CUDA OPTIMIZATION TIPS, TRICKS AND TECHNIQUES

Stephen Jones, GTC-DC 2017
The art of doing **more** with **less**
RULE #1: DON’T TRY TOO HARD

Performance

Time

Peak Performance

Ideal Effort/Reward
RULE #1: DON’T TRY TOO HARD
RULE #1: DON’T TRY TOO HARD
RULE #1: DON’T TRY TOO HARD

Reduce this time

Don’t waste this time

Get on this curve
RULE #1: DON’T TRY TOO HARD

Here be ninjas

Wait, it’s going slower??
Most people give up here
4 weeks and this is it?
Point of diminishing returns
Trough of despair
Premature excitement
Actual Effort/Reward

Performance
Time

Peak Performance
PERFORMANCE CONSTRAINTS

- Compute Intensity: 10%
- Divergence: 3%
- Instruction: 2%
- Occupancy: 10%
- Memory: 75%
MEMORY ORDERS OF MAGNITUDE

- CPU
- DRAM
- GDRAM
- L2 Cache
- L1$
- SM
- PCIe bus
- regs
- shmem

- 20,000 GB/sec
- 2,000 GB/sec
- 300 GB/sec
- 16 GB/sec
- 150 GB/sec
TALK BREAKDOWN
In no particular order

1. Why Didn’t I Think Of That?
2. CPU Memory to GPU Memory (the PCIe Bus)
3. GPU Memory to the SM
4. Registers & Shared Memory
5. Occupancy, Divergence & Latency
6. Weird Things You Never Thought Of (and probably shouldn’t try)
WHERE TO BEGIN?
THE OBVIOUS

Start with the Visual Profiler
CPU <> GPU DATA MOVEMENT
PCI ISSUES

Moving data over the PCIe bus

16 GB/sec
PIN YOUR CPU MEMORY

GPU Memory → Copy → CPU Memory

Data
PIN YOUR CPU MEMORY
PIN YOUR CPU MEMORY

GPU Memory

DMA Controller

CPU Memory

Data

Swap
PIN YOUR CPU MEMORY

CPU allocates & pins page then copies locally before DMA
PIN YOUR CPU MEMORY

cudaHostAlloc(&data, size, cudaHostAllocMapped);
cudaHostRegister(&data, size, cudaHostRegisterDefault);
PIN YOUR CPU MEMORY

Host<>Device Data Movement Performance
(PCie gen-2)

- unpinned
- pinned
REMEMBER: PCIe GOES BOTH WAYS
Operations in a single stream are ordered

But hardware can copy and compute at the same time
STREAMS & CONCURRENCY

Stream 2
- Copy up
- Work
- Copy back

Stream 1
- Copy up
- Work
- Copy back

Saved Time

Single Stream
- Copy data to GPU
- Compute
- Copy data to Host
STREAMS & CONCURRENCY

Can keep on breaking work into smaller chunks and saving time
SMALL PCIe TRANSFERS

PCIe is designed for large data transfers

But fine-grained copy/compute overlap prefers small transfers

So how small can we go?
APPARENTLY NOT THAT SMALL

PCle (Gen3) Data Transfer Rate by Copy Size
Blue line is single-element burst, red line is large copy done in chunks

Copy Bandwidth MB/sec

Copy Size

Single chunk
Large Copy
FROM GPU MEMORY TO GPU THREADS
FEEDING THE MACHINE

From GPU Memory to the SMs
USE THE PARALLEL ARCHITECTURE

Hardware is optimized to use all SIMT threads at once

Threads run in groups of 32

Cache is sized to service sets of 32 requests at a time

High-speed GPU memory works best with linear access
VECTORIZE MEMORY LOADS

Multi-Word as well as Multi-Thread

int

T0-T32
VECTORIZE MEMORY LOADS

Fill multiple cache lines in a single fetch
VECTORIZE MEMORY LOADS

Fill multiple cache lines in a single fetch
VECTORIZE MEMORY LOADS

Data Movement Rate vs. Data Size
(1 element per thread, Maxwell SM-5.0)
VECTORIZE MEMORY LOADS

Data Movement Rate vs. Data Size
(1 element per thread, Pascal P100)
DO MULTIPLE LOADS PER THREAD

Multi-Thread, Multi-Word **AND** Multi-Iteration

__global__ void copy(int2 *input,
 int2 *output,
 int max) {

 int id = threadIdx.x +
 blockDim.x * blockIdx.x;

 if(id < max) {
 output[id] = input[id];
 }
}

__global__ void copy(int2 *input,
 int2 *output,
 int max,
 int loadsPerThread) {

 int id = threadIdx.x +
 blockDim.x * blockIdx.x;

 for(int n=0; n<loadsPerThread; n++) {
 if(id < max) {
 output[id] = input[id];
 id += blockDim.x * gridDim.x;
 }
 }
}

One copy per thread
Maximum overhead

Multiple copies per thread
Amortize overhead
“MAXIMAL” LAUNCHES ARE BEST

Data Movement Rate vs. Operations per Thread
(64-bit data, Pascal P100)
“MAXIMAL” LAUNCHES ARE BEST

