

Sharing Physically Based Materials Between Renderers with MDL

Jan Jordan Software Product Manager MDL

Lutz Kettner Senior Manager, Advanced Rendering and Materia

NVIDIA ARC

Agenda

Introduction to NVIDIA Material Definition Language MDL

Matching the appearance of a single material within different rendering techniques

Defining physically-based materials

Measured materials

MDL eco-system

Demo of the material exchange

Become part of the eco-system

Outlook

What is NVIDIA MDL?

The NVIDIA Material Definition Language (MDL)

is technology developed by NVIDIA ARC

to define *physically-based* materials

for its rendering solutions

central for *physically-based* rendering

B ♣ TZ 2012

Path Tracing

Iray Photoreal

..... all

4

m

100

courtesy of Delta Tracing

TOIR .

Iray Photoreal

Iray Photoreal		

Iray Photoreal

MDL Usage Example

Explorer Desk

Iray Photoreal See also http://vimeo.com/86594867

Iray 2015

Rendering Modes

Shares Scene Database and Material Description for a consistent look

Common Materials within easy to create material catalogues

Iray Interactive Ray Tracer, Direct Illumination

Iray Photoreal Path Tracer

Iray Interactive Ray Tracer, Direct Illumination Iray Realtime OpenGL Rasterizer

Traditional Shading Language Parts

Texturing

- Texture lookups
- Procedurals
- uv-transforms
- Projectors
- Noise functions
- Math functions
- Render state

Material Definition

- Glossy reflection
- Transparency
- Translucency

Material Implementation

- Light loops / Trace N rays
- OIT / ray-continuation
- Ray-marching

Procedural Programming Language

- Texture lookups
- Procedurals
- uv-transforms
- Projectors
- Noise functions
- Math functions
- Render State

- Glossy reflection
- Transparency
- Translucency

Renderer

Rasterizer

- Light loops
- OIT

Raytracer

Trace N rays

Pathtracer

Ray-marching

Procedural Programming Language

Procedural Programming Language

MDL is not a Shading Language

MDL defines what to compute, *not* how to compute it

- no programmable shading
- no light loops or access to illumination
- no trace call
- no sampling
- no camera dependence

Material Model

material				
surface bsdf scattering emission edf emission intensity	volumevdfscatteringscattering_coefficientabsorption_coefficient	<pre>geometry</pre>		
<pre>backface ior</pre>				
thin_walled				

MDL Elemental Distribution Functions

Bidirectional Scattering Distribution Functions

Diffuse Reflection

Diffuse Transmission

Simple Glossy

Backscattering Glossy

Specular Pure Reflection

Specular Reflection & Transmission

Measured BSDF

MDL Elemental Distribution Functions

Emissive Distribution Functions

Diffuse

Spot

IES Profile

Volume Distribution Functions

Anisotropic Absorption & SSS

Anisotropic + IOR & Internal Scattering

Anisotropic w/ Light

MDL Distribution Function Modifiers

Tint

Thin Film

Directional Factor

Measured Curve Factor

Distribution Function Combiners

Weighted Layer

MDL

Fresnel Layer Custom Curve Layer Measured Curve Layer

MDL Procedural Programming Language

- C-like language for function definitions
- Function results feed into material and function parameters
- "Shader graphs" are equivalent to function call graphs

MDL Practical examples

MDL Handbook mdlhandbook.com

Example

4 anisotropic glossy highlights + translucency

Measured Materials

Fast scan for believable materials

Quantitative measurements for predictive rendering

Spatially Varying (SV)BRDF

- Analytic material model
- Measurement drives model parameters

Practical SVBRDF Capture In The Frequency Domain, SIGGRAPH 2013 Miika Aittala and Jaakko Lehtinen, Aalto University, NVIDIA Research Tim Weyrich, University College London

BTF Measurement Technology from X-Rite Total Appearance Capture (TAC)

Dome TAC

TAC7 Prototype

Measurement stored in Appearance eXchange Format (AxF)
 Iray supports the base profile (SVBRDF representation) of AxF

Radiant Zemax: Imaging Sphere

Scanned BSDF

 Clear coat added with a specular BSDF layer

 Scratches added with another layer for a bump map

MDL Additional Benefits

Physically-based materials are an easy-to-use paradigm

Supports modern rendering algorithms

Allows simple compilers and early optimizations

Enables fast renderers, especially on parallel architectures

GPU friendly

Supports material catalogs

Light Path Expressions

MDL Complement Light Path Expressions

LPEs can select individual DF components

MDL - past, present and future

J<u>une 2011</u>

First Ideas, influence from mental ray shader API, MetaSL

<u>Jan 2013</u>

MDL 1.0, shipment with Iray 2013

<u>May 2014</u>

Made Specification public

2015

NVIDIA Iray plugins, DAZ 3d, Allegorithmic Substance Designer, NVIDIA essentials material library

MDL 1.3, editing workflows

May 2012

Kick-off of MDL Spec

<u>Jan 2014</u>

MDL 1.1, support for measured data Bunkspeed, Catia start using MDL

<u>Jan 2015</u>

MDL 1.2, resource handling, units

Support in mental ray, exposed in Autodesk 3ds Max, Maya

2016

Watch out for announcements @ Siggraph!

MDL in Commercial Products

Focus on Material exchange

Freely choose where to author material content

Become Part of the Eco-System

Integrate Iray

MDL is included

Write your own compiler

Based on the freely available MDL Specification

License the MDL SDK

MDL SDK can be licensed independently of Iray.

Become Part of the Eco-System Integrate Iray

MDL is included

Lightworks

NVIDIA's partner in bringing Iray to your application

Decades of experience helping companies with custom integrations

Become Part of the Eco-System

Write your own compiler

MDL Specification can be downloaded @

http://www.nvidia-arc.com/products/iray/mdl-materials.html

MDL conformance test suite, available October 2015

Syntactic conformance tests

Semantic conformance tests

Become Part of the Eco-System License the MDL SDK

MDL SDK can be licensed independently of Iray.

Features:

MDL 1.2

DB view on available definitions

DAG view on materials, several compilation modes

MDL editing features

Backends for compilation of texturing functions

PTX LLVM IR GLSL

Contact us for details on availability and licensing

...and enjoy MDL content

Learn to write your own materials

MDL Handbook

http://www.mdlhandbook.com/

30+ new pages since GTC 2015

Use content already available

Load MDL content from other applications

NVIDIA vMaterials

Library of initially 100+, verified materials

MDL in a Viewport Interpretation <-> JIT compilation

- 1. Ubershader in Iray Photoreal
- 2. On demand shader generation, example code
- Cross-compilation of MDL functions to GLSL coming in MDL SDK

MDL to GLSL Example Code

Takeaways

MDL Eco-system

Become part of the Eco-system

- MDL Specification
- MDL SDK
- MDL to GLSL Code Example
- MDL Conformance Test Suite

More Information

www.nvidia-arc.com \rightarrow Iray \rightarrow MDL

Demos and Talks at NVIDIA booth on the show floor