]

Radius Remapping
for an HMD Magnifying Lens

A lens in an HMD magnifies the image
What is magnification really?

Magnifying takes a pixel at a given radius and “moves it out” to a larger radius in the
magnified image

In the HMD len’s image, each pin-hole camera pixel radius r is mapped to alternate

radius rengmage Essentially a Taylor series
/ approximating actual optics of lens

_ 2 4
rlens]mage o (1 T klr + k2r +) rdisplaylmage

This maps each pixel (x,y) in the pin-hole camera image to an alternate location

(X lensimage> Yi enslmage)
Without changing theta

rlens]mage
1+kr +kr*+..

F displaylmage ~—

Lens Function Coefficients for Google Cardboard

Lens coefficients k; & k, are values that can be measured
Additional coefficients (k;, etc.) are negligible

Coefficients for typical lens in Google Cardboard
k,=0.22
k,=0.26

Big question

Can we render so the amount of resampling necessary to invert a
particular lens’s distortion is minimized?

Radius Remapping
for Lens Matched Shading (LMS)

Assume a conventionally rendered
perspective image
In other words a pin-hole camera image

r is the distance of a pixel (x,y) relative to
the center of the image at (0,0) so

r=\/x2+y2

Theta is the angle of the pixel relative to
the origin

X=rcosd
y=rsinf

OLD: Conventional “pin hold” camera rendering

O

LENS MATCHED
SHADING

Lens Matched Shading provides an alternate
radius ry s for the same pixel (X, s,V ms)

v

Fivs =

1+ p r‘cos (9‘ +p r‘sin (9‘
This maps each pixel (x,y) to an alternate

location
Without changing theta

X g =y COSO
Yims = Vius sin ¢/

NEW: Lens Matched Shading rendering

Concentric circles in pin hole camera view gets “squished” by inverse lens transform

HMD’s Inverse Lens Warp

_ ensimage
1 — 2 4 -
TS Nkt + k20

Lz
\~
==

/8

pin hole camera view
(conventionally rendered image)

inverse lens warp view
(HMD screen)

Lens Matched Shading

Concentric circles in pin hole camera view gets “projected” towards origin

1 . 1
. _ r
s 1+pr‘cos 9‘ +pr‘sin 49‘
0:5 0.5
05 0 05 | g 05 0 0ls
05 p = 0.26007 05
- -1
pin hole camera view Lens Matched Shading

(rendered framebuffer image)

Complete Process of
Lens Matched Shading

while different, these two images
are “well matched” so warp between
them minimizes pixel movement and resampling

/N

ideal - rendered - lens warped image as
pin hole image image - perceived
camera view with lens matched viewed through

shading HMD lens

What is Optimal Value for p?

A reasonable measure of optimality is root mean square error of difference between
LMS and inverse lens warp radii over entire lens

So what p minimizes this integral for a particular lens’s coefficients

27

1 r d 2 drd@
M‘ 1+ kr? +k,2r* 1+ pricosé|+ prlsing e

When k,=0.22 & k,=0.26, optimal p = 0.26007

Matched Overlap of Lens Matched Shading
and Lens Warped Image

ky = 0.22
k, = 0.26

p = 0.26007

45

Root Mean Square (RMS) error = 0.0598

Much Worse Overlap of Conventional
Projection and Lens Warped Image

1

05|

ky = 0.22
k, = 0.26

p=0

45|

Root Mean Square (RMS) error = 0.273

Advantages of Lens Matched Shading

What is rendered by GPU is closer (less error) to what the HMD needs
to display than conventional “pin hole” camera rendering

Means less resampling error
There’s still a non-linear re-warping necessary
However the “pixel movement” for the warp is greatly reduced

Another advantage: fewer pixels need be rendered for same wide
field of view

Also want application to render left & right views with LMS in a single
efficient rendering pass

