Multi-GPU Programming for Visual Computing
Wil Braithwaite - NVIDIA Applied Engineering
Talk Outline

- Compute and Graphics API Interoperability.
 - The basics.
 - Interoperability Methodologies & driver optimizations.
- Interoperability at a system level.
 - fine-grained control for managing scaling
- Demo.
- Peer-to-peer & UVA, NUMA considerations
- Scaling beyond one-to-one = single-compute : single-render
 - Enumerating Graphics & Compute Resources
 - many-to-many = Multiple-compute : multiple-render
NVIDIA Maximus Initiative

- **Mixing Tesla and Quadro GPUs**
 - Tight integration with OEMs and System Integrators
 - Optimized driver paths for GPU-GPU communication
Multi-GPU Compute+Graphics Use Cases

- **Image processing**
 - Multiple compute GPUs and a low-end display GPU for blitting

- **Mixing rasterization with compute**
 - Polygonal rendering done in OpenGL and input to Compute for further processing

- **Visualization for HPC Simulation**
 - Numerical simulation distributed across multiple compute GPUs, possibly on remote supercomputer
Compute/Graphics interoperability

- Setup the objects in the graphics context.
- Register objects with the compute context.
- Map / Unmap the objects from the compute context.
Code Sample - Simple buffer interop

- Setup and Registration of Buffer Objects:

```c
GLuint vboId;
cudaGraphicsResource_t vboRes;

// OpenGL buffer creation...
glGenBuffers(1, &vboId);
glBindBuffer(GL_ARRAY_BUFFER, vboId);
glBufferData(GL_ARRAY_BUFFER, vboSize, 0, GL_STREAM_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);

// Registration with CUDA.
cudaGraphicsGLRegisterBuffer(&vboRes, vboId, cudaGraphicsRegisterFlagsNone);
```
Code Sample - Simple buffer interop

- **Mapping between contexts:**

```c
float* vboPtr;

while (!done)
{
    cudaGraphicsMapResources(1, &vboRes, 0);

    cudaGraphicsResourceGetMappedPointer((void**)&vboPtr, &size, vboRes);
    runCUDA(vboPtr, 0);

    cudaGraphicsUnmapResources(1, &vboRes, 0);

    runGL(vboId);
}
```
Resource Behavior: Single-GPU

- The resource is shared. 😊
- Context switch is fast and independent on data size.
Mapping between contexts:

```c
float* vboPtr;

while (!done)
{
    cudaGraphicsMapResources(1, &vboRes, 0);
    cudaGraphicsResourceGetMappedPointer((void**)&vboPtr, &size, vboRes);
    runCUDA(vboPtr, 0);
    cudaGraphicsUnmapResources(1, &vboRes, 0);
}
runGL(vboId);
```

Context-switching happens when these commands are processed.
Timeline: Single-GPU

- Driver-interop
Code Sample - Simple buffer interop

- Adding synchronization for analysis:

```c
float* vboPtr;

while (!done)
{
    cudaGraphicsMapResources(1, &vboRes, 0);
    cudaMemcpy(&vboPtr, &size, vboRes);
    runCUDA(vboPtr, 0);
    cudaGraphicsUnmapResources(1, &vboRes, 0);
    cudaStreamSynchronize(0);
    runGL(vboId);
}
```
Timeline: Single-GPU

- Driver-interop, synchronous*
 - (we synchronize after map and unmap calls)

Synchronize after “map” waits for GL to finish before context-switch.

Synchronize after “unmap” waits for CUDA (& GL) to finish.
Resource Behavior: Multi-GPU

- Each GPU has a copy of the resource.
- Context-switch is dependent on data size, because driver must copy data.
Resource Behavior: Multi-GPU

- Each GPU has a copy of the resource.
- Context-switch is dependent on data size, because driver must copy data. 😞
Resource Behavior: Multi-GPU

- Each GPU has a copy of the resource.
- Context-switch is dependent on data size, because driver must copy data.
- **Driver-interop, synchronous**
 - SLOWER! (Tasks are serialized).

```
Resources are mirrored and synchronized across the GPUs
```

```
“map” has to wait for GL to complete before it synchronizes the resource.
```
Interoperability Methodologies

- **READ-ONLY**
 - GL produces... and CUDA consumes.
 - e.g. Post-process the GL render in CUDA.

