

What is Mixed Precision Training?

- Reduced precision tensor math with FP32 accumulation, FP16 storage
- Successfully used to train a variety of:
 - Well known public networks
 - Variety of NVIDIA research networks
 - Variety of NVIDIA automotive networks

Benefits of Mixed Precision Training

Accelerates math

- TensorCores have 8x higher throughput than FP32
- 125 Tflops theory

Reduces memory bandwidth pressure:

FP16 halves the memory traffic compared to FP32

Reduces memory consumption

- Halve the size of activation and gradient tensors
- Enables larger minibatches or larger input sizes

Volta TensorCores

- https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
- Used by cuDNN and CUBLAS libraries
- Exposed in CUDA as WMMA
 - http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma
- Accelerate convolutions and matrix multiplication
 - A single instruction multiply-accumulates matrices
 - Think: computes many dot-products in parallel

Training results with mixed precision

- Successfully applied to a wide variety of networks including:
 - Imagenet CNNs
 - Detection
 - Language Translation
 - Speech
 - Text to Speech
 - GAN
 - Image enhancement (inpainting, upscaling, pix2pix, etc.)
 - Wavenet
- More details later in this talk

_

Considerations for Mixed Precision Training

- Which precision to use for storage, for math?
- Instructive to walk through by DNN operation type:
 - Weight update
 - Point-wise
 - Reduction
 - Convolution, Matrix multiply

Guideline #1 for mixed precision: weight update

- FP16 mantissa is sufficient for some networks, some require FP32
- Sum of FP16 values whose ratio is greater than 2¹¹ is just the larger value
 - FP16 has a 10-bit mantissa, binary points have to be aligned for addition
 - Weight update: if $w \gg lr * dw$ then update doesn't change w
 - Examples: multiplying a value by 0.01 leads to 27 ratio, 0.001 leads to 210 ratio

Conservative recommendation:

- FP32 update:
 - Compute weight update in FP32
 - Keep a master copy of weights in FP32, make an FP16 copy for fwd/bwd passes
- If FP32 storage is a burden, try FP16 it does work for some nets
 - ie convnets

Guideline #2 for mixed precision: pointwise

- FP16 is safe for most of these: ReLU, Sigmoid, Tanh, Scale, Add, ...
 - Inputs and outputs to these are value in a narrow range around 0
 - FP16 storage saves bandwidth -> reduces time

FP32 math and storage is recommended for:

- operations f where |f(x)| >> |x|
 - Examples: Exp, Square, Log, Cross-entropy
- These typically occur as part of a normalization or loss layer that is unfused
- FP32 ensures high precision, no perf impact since bandwidth limited

Conservative recommendation :

- Leave pointwise ops in FP32 (math and storage) unless they are known types
- Pointwise op fusion is a good next step for performance
 - Use libraries for efficient fused pointwise ops for common layers (eg BatcNorm)

DNN Operation: Reductions

Examples:

• Large sums of values: L1 norm, L2 norm, Softmax

FP32 Math:

- Avoids overflows
- Does not affect speed these operations are memory limited

• Storage:

- FP32 output
- Input can be FP16 if the preceding operation outputs FP16
 - If your training frameworks supports different input and output types for an op
 - Saves bandwidth -> some speedup

(

A Note on Normalization and Loss Layers

Normalizations:

- Usually constructed from primitive ops (reductions, squares, exp, scale)
- Storage:
 - Input and normalized output can be in FP16
 - Intermediate results should be stored in FP32
- Ideally should be fused into a single op:
 - Avoids round-trips to memory -> faster
 - Avoids intermediate storage

Loss, probability layers:

- Softmax, cross-entropy, attention modules
- FP32 math, FP32 output

DNN Operation: Convolution, Matrix Multiply

- Fundamentally these are collections of dot-products
- Math: Tensor Cores starting with Volta GPUs
 - Training: use FP32 accumulation
 - Inference: FP16 accumulation can be used
 - Many frameworks have integrated libraries with TensorCore support
 - http://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/
- FP16 Storage (input and output)

Summary so far

- FP32 Master weights and update
- Math: FP32 and TensorCores
- Storage:
 - Use FP16 for most layers
 - Use FP32 for layers that output probabilities or large magnitude values
 - Fuse to optimize speed and storage
- Example layer time breakdowns for FP32-only training:
 - Resnet50: ~73% convolutions, 27% other
 - DS2: ~90% convolutions and matrix multiplies (LSTM), ~10% other
- One more mixed-precision consideration: Loss Scaling
 - Scale the loss, unscale the weight gradients before update/clipping/etc.
 - Preserves small gradient values

(C) NVIDIA

Range representable in FP16: ~40 powers of 2

Range representable in FP16: ~40 powers of 2

Gradients are small, don't use much of FP16 range FP16 range not used by gradients: ~15 powers of 2

