

Overview

- NVIDIA's role in visual computing development
- Tegra's architecture
- SHIELD
- Next generation
 - NVIDIA Works
- All that processing power.. What's next?
 - Next gen apps and games
 - Being efficient
 - Shared computing & convergence (blue-sky mining)

A Tale of Convergence

- Today's theme is "convergence"
- Today's theme is dedicated to Grah-Grah
- It all started for me, with the Mobiletronics Pocket Phone
 - Not a brick
 - But still the weight of a brick
 - No backlight
 - Brilliant ☺

NVIDIA's Role in Development

- Content & Technology Division
 - Ex-game developers, driver engineers, hardware architects
- We assist developers and enhance content
- 15 year heritage
- Result:
 - Better quality apps
 - More efficient apps
 - Interest in mobile from developers that may have overlooked it

Developing for Android

- Setting up an Android development environment can be tricky
- Android SDK, NDK, ANT, Eclipse, adb.. Grrr!
- Native debugging.. Double grrr!
- Is that gcc configuration quite right?

Tegra Android Development Pack

- **GET STARTED** in minutes NOT hours
- INSTALLS all tools required for Tegra Android

- CPU DEBUGGING with Nsight Tegra
- GPU DEBUGGING with PerfHUD ES
- OPTIMIZE applications with Tegra Profiler
- REFERENCE docs, samples & tutorials
- OPTIMIZED for Tegra Android development
- FLASHES Tegra DevKit with OS Image
- CONFIGURED for debugging and profiling
 - **INCLUDES** Kernel symbols and DS-5 support

http://developer.nvidia.com/develop4tegra

Native Code Samples

- Android lifecycle
 - Lifecycle can be tricky
 - Highly recommend using "Native Basic" as a base
- OpenGL ES
- Input device handling
 - Multitouch
 - Beware the stylus!
 - Use getToolType()
 - -- see http://goo.gl/eRdIC
 - Sensors
 - Gamepad

000:46.80

Tegra Developer Tools

Native Android Development Tools

Nsight Tegra

Visual Studio and Eclipse integrations
Full Android build management
Native Android CPU debugging
Breakpoints in both Java and Native

Maximize multi-core CPU utilization Quickly identify CPU "hot spots" Identify thread contention issues

Automated bottleneck analysis

Edit shaders at runtime

http://developer.nvidia.com/develop4tegra

TegraZone

- Around 5 million installs
- Monthly statistics:
 - Unique users ~500K/month
 - Unique pageviews ~4.5M
 - 50% of TegraZone titles have over 100,000 purchases/installs (25% > 500K)

Tegra's History

- NVIDIA historically is a GPU company
- Mid 2000's, NVIDIA started building mobile GPUs
- Purchased PortalPlayer in 2006
 - Tegra was the convergence of PortalPlayer's SoC technology and the core NVIDIA GPU technology
- Tegra 1 & Tegra 2 were the first (amazing) steps
 - Tegra 1 first SoC for NVIDIA, Tegra 2 first dual-core CPU
 - Innovating on mobile like the desktop, workstation & supercomputer
- GOAL: Enhance every pixel!

Tegra 3 = 4 + 1

- World's first quad-core ARM Cortex A9
- Still needed to be power efficient
- Debuted NVIDIA's "Companion Core"
 - One CPU core in LP process
 - Quad core complex in high speed silicon
 - OS transparent switch from single to quad

Tegra 4 Family

World's Fastest Mobile Processor

Tegra 4i ("Grey")

1st Integrated Tegra 4 LTE Processor

Smartphone

Superphone / Tablet

Quad CPU

NVIDIA GPU

Chimera*

Cortex A15, 4+1

72 Core

Optional with i500

Cortex A9 r4, 4+1

60 Core

Integrated i500

Mobile Processor, Ultrabook Performance

Tegra 4 vs Tegra 3 GPU stats

	Tegra 4/ Tegra 3
Vertex Shader	8x
Fragment ALU	8x
Pixel Rate	2.6x
Texture Rate	2.6x
Memory Rate	2.3x
Z-Kill Rate	1.3x
Triangle Rate	1.3x

Tegra 4 - 72 Core GPU @ 672 MHz 4 pixel pipes * 3 ALUs/pipe * 4 MADS/ALU + 6 VPEs * 4 MADS/VPE