- **WRITE-DISCARD**
 - CUDA produces... and GL consumes.
 - e.g. CUDA simulates fluid, and GL renders result.

- **READ & WRITE**
 - Useful if you want to use the rasterization pipeline.
 - e.g. Feedback loop:
 - runGL(texture) → framebuffer
 - runCUDA(framebuffer) → texture
Code Sample - WRITE-DISCARD

- CUDA produces... and OpenGL consumes:

```c
float* vboPtr;
cudaGraphicsResourceSetMapFlags(vboRes, cudaGraphicsMapFlagsWriteDiscard);

while (!done)
{
    cudaGraphicsMapResources(1, &vboRes, 0);
cudaStreamSynchronize(0);

cudaGraphicsResourceGetMappedPointer((void**)&vboPtr, &size, vboRes);
runCUDA(vboPtr, 0);

cudaGraphicsUnmapResources(1, &vboRes, 0);
cudaStreamSynchronize(0);

runGL(vboId);
}
```

Hint that we do not care about the previous contents of buffer.
Timeline: Single-GPU

- Driver-interop, synchronous\(^*\), WRITE-DISCARD

1. map \(^*\)
2. runCUDA
3. unmap \(^*\)
4. runGL

Context switch forces serialization.

Synchronize after “map” waits for GL to finish before context-switch.

Synchronize after “unmap” waits for CUDA (\& GL) to finish.
Timeline: Multi-GPU

- Driver-interop, synchronous*, WRITE-DISCARD

When multi-GPU, “map” does nothing.

Synchronize after “unmap” waits for CUDA & GL to finish.

Compute & render can overlap as they are on different GPUs.
Timeline: Multi-GPU

- Driver-interop, synchronous*, WRITE-DISCARD
 - if render is long...

```
1 2 3
```

```
map *
runCUDA
unmap *
runGL
```

```
CUDA: kernel
CUtoGL
```

```
GL: map *
CUtoGL
kernel
GL
```

```
GL: unmap *
```

“unmap” will wait for GL.
Driver-Interop: System View

Single-GPU

Multi-GPU
Manual-Interop: System View

Multi-GPU

compute-GPU

render-GPU

CUDA Context

Auxiliary CUDA Context

OpenGL Context

API Interoperability

CUDA memcpy

GPU 0

GPU 1
Manual-Interop

- Driver-Interop hides all the complexity
- but sometimes...
 - We don’t want to transfer all data
 - Kernel may only compute subregions.
 - We may have a complex system with multiple compute-GPUs and/or render-GPUs.
 - We have application specific pipelining and multi-buffering
 - May have some CPU code in your algorithm between compute and graphics.
cudaMalloc((void**)&d_data, vboSize);
cudaHostAlloc((void**)&h_data, vboSize, cudaHostAllocPortable);

while (!done) {
 // Compute data in temp buffer, and copy to host...
 runCUDA(d_data, 0);
 cudaMemcpyAsync(h_data, d_data, vboSize, cudaMemcpyDeviceToHost, 0);
 cudaStreamSynchronize(0);

 // Map the render-GPU’s resource and upload the host buffer...
 cudaSetDevice(renderGPU);
 cudaGraphicsMapResources(1, &vboRes, 0);
 cudaGraphicsResourceGetMappedPointer((void**)&vboPtr, &size, vboRes);
 cudaMemcpyAsync(vboPtr, h_data, size, cudaMemcpyHostToDevice, 0);
 cudaGraphicsUnmapResources(1, &vboRes, 0);
 cudaStreamSynchronize(0);
 cudaSetDevice(computeGPU);

 runGL(vboId);
}
Timeline: Multi-GPU

- Manual-interop, synchronous*, WRITE-DISCARD
cudaMalloc((void**)&d_data, vboSize);
cudaHostAlloc((void**)&h_data, vboSize, cudaHostAllocPortable);

while (!done) {
 // Compute data in temp buffer, and copy to host...
 runCUDA(d_data, 0);
 cudaMemcpyAsync(h_data, d_data, vboSize, cudaMemcpyDeviceToHost, 0);
 cudaMemcpyAsync(h_data, d_data, vboSize, cudaMemcpyDeviceToHost, 0);
 cudaStreamSynchronize(0);

