Ideas on Machine Learning Interpretability

Patrick Hall, Wen Phan, SriSatish Ambati and the H2O.ai team

Big Ideas

(set of candidate formulas)

Learning from data ...

Adapted from: Learning from Data. <u>https://work.caltech.edu/textbook.html</u>

⁽set of candidate formulas)

Increasing fairness, accountability, and trust by decreasing unwanted sociological biases

Increasing trust by quantifying prediction variance

Source: http://www.vias.org/tmdatanaleng/

A framework for interpretability

Complexity of learned functions:

- Linear, monotonic
- Nonlinear, monotonic
- Nonlinear, non-monotonic

(~ Number of parameters/VC dimension)

Scope of interpretability: Global vs. local

Enhancing trust and understanding:

the mechanisms and results of an interpretable model should be both transparent AND dependable.

Understanding ~ transparency Trust ~ fairness and accountability **Application domain:** Model-agnostic vs. model-specific

Big Challenges

Linear Models **Strong model locality** Usually stable models and explanations

Machine Learning *Weak model locality* Sometimes unstable models and explanations (a.k.a. The Multiplicity of Good Models)

H₂O.a

H,O.C

A Few of Our Favorite Things

Partial dependence plots

HomeValue ~ MedInc + AveOccup + HouseAge + AveRooms

H₂O.a

Source: http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf

Surrogate models

BAD	CUSTOMER_DTI	LOAN_PURPOSE	CHANNEL
0	0.18	MORT	7
1	0.42	HELOC	10
0	0.11	MORT	10
0	0.21	MORT	1

1. Train a complex machine learning model

0

1

0

0

PREDICTED BAD

0.47

0.82

0.18

0.12

predicted target values of the complex model

CUSTOMER DTI

0.18

0.42

0.11

0.21

Interpretable linear model

H,O.(

Local interpretable model-agnostic explanations

H₂O.ai

Source: <u>https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime</u>

Variable importance measures

Global variable importance indicates the impact of a variable on the model for the entire training data set.

Sex	Age		Fare	ŷ	ŷ (-Sex)	ŷ (-Age)		ŷ (-Fare)
М	11		8.45	0.2	0.01	0.1		0.21
F	34		51.86	0.8	0.6	0.65		0.78
М	26		21.08	0.5	0.2	0.3		0.53
1	1	1	1	1	1	1	1	1

Local variable

importance can indicate the impact of a variable for each decision a model makes – similar to reason codes.

Resources

Machine Learning Interpretability with H2O Driverless AI

https://www.h2o.ai/wp-content/uploads/2017/09/MLI.pdf (OR come by the booth!!)

Ideas on Interpreting Machine Learning

https://www.oreilly.com/ideas/ideas-on-interpreting-machine-learning

FAT/ML http://www.fatml.org/

MACHINE LEARNING INTERPRETABILITY WITH H2O DRIVERLESS AI

Patrick Hall, Navdeep Gill, Megan Kurka & Wen Phan Edited by Angela Bartz

Questions?