Data Movement Rate vs. Operations per Thread
(64-bit data, Pascal P100)
“MAXIMAL” LAUNCHES ARE BEST
“MAXIMAL” LAUNCHES ARE BEST
“MAXIMAL” LAUNCHES ARE BEST

Data Movement Rate vs. Operations per Thread
(64-bit data, Pascal P100)
“MAXIMAL” LAUNCHES ARE BEST
“MAXIMAL” LAUNCHES ARE BEST

Data Movement Rate vs. Operations per Thread
(64-bit data, Pascal P100)
“MAXIMAL” LAUNCHES ARE BEST
COALESCED MEMORY ACCESS
It’s not just good enough to use all SIMT threads

Coalesced: Sequential memory accesses are adjacent

Uncoalesced: Sequential memory accesses are unassociated
SIMT PENALTIES WHEN NOT COALESCED

- Single 32-wide operation
 - $x = \text{data[threadIdx.x]}$

- 32 one-wide operations
 - $x = \text{data[rand()]}$
SCATTER & GATHER

Gathering
Reading randomly
Writing sequentially

Scattering
Reading sequentially
Writing randomly
AVOID SCATTER/GATHER IF YOU CAN
AVOID SCATTER/GATHER IF YOU CAN
SORTING MIGHT BE AN OPTION

If reading non-sequential data is expensive, is it worth sorting it to make it sequential?

Gathering

1 2 3 4

Slow

2 4 1 3

Sort

Coalesced Read

1 2 3 4

Fast
SORTING MIGHT BE AN OPTION

Even if you’re only going to read it twice, then yes!

![Graph showing Sort+Scatter vs. Gather+Scatter](4-byte data, operations-per-element)

Break-Even Line

MB of Data Processed
PRE-SORTING TURNS OUT TO BE GOOD
DATA LAYOUT: “AOS vs. SOA”

Sometimes you can’t just sort your data

Array-of-Structures

```c
#define NPTS 1024 * 1024

struct Coefficients_AOS {
    double u[3];
    double x[3][3];
    double p;
    double rho;
    double eta;
};

Coefficients_AOS gridData[NPTS];
```

Single-thread code prefers arrays of structures, for cache efficiency

Structure-of-Arrays

```c
#define NPTS 1024 * 1024

struct Coefficients_SOA {
    double u[3][NPTS];
    double x[3][3][NPTS];
    double p[NPTS];
    double rho[NPTS];
    double eta[NPTS];
};

Coefficients_SOA gridData;
```

SIMT code prefers structures of arrays, for execution & memory efficiency
DATA LAYOUT: “AOS vs. SOA”

```c
#define NPTS 1024 * 1024

struct Coefficients_AOS {
    double u[3];
    double x[3][3];
    double p;
    double rho;
    double eta;
};

Coefficients_AOS gridData[NPTS];
```

Structure Definition

Conceptual Layout

- `u0 u1 u2`
- `x00 x01 x02`
- `x10 x11 x12`
- `x20 x21 x22`
- `p`
- `rho`
- `eta`
SOA: STRIDED ARRAY ACCESS

GPU reads data one element at a time, but in parallel by 32 threads in a warp

double u0 = gridData[threadIdx.x].u[0];

Conceptual Layout

Array-of-Structures Memory Layout

<table>
<thead>
<tr>
<th>u0</th>
<th>u1</th>
<th>u2</th>
<th>x00</th>
<th>x01</th>
<th>x02</th>
<th>x10</th>
<th>x11</th>
<th>x12</th>
<th>x20</th>
<th>x21</th>
<th>x22</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>rho</td>
<td>eta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AOS: COALESCED BUT COMPLEX

GPU reads data one element at a time, but in parallel by 32 threads in a warp

double u0 = gridData.u[0][threadIdx.x];
Read data linearly as bytes. Use shared memory to convert to struct.

Block copies data to shared memory.
BLOCK-WIDE LOAD VIA SHARED MEMORY

Read data linearly as bytes. Use shared memory to convert to struct

Threads which own the data grab it from shared memory
CLEVER AOS/SOA TRICKS

Speedup of SOA conversion over raw AOS

Break-Even Line
CLEVER AOS/SOA TRICKS

Helps for any data size
HANDY LIBRARY TO HELP YOU

Trove - A utility library for fast AOS/SOA access and transposition
https://github.com/bryancatanzaro/trove
(AB)USING THE CACHE
MAKING THE MOST OF L2-CACHE

L2 cache is fast but small:

<table>
<thead>
<tr>
<th>Architecture</th>
<th>L2 Cache Size</th>
<th>Total Threads</th>
<th>Cache Bytes per Thread</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kepler</td>
<td>1536 KB</td>
<td>30,720</td>
<td>51</td>
</tr>
<tr>
<td>Maxwell</td>
<td>3072 KB</td>
<td>49,152</td>
<td>64</td>
</tr>
<tr>
<td>Pascal</td>
<td>4096 KB</td>
<td>114,688</td>
<td>36</td>
</tr>
</tbody>
</table>