 // Map the render-GPU's resource and upload the host buffer...
 cudaSetDevice(renderGPU);
 cudaGraphicsMapResources(1, &vboRes, 0);
 cudaGraphicsResourceGetMappedPointer((void**)&vboPtr, &size, vboRes);
 cudaMemcpyAsync(vboPtr, h_data, size, cudaMemcpyHostToDevice, 0);
 cudaMemcpyAsync(vboPtr, h_data, size, cudaMemcpyHostToDevice, 0);
 cudaGraphicsUnmapResources(1, &vboRes, 0);
 cudaSetDevice(computeGPU);
 // cudaMemcpyAsync(h_data, vboPtr, size, cudaMemcpyDeviceToHost, 0);

 runGL(vboId);
}
Timeline: Multi-GPU

- Manual-interop, **asynchronous**, WRITE-DISCARD
Timeline: Multi-GPU

- **Manual-interop, asynchronous, WRITE-DISCARD**
 - if render is long...

We are downloading while uploading!

Drifting out of sync!
Timeline: Multi-GPU (safe Async)

- Manual-interop, asynchronous, WRITE-DISCARD
 - if render is long...

Synchronization must also wait for HtoGL to finish
while (!done) {
 // Compute the data in a temp buffer, and copy to a host buffer...
 runCUDA(d_data, 0);
 cudaMemcpyAsync(h_data, d_data, vboSize, cudaMemcpyDeviceToHost, 0);
 cudaMemcpyAsync(vboPtr, h_data, size, cudaMemcpyHostToDevice, 0);
 cudaGraphicsUnmapResources(1, &vboRes, 0);
 cudaEventRecord(uploadFinished, 0);
 cudaSetDevice(computeGPU);
 runGL(vboId);
}

// Map the render-GPU’s resource and upload the host buffer...
// (all commands must be asynchronous.)
cudaSetDevice(renderGPU);
cudaGraphicsMapResources(1, &vboRes, 0);
cudaGraphicsResourceGetMappedPointer((void**)&vboPtr, &size, vboRes);
cudaMemcpyAsync(vboPtr, h_data, size, cudaMemcpyHostToDevice, 0);
cudaGraphicsUnmapResources(1, &vboRes, 0);
cudaEventRecord(uploadFinished, 0);
Timeline: Multi-GPU

- Manual-interop, WRITE-DISCARD, flipping CUDA
```c
int read = 1, write = 0;

while (!done) {
    // Compute the data in a temp buffer, and copy to a host buffer...
    cudaStreamWaitEvent(custream[write], kernelFinished[read]);
    runCUDA(d_data[write], custream[write]);
    cudaEventRecord(kernelFinished[write], custream[write]);
    cudaStreamWaitEvent(custream[write], uploadFinished[read]);
    cudaMemcpyAsync(h_data[write], d_data[write], vboSize, cudaMemcpyDeviceToHost, custream[write]);
    cudaEventRecord(downloadFinished[write], custream[write]);

    // Map the renderGPU’s resource and upload the host buffer...
    cudaSetDevice(renderGPU);
    cudaGraphicsMapResources(1, &vboRes, glstream);
   (cudaGraphicsResourceGetMappedPointer((void**)&vboPtr, &size, vboRes);
    cudaStreamWaitEvent(glstream, downloadFinished[read]);
    cudaMemcpyAsync(vboPtr, h_data[read], size, cudaMemcpyHostToDevice, glstream);
    cudaGraphicsUnmapResources(1, &vboRes, glstream);
    cudaEventRecord(uploadFinished[read], glstream);
    cudaStreamSynchronize(glstream); // Sync for easier analysis!
    cudaSetDevice(computeGPU);

    runGL(vboId);
    swap(&read, &write);
}
```

Timeline: Multi-GPU

- Manual-interop, WRITE-DISCARD, flipping CUDA
 - if render is long...
Timeline: Multi-GPU

- Manual-interop, WRITE-DISCARD, flipping CUDA & GL
 - if render is long... we have a problem.
Timeline: Multi-GPU