Tegra 3 - 12 Core GPU @ 520 MHz
2 pixel pipes * 1 ALU/pipe * 4 MADS/ALU +
1 VPE * 4 MADS/VPE

Demo: Dead Trigger 2

Tegra 4 + Shadows

NVIDIA SHIELD

SHIELD Features

- Tegra 4 powered
- 5 inch 720p & multitouch display
- Console grade controller
- High speed Wi-Fi
- Full connectivity (HDMI, Miracast, USB, MicroSD, headphone)
- Tuned port base reflex speakers
- Pure Android (currently Jellybean)
- 3D dashboard

SHIELD Development Considerations

- Support landscape screen orientation
 - Don't assume device is a phone and lock to portrait based on DPI
- Don't *require* touch
 - UI useable with controller
 - Highlights for UI
- Test using HDMI
 - Is everything possible without getting up?
 - How does it look on a big screen?
- Controller is King!

Looking back at SHIELD

- NVIDIA's first large-scale consumer product
- Built with determination, sweat, tears & love
- Many lessons learned
 - Who needs a second USB port?

AVAILABLE ONLINE ONLI

Project Logan is coming!

- Project Logan is NVIDIA's next generation mobile processor
- Announced at GPU Technology Conference 2013
- Desktop level GPU features come to mobile
 - First time NVIDIA's acclaimed Kepler GPU comes to mobile
 - OpenGL 4.3 support (tessellation, GI, compute shaders)
 - CUDA compatibility

PC tech: a peak into the future of mobile

Demo: Infiltrator

FaceWorks

NVIDIA Works

Hair

Clothing

Particles

Destruction

HBAO

Ray Works

GI Works

TXAA

Demo: FaceWorks

What's Next?

- Great new graphical features
 - Desktop level graphical effects & post processing
 - Access to the NVIDIA Works suites
- CUDA and true compute shaders
 - Especially important for CV & AR
- Efficiency
 - Do more with less
 - Do the same with much less
 - ..let my battery last more than a day!

Future: Fun!

- Future mobile games
 - Convergence of games
 - More than just chat or auctions
 - "Tom Clancy's: The Division" by Ubisoft includes a companion app
- CV/AR
 - Games
 - Image manipulation (hats, goofy eyes etc)
 - Beautification

The Division with Companion App

Future: Safety

- Automotive
- Training & safety (eg engine maintenance)

Future: (Actually Interesting) AR

- Augmented Reality that looks real
- Current state of the art
 - Physically based refraction
 - Refraction of real world in virtual objects
 - Anti-aliased virtual objects
 - Photon base caustics
 - Light-source <u>estimation</u>
 - Depth of Field

See: High-Quality Reflections, Refractions, and Caustics in Augmented Reality and their Contribution to Visual Coherence

- P. Kán, H. Kaufmann (Vienna University of Technology)

Figure 1: Refractive virtual glass surrounded by the real environment. Note the correct refraction of the hand in the glass obtained by the reprojection method.

Figure 8: Comparison of rendering with different features. The scene contains a real red and yellow cube, a virtual refractive sphere and a virtual metal ring. (Top left) Rendering refraction and reflection using 1 ray per pixel and no caustic simulation at 27 fps. (Top right) Antialiasing added using 25 rays per pixel - 7 fps. (Bottom left) Caustics are enabled using 150K photons. Rendering speed is 3 fps. (Bottom right) Depth of Field effect is enabled. Frame rate is 2.5 fps. Differences in images can better be seen in closeup.

Future: Shared Computing

- The convergence of: wearable, mobile, personal & cloud
- Examples:
 - Oakley goggles / Google Glass
 - Phone
 - PC
 - Cloud
- CloudLight
 - Splits lighting & shading tasks for always-connected devices
 - NVIDIA spoke yesterday on CloudLight

CloudLight

The client renders direct light (~3 ms)

The server renders indirect light (~40ms)

Compress, transmit, combine, display

CloudLight

What the user sees

Future: Media Convergence

- Convergence of TV/movies, mobile apps & social media
- Choose your own adventure on a mass scale!
 - Companion app or monitor tweets
 - JIT Filming for TV series

In Closing

Questions?

- Andrew Edelsten
- http://developer.nvidia.com
- NVIDIA Booth @ SIGGRAPH