Single-eye Scene

m/

Simple 3D scene

Stereo Views of Same Scene

e ¥
.,

‘ i/l

S |l
> =
V|

4

Left and Right eye view of same simple scene

Two scenes are slightly different if compared

Swapped Stereo Views

Right and Left (swapped) eye view of same simple scene

Two scenes are slightly different if compared

Image Difference of Two Views

Left eye view Right eye view

Clamped difference image

Lens Matched Shading Lens marcHeD
SHADING

Same left & right eye view but rendered with w scaling

Lens Matched Shading o>

Quadrants LENS MATCHED
SHADING

Same left & right eye view but rendered with w scaling
Each quadrant gets different projection to “tilt to center”

Visualization of Lens Matched Shading Rendering

Warped Lens Matched Shaped

o

_
=

' -
— 2-

Warped version of lens shading to match HMD lens

Lens Matched Shading
with Window Rectangle Testing

‘? ‘a i

'2 ~

Same Lens Matched Shading but with EXT_window_rectangles
Nothing in black corners is shaded or even rasterized

Lens Matched Shading
with Window Rectangle Testing

Nothing in black corners is shaded or even rasterized

Yellow lines show overlaid 8 inclusive window rectangles
Same 8 window rectangles “shared” by each view’s texture array layer

Standard OpenGL Per-fragment Operations

Fragment

(or sample) Pixel Scissor Multisample Alpha

+ Ownership Test Fragment Test

Associated Test Operations (RGBA only)
Data

. Occlusion Depth Buffer Stencil

Blending Query Test Test
Framebuffer Framebuffer --= Framebuffer--

SRGEB . - . To
Conversion Dithering Logicop Framebuffer

Framebuffer --

NEW Window Rectangles Test in Per-fragment
Operations

Window
(E:aszr:::ﬂ;) Pixel Scissor Multisample Alpha
+ ——p»] Ownership ReCtangleS — Test Fragment Test
Associated Test Operations (RGBA only)
Data Test

/

NEW . Occlusion Depth Buffer - Stencil
Blending —— Query g Test Test
stage
A
Framebuffer Framebuffer - Framebuffer-=
. SRGEB 3] Dithering =] Logicop To

Conversion Framebuffer

Framebuffer -=

Straightforward API

glWindowRectanglesEXT(GLenum mode, GLsizei count, const GLint rects[]);
mode can be either GL_INCLUSIVE_EXT or GL_EXCLUSIVE_EXT
count can be from 0 to maximum number of supported window rectangles
Must be at least 4 (for AMD hardware)
NVIDIA hardware supports 8
Rectangles allowed to overlap and/or disjoint
Each rectangle is (x,y,width,height)
width & height must be non-negative
Initial state
GL_EXCLUSIVE_NYV with zero rectangles

Excluding rendering from zero rectangles means nothing is discarded by window
rectangles test

Lens Matched Shading
with Window Rectangle Testing

Nothing in black corners is shaded or even rasterized

Yellow lines show overlaid 8 inclusive window rectangles
Same 8 window rectangles “shared” by each view’s texture array layer

Warped Lens Matched Shading

with Window Rectangle Testing during Rendering

|ldentical as “Lens Matched Shading” despite corners not being
rasterized because corners don’t contribute to warped version

Warped Lens Matched Shading

with Win. Rect. Testing during Rendering & Warping

B

-

Same prior image, but warp now uses window rectangles

Avoids wasting time warping corners not visible through lens

Visualizing Warp Window Rectangles

Point: Window rectangle testing used TWICE
#1 during Lens Matched Shading rendering pass
#2 during warping pass

VR Rendering Pipeline Pa.sc_:al dogs all _this
efficiently in a single

LMS Left Eye View Warped Left Eye View rendering pass!

8 viewports, 1 pass

& Displayed within HMD

kMS Right Eye View , Werped Right Eye VlewJ

. . Y
Single Ren%rmg Pass i i i Perception to user is linear rendering
Single Pass Stereo + Drawn with Single Triangle
Lens Matched Shading + Fragment Shader Warping HMD lens “undoes” warping to provide a

Window Rectangle Testing Window Rectangle Testing perceived wide field-of-view

OpenGL Extensions Used in LMS VR Pipeline

Allows vertex shader to output two clip-space fii‘fi"

SINGLE PASS
STEREO

positions
(X17y’Z’W) and (XZ,y’Z’W)