- Manual-interop, WRITE-DISCARD, flipping CUDA & GL
 - Use the GL context for upload.
Visual Studio Nsight
Demo

render-GPU = 1 (Quadro K5000) / compute-GPU = 0 (QUAD)

GL duration = 24.98 ms
CUDN duration = 20.00 ms
Download duration = 3.50 ms (20.00 MB)
Upload duration = 3.46 ms (20.00 MB)

Press 'R' to run all benchmarks.
Demo - results

- runCUDA (20ms)
- runGL (10ms)
- copy (10ms)

Single-GPU
- Driver-interop = 30ms

Multi-GPU
- Driver-interop = 36ms
- Async Manual-interop = 32ms
- Flipped Manual-interop = 22ms

- Too large data size makes multi-GPU interop worse.
- Overlapping the download helps us break even.
- But using streams and flipping is a significant win!
Some final thoughts on Interoperability.

- Similar considerations are applicable when OpenGL is the producer and CUDA is the consumer.

- Use `cudaGraphicsMapFlagsReadOnly`

- Avoid synchronized GPUs for CUDA.
 - Watch out for Windows’s WDDM implicit synchronization on `unmap`!

- CUDA-OpenGL interoperability can perform slower if OpenGL context spans multiple GPUs.

- Context switch performance varies with system config and OS.
Scaling Beyond Single Compute+Graphics

- **Scaling compute**
 - Divide tasks across multiple devices
 - When data does not fit into single GPU memory - Distribute data

- **Scaling graphics**
 - Multi-displays, Stereo
 - More complex rendering e.g. raytracing

- **Higher compute density**
 - Amortize host or server costs eg CPU, memory, RAID shared with multiple GPUs
Multi-GPU Image Processing - SagivTech
Multiple Compute : Single Render GPU

Compute Devices

- GPU 0
 - CUDA Context

- GPU 1
 - CUDA Context

- GPU 2
 - Aux CUDA Context
 - OpenGL Context

Render Device

Explicit copies via host
- cudaMemcpyPeer
- P2P Memory Access
Unified Virtual Addressing (UVA)

- Easier programming with a single address space:
Peer-to-Peer (P2P) Communication

Direct Access
- GPU0 Memory
- GPU1 Memory
- Load / Store
- PCI-e

Direct Transfers
- GPU0 Memory
- GPU1 Memory
- cudaMemcpy()
- PCI-e

Eliminates system memory allocation & copy overhead
More convenient multi-GPU programming
NUMA/Topology Considerations

- Memory access is non-uniform.
 - Local GPU access is faster than remote (extra QPI hop)
 - This affects PCIe transfer throughput.
- NUMA APIs
 - Thread affinity considerations
- Pitfalls of set process affinity
 - Does not work with graphics APIs

Peer-to-Peer Configurations

Best P2P Performance Between GPUs on the Same PCIe Switch Eg K10 dual-GPU card (~11GB)

P2P Communication Supported Between GPUs on the Same IOH (~5GB)

P2P disabled over QPI – Copying staged via host (P2H2P)

P2P communication
- Linux or TCC only
- No WDDM
Peer-to-Peer Initialization

- `cudaDeviceCanAccessPeer(&isAccessible, srcGPU, dstGPU)`
 - Returns in 1st arg if \textit{srcGPU} can access memory of \textit{dstGPU}
 - Need to do this bidirectionally

- `cudaDeviceEnablePeerAccess(peerDevice, 0)`
 - Enables current GPU to access \textit{peerDevice}
 - Note that this is asymmetric!

- `cudaDeviceDisablePeerAccess`
 - P2P can be limited to a specific phase in order to reduce overhead and free resources
Peer-to-Peer Copy

- cudaMemcpyPeerAsync
 - Will fall back to staging copies via host for unsupported configurations or if peer-access is disabled.

- cudaMemcpyAsync
 - Using UVA, regular memory copies will also work.

