Applying Virtual Reality, and Augmented Reality to the Lifecycle Phases of Complex Products

Rich Rabbitz
Chris Crouch

richard.j.rabbitz@lmco.com
Lockheed Martin Rotary and Mission Systems (RMS)

- Designs, manufactures, services and supports
 - Military and Civil Helicopters
 - Naval and Radar Systems
 - Provides World-Class Systems Integration Training and Logistics

- Lockheed Martin Moorestown, New Jersey
 - Naval and Radar Systems
 - World-class Systems Integrator
Ship Integration & Test
- 3D Space Arrangements for Naval Ships
- Topside Design for Naval and Ground Based Systems
Surface Navy Innovation Center (SNIC)
A research, development and demonstration lab dedicated to innovating affordable solutions across the maritime domain.

Tenets:

Put the Warfighter First – SNIC enables innovative concept exploration, rapid prototyping, and risk reduction activities for current and emerging Naval capabilities.

Accelerate Capability to the Warfighter – SNIC accelerates the push to adapt available technology and capabilities for maritime use.

Offer Flexible, Modular, Adaptable Solutions – SNIC utilizes an agile methodology and enabling architecture to respond quickly to new requirements and technologies.

Set the Standard for Collaboration – SNIC establishes an open community space for government, industry, and academia.

Technical Domain Focus:

- Training
- Cybersecurity/IA
- Big Data Analytics
- Models and Simulation
- Additive Manufacturing
- Mobile/Remote Workforce
- Advanced HMI/GUI Displays
 - Advanced Display Technologies
 - Augmented / Virtual Reality
 - Situational Awareness
 - Lifecycle Engineering
 - Architecture/Design
 - Cloud Computing
 - Mission Planning

Driving Innovation, Affordability, and Capability

Copyright © 2017 Lockheed Martin Corporation.
Lifecycle Phases of a Product

- Engineering and Deployment of Complex Products
 - Naval Combat Ship
 - Land Based Facilities

- Lifecycle Phases of Complex Products
 - Conceptual Design
 - Production
 - Deployment
 - Upgrades

- For which phases of the Lifecycle process are Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) applicable?
COMITS Software Suite

- COMITS (OpenGL based)
 - (Computerized Object Manipulation In Three-dimensional Space)

- COMITS-Ray
 - Physics Based Renderer (PBR)
 - Real-time Interaction
 - Photorealistic 360 VR Panorama images
 - High Quality Video Production

- COMITS-Ray Cloud
 - Photorealistic streaming on the company intranet

- COMITS-VR (Virtual Reality)
 - Real-time OpenGL VR App
 - OpenGL 4.5 / DesignWorks® / VRWorks®

- COMITS-AR (Augmented and Mixed Reality)
 - Direct3D®
 - NVIDIA® GPU rendering via Holographic remoting
Bidirectional Data Exchange with CATIA® and AutoCAD®

AutoCAD

DWG Translator

NavisWorks Translator

Ship Constructor

COMITS

Visual Basic Macros

$obj

Rhino

Creo

CATIA

Copyright © 2017 Lockheed Martin Corporation.
• Accomplished in 2012 via the NVIDIA Iray® SDK
• GTC 2017 (S7351) Applying GPU Technology to Combat System Integration and Maintenance
COMITS-Ray Cloud Using AI

- Interactive Streaming in a Chrome® Web Browser
 - F35 model
 - A ship model

9.5 million triangles
COMITS-Ray with AI

- AI Denoiser: Enhance Rendering Quality, SIGGRAPH 2017 talk by Martin-Karl Lefrançois
Lifecycle Phases

■ Conceptual Design
 ● Product fully represented is 3D Computer Aided Design (CAD) system
 ● Bring 3D CAD data into a VR system
 □ Can the inhabitants of the complex product operate and maintain it?
 ○ Ergonomics
 – Can personnel comfortably
 – See what they need to?
 – Reach what they need to?
 – Navigate to where they need to?
 ○ Collision resolution (multiple CAD systems)
 ○ Many, many, many more use cases
 ● Measurements
 ● Allow multiple local or remote users to collaborate
 ● Allow for model manipulations with changes send back to CAD system
COMITS-VR

- Running on NVIDIA® P6000 with HTC Vive®
 - 9.6 million triangles
 - 189 – 213 Frames Per Second (FPS) in standalone mode
 - 90 FPS sustained with Vive® attached
 - Plans for further optimizations and visual enhancements
COMITS-VR

- 360 Panoramas generated from COMITS-Ray
- Viewable in Vive®, or Oculus®, or on smart phones
Lifecycle Phases