Results in TWO primitives
one for left eye & one for right eye

New GLSL built-ins

gl_SecondaryPositionNV
Like gl_Position but for “second eye’s view”
gl_SecondaryViewportMaskNV[]
ije gl_ViewportMaskNV[] but for “second eye’s
view”
Also can steer primitives to different texture
array slices

layout(secondary_view_offset = 1) int gl_Layer;

OpenGL Extensions Used in LMS VR Pipeline

Pascal’s NV_clip_space_w_scaling Extension

Adds a new set of state to viewport array elements

Viewport array state

Xy Yv Wy hv n,f Xs Ys Ws hs € XswYswlswWus AB
0 0010241024 0,1 0,0, 512,512,1 x+y+z+w+ -0.26,-0.26)
1 | 0010241024 01 5120, 5125121 y+z+xtw+ +0.26,-02.6 Four quadrants
2 for Lens Matched
0010241024 0,1 512,0, 512,512,1 z+x+y+w+ -0.26,-0.26 Shading
3 0010241024 0,1 512,512, 512,512,1 z+x+y+w+ +0.26,+0.26
w’
15
~ o’ U J | ¢ J
. ol h 4 Y
standard viewport array state swizzle state = NEW w scaling

Each viewport index can recompute clip spaceasw=w+Ax+By

Example Lens Matched Shading Rendered Image

A=-0.2, B=+0.2 A=+0.2,B=+0.2

A=-0.2, B=-0.2 A=+0.2, B=-0.2
Example image

More Information on

NVIDIA Virtual Reality GPU Support
Get the VRWORKS 2.0 SDK

Growing Software Development Kit (SDK) for
Virtual Reality

Focus on GPU efficiency
Whitepapers and sample code

Both OpenGL and Direct3D supported

https://developer.nvidia.com/vrworks

p <
> - >

LENS MATCHED SINGLE PASS
CHADING STEREQ

Still More Pascal OpenGL Extensions

NVX_blend_equation_advanced_multi_draw_buffers

No API, simply relaxes error restriction so advanced blend modes from
KHR_blend_equation_advanced & NV_blend_equation_advanced work with more than
1 color attachment

process colors optional spot colors

Important for CMYK rendering P A
NV_conservative_raster_pre_snap_triangles [€ %@ I HE
—

More Conservative Rasterization control
?ﬁ@ %%-E
2D texture array

Allows conservative rendering dilation
prior to sub-pixel snapping

NV_shader_atomic_float64 Yo e T el
Atomic shader operations on — T D B ED

d ou b le - p reC] S'| on va l ues texture array slice 0 texture array slice 1 texture array slice 2

mandatory for CMYK optional for =2 spot colors

CYMK color space rendering with multiple color attachments

OpenGL extension exposing Khronos intermediate
language for parallel compute and graphics

New standard Khronos extension for OpenGL
Just announced! July 22, 2016

Allows compiled SPIR-V code to be passed directly to OpenGL driver
Accepts SPIR-V output from open source Glslang Khronos Reference compiler

Other compilers can target SPIR-V too

(SPIRW + QrenGL

SPIR-V Ecosystem

Khronos has open sourced
these tools and translators

SPIR.

*SPIR-V
*Khronos defined and controlled
cross-APIl intermediate language
*Native support for graphics
and parallel constructs
*32-bit Word Stream
*Extensible and easily parsed
*Retains data object and control
flow information for effective
code generation and translation

Other
Intermediate
Forms

Third party kernel and
shader Languages

Open source C++

front-end released
G LS L https://github.com/KhronosGroup/SPIR/tree/spirv-1.1

\/

SPIR-V Magic # 0x07230203

SPIR-V Version 99

Builder's Magic # 0x051a00BB

=id= bound is 50

0

OpMemoryModel

Logical

GLSL450

LLVM to SPIR-V

OpEntryPoint

Bi-directional

Fragment shader

function <id= 4

Translator

<id> s 2

el | | VM

OpTypeFunction

<id= 15 3

refurn type <id= is 2

OpFunction

Result Type <id=> is 2

Result <id= is 4

0

Function Type <id= is 3

IHV Driver S5

Runtimes

OpenCL

New with
ARB gl spirv

Waikan. Wakan. ©penGL

NVIDIA’s SIGGRAPH Driver Update

NVIDIA historically releases a “developer” driver at SIGGRAPH with

support for all Khronos standard extensions announced at SIGGRAPH
This year too ©