NVIDIA CUDA Webinars - Multi-GPU Programming
cudaMalloc((void**)&d_data, vboSize);

while (!done) {
 // Compute data in temp buffer, and copy to host...
 runCUDA(d_data, 0);
 cudaStreamSynchronize(0);

 // Map the render-GPU’s resource and upload the host buffer...
 cudaSetDevice(renderGPU);
 cudaGraphicsMapResources(1, &vboRes, glstream);
 cudaGraphicsResourceGetMappedPointer((void**)&vboPtr, &size, vboRes);
 cudaMemcpyPeerAsync(vboPtr, renderGPU, d_data, computeGPU, size, glstream);
 cudaGraphicsUnmapResources(1, &vboRes, glstream);
 cudaStreamSynchronize(glstream);
 cudaSetDevice(computeGPU);

 runGL(vboId);
}
Timeline: Multi-GPU

Copy is faster, but still serialized with render.
int read = 1, write = 0;

while (!done) {
 // Compute the data in a temp buffer, and copy to a host buffer...
 cudaStreamWaitEvent(custream[write], peerFinished[read]);
 runCUDA(d_data[write], custream[write]);
 cudaEventRecord(kernelFinished[write], custream[write]);

 // Map the renderGPU’s resource and p2p copy the compute buffer...
 cudaSetDevice(renderGPU);
 cudaGraphicsMapResources(1, &vboRes, glstream);
 cudaGraphicsResourceGetMappedPointer((void**)&vboPtr, &size, vboRes);
 cudaStreamWaitEvent(glstream, kernelFinished[write]);
 cudaMemcpyPeerAsync(vboPtr, renderGPU, d_data[read], computeGPU, size, glstream);
 cudaGraphicsUnmapResources(1, &vboRes, glstream);
 cudaEventRecord(peerFinished[read], glstream);
 cudaStreamSynchronize(glstream); // Sync for easier analysis!
 cudaSetDevice(computeGPU);

 runGL(vboId);
 swap(&read, &write);
}
Timeline: Multi-GPU

- Manual-interop, synchronous*, P2P flipping, WRITE-DISCARD
Demo

render-GPU = 1 (Quadro K5000) / compute-GPU = 0 (G12U-1)

GL duration = 24.98 ms
G3D duration = 20.00 ms
Download duration = 3.10 ms (20.00 MB)
Upload duration = 3.46 ms (20.00 MB)

Press 'R' to run all benchmarks.
Peer-to-Peer Memory Access

- Sometimes we don’t want to explicitly copy but want access to entire space on all GPUs and CPU

- Already possible with linear memory with UVA, recent texture addition useful for graphics.

- Example - large dataset that can’t fit into 1 GPU memory
 - Distribute the domain/data across GPUs
 - Each GPU now need to access the other GPU’s data for halos/boundary exchange
Mapping Algorithms to Hardware Topology

Sharing texture across GPUs

- Kernel runs on device 0 accesses texture from device 1

```c
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>
#include <cuda.h>

__global__ void myKernel(...)
{
    float voxel0 = tex3D(tex0, u, v, w); // accesses gpu0
    float voxel1 = tex3D(tex1, u, v, w); // accesses gpu1 through p2p
}
```

```c
cudaSetDevice(0);
cudaMalloc3DArray(d0_volume, ...);
cudaSetDevice(1);
cudaMalloc3DArray(d1_volume, ...);
while (!done) {
    // Set CUDA device to COMPUTE DEVICE 0
    cudaSetDevice(0);
    cudaBindTextureToArray(tex0, d0_volume);
    cudaBindTextureToArray(tex1, d1_volume);
    myKernel <<<...>>> 
}
```
Scaling Graphics - Multiple Quadro GPUs

- Virtualized SLI case
 - Multi-GPU mosaic drive a large wall
- Access each GPU separately
 - Parallel rendering
 - Multi view-frustum eg Stereo, CAVEs

Hurricane Sandy Simulation showing multiple computed tracks for different input params - Image Credits: NOAA

Data Distribution + Render

GPU-0 GPU-1

Sort + Alpha Composite

GPU-2 GPU-3

Visible Human 14GB Texture Data
CUDA With SLI Mosaic

- Use driver interop with the current cuda device
 - Driver handles the optimized data transfer (Work in progress)
- The OpenGL context spans 2 cuda devices

```c
int glDeviceIndices[MAX_GPU];
int glDeviceCount;
cudaGLGetDevices(&glDeviceCount, glDeviceIndices, glDeviceCount, cudaGLDeviceListAll));
```