■ Production
 ● Augmented Reality
 □ Assembly Line Guidance
 □ Extend the information for the shop floor workers
 □ Drawings and diagrams
 □ Videos of assembly sequence

 ● Virtual Reality
 □ Equipment Installation Planning

 ● Mixed Reality
 □ Visual Cues mixed in with the real world
 □ These visual cues help guide the operator through a series of assembly or maintenance steps

Copyright © 2017 Lockheed Martin Corporation.
Lifecycle Phases

- **Deployment**
 - Product Familiarization
 - Operations Training
 - Maintenance Training
Virtual Reality

- Product Familiarization
Virtual Reality

- Operations
 - Virtual Sandbox
 - Multi-User VR
Augmented Reality

Maintenance
Product Modernization

- Product Upgrades
 - Need a representation for the “As-Built” model
 - Two choices
 - Go to the ship or facility
 - Mixed Reality
 - Bring the ship or facility back
 - Laser Scans
COMITS-AR

- Microsoft HoloLens®
 - Mixed Reality
 - Holographic display
 - Voice recognition
 - Spatial sound
 - Gesture recognition
 - Spatial mapping
 - Untethered
 - 2-3 hour battery life
Mixed Reality

- Fitting holographic cabinet through real door
Microsoft HoloLens®
- Can display models up to ~80,000 polygons while running on 60 FPS
- Larger models lag in the display

How do we overcome this limitation?

Image generation
- Constant image size per frame
- One image required for left and right eye per frame
- 720p or 1268x720 per eye

Use GPU to generate left and right eye images
- Send these two images to HoloLens® device via Wi-Fi
GPU-AR

- Install the Microsoft® Remoting Player app
- Establishes a connection with the HoloLens and server with one or more GPUs
- The connection is made using standard Wi-Fi
- Receives a data stream with input from a HoloLens
- Renders content in a virtual holographic view
- Streams content frames back to the HoloLens in real-time
- This two-way connection allows the HoloLens to send sensory and control information to the server
 - Gestures
 - Voice commands
 - Spatial mapping
- Server processes this information, updates the state of the application, and sends images and sound back to the HoloLens® in a constant stream
- 64 bit application vs 32 bit
 - More accuracy

Copyright © 2017 Lockheed Martin Corporation.
GPU-AR
COMITS (OpenGL Based)

- Real-time Point-Cloud Rendering (utilizing P6000)
- 120 million points with sustained rendering at 60 FPS
COMITS (OpenGL Based)

- Real-time Point-Cloud Rendering (utilizing P6000)
- 120 million points with sustained rendering at 60 FPS
COMITS (OpenGL Based)

- Real-time Point-Cloud Rendering (utilizing P6000)
- 120 million points with sustained rendering at 60 FPS
COMITS (OpenGL Based)

- Real-time Point-Cloud Rendering (utilizing P6000)
- A billion points rendered
COMITS (OpenGL Based)

- Real-time Point-Cloud Rendering (utilizing P6000)
- GPU memory paging
COMITS (OpenGL Based)

- Future plans to view these point clouds in VR and AR
COMITS (OpenGL Based)

- Future plans to view these point clouds in VR and AR
- Overlay with CAD data
We are truly leveraging NVIDIA® technology to the fullest!

Apply VR and AR To Lifecycle Phases
- Conceptual Design
- Production
- Deployment
- Upgrades

Apply VR and AR To
- Catch problems early in Conceptual Design
- Training
- Operations
- Maintenance
- Readiness

Evolving 3D representation of platform

Reduce Lifecycle cost
Acknowledgements

- The Ship Integration and Test (SI&T) Organization at LM
- Chris Etgen, Director of SNIC
- Eric Halpern, Lead Developer of COMITS-Ray
- Chris Crouch, Lead Developer of COMITS-VR & COMITS-AR
- Joshua Pacana, Lead Developer of COMITS
- Brady White, VR content creator

- NVIDIA®
 - Craig Fullman
 - John Chaney
 - Martin-Karl Lefrancois
 - Stefan Radig
 - Robert Menzel
 - And many, many others…

- My mentors
 - Dr. Norm Badler, University of Pennsylvania
 - Dr. John Weaver, West Chester University
Links to references

- **(S7351) Applying GPU Technology to Combat System Integration and Maintenance by Rich Rabbitz**
 - **Slides**
 - **Recording**

- **AI Denoiser: Enhance Rendering Quality by Martin-Karl Lefrançois**
Rich Rabbitz
Lockheed Martin RMS
Principal Member of Engineering Staff (PMES)
Ship Integration and Test
Email: richard.j.rabbitz@lmco.com