Monday (July 25, 2016) NVIDIA will put out a new SIGGRAPH driver
ARB_gl_spirv
Major extension in terms of compiler infrastructure & shader support
EXT_window_rectangles
Updates to Pascal OpenGL extensions
For Windows and Linux operating systems

GLEW Support Available NOW
—i
GLEW = The OpenGL Extension Wrangler Library @;5"

Open source library
Pre-built distribution:
Source code:
Your one-stop-shop for API support for all OpenGL extension APIs

Just released GLEW 2.0 (July 2016) provides API support for
ARB_gl_spirv
EXT_window_rectangles
All of NVIDIA’s Maxwell extensions
All of NVIDIA’s Pascal extensions

All other NVIDIA multi-GPU generation initiatives
Examples: NV_path_rendering, NV_command_list, NV_gpu_multicast

Thanks to Nigel Stewart, GLEW maintainer, for this

NVIDIA OpenGL in 2016 Provides
OpenGL’s Maximally Available Superset

2015 ARB extensions NVIDIA Multi-generation
GPU Initiatives

Path Rendering

OpenGL 4.5 Approaching Zero

Core Priver Overhead DirectX inter-og

ulkan inter-op

Legacy EXT & Other Pascal
Compatibility Extensions ES Enhancements Extensions
Khronos Standard

OpenGL Complete Full OpenGL Maxwell Expected Compatibility
Compatibility ES 3.2 Extensions NVIDIA Initiatives

GPU Generation Features

D
@z Last Words
NVIDIA.

penGL

Lots of new OpenGL features in NVIDIA’s 2016 Driver
Highlights
OpenGL 2015 Khronos standard extensions all supported by NVIDIA

Maxwell’s features for
GPU Voxelization & Global Illumination
Vector Graphics
And Pascal supports all these features too
Pascal’s features for efficient Virtual Reality rendering
NVIDIA supports new ARB_gl_spirv extension
Provides shader compilation inter-operability for Vulkan and OpenGL

SIGGRAPH Paper Using OpenGL to Check Out

Harnesses OpenGL-based GPU
tessellation

Avoids the complex patch
splitting in current OpenSubdiv
approach

Wednesday, July 27
Ballroom C/D/E
3:45 to 5:55pm session

Efficient GPU Rendering of Subdivision Surfaces using Adaptive Quadtrees

Wade Brainerd* Tim Foley*

Manuel Kraemer
Activision NVIDIA NVIDIA

Henry Moreton Matthias Niefiner

NVIDIA Stanford University

Figure 1: In our method, a subdivision surface model (left) is rendered in a single pass, without a separate subdivision step. Each quad face
is submitted as a single tessellated primitive; a per-face adaptive quadtree is used to map tessellated vertices to the appropriate subdivided

Activision Publishing, Inc.

Abstract

We present a novel method for real-time rendering of subdivision
surfaces whose goal is to make subdivision faces as easy to ren-
der as triangles, points, or lines. Our approach uses standard GPU
tessellation hardware and processes each face of a base mesh inde-
pendently, thus allowing an entire model to be rendered in a single
pass. The key idea of our method is to subdivide the w, © domain of
each face ahead of time, generating a quadtree structure, and then
crthmit one teccallated nrimitive ner innut face By travercano the

face (middle). Qur approach makes tessellated subdivision surfaces easy to integrate into modern video game rendering (right). © 2014

1 Introduction

Subdivision surfaces [Catmull and Clark 1978; Loop 1987; Doo
and Sabin 1978] have been used in movie productions for many
years. They have evolved into a de facto industry standard sur-
face representation, due to the flexibility they provide in modeling.
With an increasing demand for richer images with more and more
visual detail, it is desirable to render such movie-quality assets in
real time, enabling the use of subdivision surfaces in both content
creation tools and interactive video eames. [deallv. we would like