GL context

<table>
<thead>
<tr>
<th>OpenGL Enumeration with SLI</th>
<th>Cuda Enumeration</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0] = K5000</td>
<td>[0] = K20</td>
</tr>
<tr>
<td></td>
<td>[1] = K5000</td>
</tr>
<tr>
<td></td>
<td>[2] = K5000</td>
</tr>
</tbody>
</table>

glDeviceCount = 2
Specifying Render GPU Explicitly

- **Linux**
 - Specify separate X screens using `XOpenDisplay`

```c
Display* dpy = XOpenDisplay(":0."+gpu)
GLXContext = glxCreateContextAttribs(dpy, ...);
```

- **Windows**
 - Using `NV_GPU_AFFINITY` extension

```c
BOOL wglEnumGpusNV(UINT iGpuIndex, HGPUNV *phGPU)

For #GPUs enumerated {
    GpuMask[0]=hGPU[0];
    GpuMask[1]=NULL;
    //Get affinity DC based on GPU
    HDC affinityDC = wglCreateAffinityDCNV(GpuMask);
    setPixelFormat(affinityDC);
    HGLRC affinityGLRC = wglCreateContext(affinityDC);
}
```
Mapping Cuda ↔ Affinity GL Devices

- How to map OpenGL device to CUDA

 `cudaWGLGetDevice(int *cudaDevice, HGPUNV oglGPUHandle)`

- Don’t expect the same order

 - GL order is windows specific while CUDA is device specific

GL context

<table>
<thead>
<tr>
<th>GL Affinity Enumeration (with SLI)</th>
<th>Cuda Enumeration</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0] = K5000</td>
<td>[0] = K20</td>
</tr>
</tbody>
</table>

GL context

<table>
<thead>
<tr>
<th>GL Affinity Enumeration</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0] = K5000</td>
</tr>
<tr>
<td>[1] = K5000</td>
</tr>
</tbody>
</table>
Compute & Multiple Render

- GL_NV_COPY_IMAGE - Copy between GL devices
 - wglCopyImageSubData and glXCopyImageSubDataNV
 - Texture objects & Renderbuffers only.
 - Can copy Texture subregions.

```
Compute

GPU 0
  CUDA Context

GPU 1
  CUDA Context
  OpenGL Context

GPU 2
  OpenGL Context

Render Devices

CudaMemcpyPeer

wglCopyImageSubData
```
Multithreading with OpenGL Contexts

```c
// Wait for signal to start consuming
CPUWait(producedFenceValid);
glWaitSync(producedFence[0]);

// Bind texture object
glBindTexture(destTex[0]);

// Use as needed

// Signal we are done with this texture
consumedFence[0] = glFenceSync(...);
CPUSignal(consumedFenceValid);

// Draw here...

// Unbind
glfwFramebufferTexture2D(0);

// Copy over to consumer GPU
wglCopyImageSubDataNV(srcCtx, srcTex[1], 
..destCtx, destTex[1]);

// Signal that producer has completed
producedFence[1] = glFenceSync(...);
CPUSignal(producedFenceValid);
```

Thread - Dest GPU

- Wait for signal to start consuming
- Bind texture object

Thread - Source GPU

- Wait for
- Bind render target
- Copy over to consumer GPU

Multi-level CPU and GPU sync primitives

GLsync consumedFence[MAX_BUFFERS];
GLsync producedFence[MAX_BUFFERS];
HANDLE consumedFenceValid, producedFenceValid;

Shalini V. S0353 - Programming Multi-GPUs for Scalable Rendering, GTC 2012.
Some final thoughts...

- Hardware architecture influences transfer and system throughput. e.g. NUMA

- Peer-To-Peer copies/access simplify multi-gpu programming.
 - but context-switching between CUDA and GL will serialize.

- When scaling graphics
 - remember the device mapping between CUDA and OpenGL.
Conclusions & Resources

- The driver can do all the heavy-lifting but...

- Scalability and final performance is up to the developer
 - For fine-grained control and optimization, you might want to move the data manually.

- CUDA samples/documentation:

 www.openglinsights.com
Demo code

- win7 & linux Code for the benchmarking demo is available at:
 - http://bitbucket.org/wbraithwaite_nvidia/interopbenchmark