L2 Cache

GDRAM

2,000 GB/sec

300 GB/sec
TRAINING DEEP NEURAL NETWORKS
LOTS OF PASSES OVER DATA
MULTI-RESOLUTION CONVOLUTIONS

Pass 1: 3x3
Pass 2: 5x5
Pass 3: 7x7
MULTI-RESOLUTION CONVOLUTIONS

Pass 1: 3x3
MULTI-RESOLUTION CONVOLUTIONS

Pass 2: 5x5
MULTI-RESOLUTION CONVOLUTIONS

Pass 3: 7x7
TILED, MULTI-RESOLUTION CONVOLUTION

Do 3 passes per-tile

Pass 1: 3x3
Pass 2: 5x5
Pass 3: 7x7

Each tile sized to fit in L2 cache
TILED, MULTI-RESOLUTION CONVOLUTION

Do 3 passes per-tile

Pass 1: 3x3

Each tile sized to fit in L2 cache
TILED, MULTI-RESOLUTION CONVOLUTION

Do 3 passes per-tile

Each tile sized to fit in L2 cache

Pass 2: 5x5
TILED, MULTI-RESOLUTION CONVOLUTION

Do 3 passes per-tile

Each tile sized to fit in L2 cache
TILED, MULTI-RESOLUTION CONVOLUTION

Do 3 passes per-tile

Each tile sized to fit in L2 cache
TILED, MULTI-RESOLUTION CONVOLUTION

Do 3 passes per-tile

Each tile sized to fit in L2 cache
TILED, MULTI-RESOLUTION CONVOLUTION

Do 3 passes per-tile

Each tile sized to fit in L2 cache

Pass 3: 7x7
TILED, MULTI-RESOLUTION CONVOLUTION

Do 3 passes per-tile

Each tile sized to fit in L2 cache
TILED, MULTI-RESOLUTION CONVOLUTION

Do 3 passes per-tile

Pass 2: 5x5

Each tile sized to fit in L2 cache
TILED, MULTI-RESOLUTION CONVOLUTION

Do 3 passes per-tile

Each tile sized to fit in L2 cache
LAUNCHING FEWER THAN MAXIMUM THREADS
SHARED MEMORY: DEFINITELY WORTH IT
USING SHARED MEMORY WISELY

Shared memory arranged into “banks” for concurrent SIMT access
- 32 threads can read simultaneously so long as into separate banks

Shared memory has 4-byte and 8-byte “bank” sizes
Many algorithms have high data re-use: potentially good for shared memory

“Stencil” algorithms accumulate data from neighbours onto a central point
 - Stencil has width “W” (in the above case, W=5)

Adjacent threads will share (W-1) items of data - good potential for data re-use
STENCILS IN SHARED MEMORY

Impact of Data Size on Stencil Operation
(8-byte banks, maximal grid launch)
SIZE MATTERS

Shared- vs. Global-Memory Stencil Operations, Compared by Block Size
PERSISTENT KERNELS

Revisiting the tiled convolutions

Avoid multiple kernel launches by caching in shared memory instead of L2

```c
void tiledConvolution() {
    convolution<3><<< numblocks, blockdim, 0, s >>>(ptr, chunkSize);
    convolution<5><<< numblocks, blockdim, 0, s >>>(ptr, chunkSize);
    convolution<7><<< numblocks, blockdim, 0, s >>>(ptr, chunkSize);
}
```

Separate kernel launches with L2 re-use

```c
__global__ void convolutionShared(int *data, int count, int sharedelems) {
    extern __shared__ int shdata[];
    shdata[threadIdx.x] = data[threadIdx.x + blockDim.x*blockIdx.x];
    __syncthreads();
    convolve<3>(threadIdx.x, shdata, sharedelems);
    __syncthreads();
    convolve<5>(threadIdx.x, shdata, sharedelems);
    __syncthreads();
    convolve<7>(threadIdx.x, shdata, sharedelems);
}
```

Single kernel launch with persistent kernel
PERSISTENT KERNELS

Tiled Multi-Convolution Performance

GB/sec data processed

Tile size in MB

L2

Shared
OPERATING DIRECTLY FROM CPU MEMORY

Can save memory copies. It’s obvious when you think about it …

- Copy data to GPU
- Compute
- Copy data to Host

Compute only begins when 1st copy has finished. Task only ends when 2nd copy has finished.

- Read from CPU
- Compute
- Write to CPU

Compute begins after first fetch. Uses lots of threads to cover host-memory access latency. Takes advantage of bi-directional PCI.
OPERATING DIRECTLY FROM CPU MEMORY
OCCUPANCY AND REGISTER LIMITATIONS

Register file is bigger than shared memory and L1 cache!

Occupancy can kill you if you use too many registers

Often worth forcing fewer registers to allow more blocks per SM

But watch out for math functions!

```c
__launch_bounds__(maxThreadsPerBlock, minBlocksPerMultiprocessor)
__global__ void compute() {
    y = acos(pow(log(fdivide(tan(cosh(erfc(x))), 2)), 3));
}
```
THANK YOU!