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Big Ideas
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UNKNOWN TARGET FUNCTION
f: X=

(ideal credit approval function)

TRAINING EXAMPLES
(XY, ) s (X )

(historical records of credit customers)

LEARNING

ALGORITHM

HYPOTHESIS SET
H

(set of candidate formulas)

Learning from data ...

FINAL

HYPOTHESIS
g=f

(final credit approval formula)

Adapted from:

Learning from Data. https://work.caltech.edu/textbook.html




UNKNOWN TARGET FUNCTION
f: X—=5

(ideal credit approval function)

TRAINING EXAMPLES
(XY, ) s (X )

(historical records of credit customers)

LEARNING
ALGORITHM

HYPOTHESIS SET
H

(set of candidate formulas)

Learning from data ...
transparently.

FINAL

HYPOTHESIS
g=f

(final credit approval formula)

(explain predictions with reason codes)

EXPLAIN

HYPOTHESIS
h=g, B;g(x"), g(x? )

Adapted from:

Learning from Data. https://work.caltech.edu/textbook.html




Increasing fairness, accountability, and trust by
decreasing unwanted sociological biases

Y=L L-Y ¥
920000
o b e oo oo

Source: http://money.cnn.com/, Apple Computers




Increasing trust by quantifying prediction variance

Network response
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Source: http://www.vias.org/tmdatanaleng/




Complexity of learned functions:
* Linear, monotonic

* Nonlinear, monotonic

* Nonlinear, non-monotonic

(~ Number of parameters/VC dimension)

Enhancing trust and understanding:
the mechanisms and results of an
interpretable model should be both
transparent AND dependable.

Understanding ~ transparency
Trust ~ fairness and accountability

Scope of interpretability:
Global vs. local

Application domain:
Model-agnostic vs. model-specific
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Big Challenges
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Linear Models
Strong model locality
Usually stable models and explanations

Machine Learning
Weak model locality
Sometimes unstable models and explanations
(a.k.a. The Multiplicity of Good Models )
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g “ ® Wasted marketing.
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Exact explanations for 5 ®
. O °® Lost profits.
approximate models. 2
= ¢ “For a one unit increase in age, the number
) of purchases increases by 0.8 on average.”
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A Few of Our Favorite Things
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Partial dependence plots
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Source: http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII print10.pdf
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Surrogate models

X1
CUSTOMER_DTI LOAN_PURPOSE CHANNEL h11 ~—
0 0.18 MORT 7 Xo h21
1 0.42 HELOC 10 M hio )
0 0.11 MORT 10 X3 / h22
0 0.21 MORT 1 h13
1. Train a complex machine learning model X4 Complex neural network

v N

CUSTOMER_DTI  LOAN_PURPOSE CHANNEL ‘ % h

0 0.47 0.18 MORT 7
= = T —r = M Interpretable decision tree
0 0.18 0.11 MORT 10 Or

0 0.12 0.21 MORT 1

2. Train an interpretable model on the original inputs and the

[ ]
predicted target values of the complex model Interpretable linear
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Local interpretable model-agnhostic explanations

Perturbed Instances | P(tree frog)

0.85

Locélly weighted
’ regrision

0.00001

Original Image
P(tree frog) = 0.54

0.52

Explanation

H20. ol

Source: https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime




Variable importance measures

*VARIABLE IMPORTANCES

Sex
Age
Pclass

Eji

Global variable
importance indicates the
impact of a variable on
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the model for the entire
training data set.
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8.45 0.01 0.21
F 34 51.86 0.8 0.6 0.65 0.78
M 26 21.08 0.5 0.2 0.3 0.53

@

Local variable
importance can indicate
the impact of a variable
for each decision a model
makes — similar to reason

codes.
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Resources



Machine Learning Interpretability with
H20 Driverless Al

https://www.h20.ai/wp-content/uploads/2017/09/MLI.pdf
(OR come by the booth!!)

ldeas on Interpreting Machine Learning

https://www.oreilly.com/ideas/ideas-on-interpreting-machine-learning

FAT/ML

http://www.fatml.org/

MACHINE LEARNING
INTERPRETABILITY WITH
H20O DRIVERLESS Al

Patrick Hall, Navdeep Gill, Megan Kurka & Wen Phan

Edited by Angela Bartz
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Questions?