Range representable in FP16: ~40 powers of 2

Gradients are small, don't use much of FP16 range FP16 range not used by gradients: ~15 powers of 2

Loss Scaling:

multiply the loss by some constant s by chain rule backprop scales gradients by s preserves small gradient values unscale the weight gradient before update

Loss Scaling

Algorithm

- Pick a scaling factor s
- for each training iteration
 - Make an fp16 copy of weights
 - Fwd prop (fp16 weights and activations)
 - Scale the loss by s
 - Bwd prop (fp16 weights, activations, and gradients)
 - Scale *dW* by **1/s**
 - Update W

• For simplicity:

- Apply gradient clipping and similar operations on gradients after 1/s scaling
 - Avoids the need to change hyperparameters to account for scaling

• For maximum performance: fuse unscaling and update

- Reduces memory accesses
- Avoids storing weight gradients in fp32

Automatic Loss Scaling

- Frees users from choosing a scaling factor
 - Too small a factor doesn't retain enough small values
 - Too large a factor causes overflows

Algorithm

- Start with a large scaling factor s
- for each training iteration
 - Make an fp16 copy of weights
 - Fwd prop
 - Scale the loss by s
 - Bwd prop
 - Update scaling factor s
 - If dW contains Inf/NaN then reduce s, skip the update
 - If no Inf/NaN were detected for N updates then increase s
 - Scale *dW* by **1/s**
 - Update W

Automatic Loss Scale Factor for a Translation Net

Smallest scaling factor = 2^{20} -> max dw magnitude didn't exceed 2^{-5}

Update Skipping

Must skip updating:

- Weights
- Momenta

Additional considerations:

- Iteration count:
 - Always increment: may result in fewer updates than iterations
 - Don't increment when skipping:
 - Ensures the same number of updates as without skipping enabled
 - Ensures the same number of updates with a given learning rate
- Input minibatch: just "move on"

Automatic Loss Scaling Parameters

Factor for increasing/decreasing loss-scaling

In all our experiments we use 2

Number of iterations without overflow

- In all our experiments we use N = 2,000
- Separate study showed that randomly skipping 0.1% of updates didn't affect result
- N = 2,000 gives extra margin by skipping at most 0.05% of updates in steady state

Iteration count:

 We did not observe model accuracy difference between incrementing and not incrementing iteration count on skips

ILSVRC12 Classification Networks, Top-1 Accuracy

	FP32 Baseline	Mixed Precision
AlexNet	56.8%	56.9%
VGG-D	65.4%	65.4%
GoogLeNet	68.3%	68.4%
Inception v2	70.0%	70.0%
Inception v3	73.9%	74.1%
Resnet 50	75.9%	76.0%
ResNeXt 50	77.3%	77.5%

A number of these train fine in mixed precision even without loss-scaling.

Detection Networks, mAP

	FP32 Baseline	Mixed Precision
Faster R-CNN, VOC 07 data	69.1%	69.7%
Multibox SSD, VOC 07+12 data	76.9%	77.1%

NVIDIA's proprietary automotive networks train with mixed-precision matching FP32 baseline accuracy.

Language Translation

• GNMT:

- https://github.com/tensorflow/nmt
- German -> English (train on WMT, test on newstest2015)
- 8 layer encoder, 8 layer decoder, 1024x LSTM cells, attention
- FP32 and Mixed Precision: ~29 BLEU using SGD
 - Both equally lower with Adam, match the paper

FairSeq:

- https://github.com/facebookresearch/fairseq
- Convolutional net for translation, English French
- FP32 and Mixed Precision: ~40.5 BLEU after 12 epochs

Speech

Courtesy of Baidu

- 2 2D-conv layers, 3 GRU layers, 1D conv
- Baidu internal datasets

Character Error Rate (lower is better)

	FP32 Baseline	Mixed Precision
English	2.20	1.99
Mandarin	15.82	15.01

Progressive Growing of GANs

- Generates 1024x1024 face images
 - http://research.nvidia.com/publication/2017-10 Progressive-Growing-of
- No perceptible difference between FP32 and mixed-precision training
- Loss-scaling:
 - Separate scaling factors for generator and discriminator (you are training 2 networks)
 - <u>Automatic loss scaling greatly simplified training</u> gradient stats shift drastically when image resolution is increased

Sentiment Analysis

Multiplicative LSTM, based on https://arxiv.org/abs/1704.01444

	Train BPC	Val BPC	SST acc	IMDB acc
FP32	1.116	1.073	91.8	92.8
Mixed Precision	1.115	1.075	91.9	92.8

(C) NVIDIA

Image Inpainting

- Fill in arbitrary holes
- Network Architecture:
- U-Net with partial convolution
- VGG16 based Perceptual loss + Style loss
- Speedup: 3x, at 2x bigger batch size
 - We can increase batch size only in mixed precision

Input

Inpainted Result

Image Inpainting: result

Training Loss Curve

Testing Input

Mixed Precision Result

FP32 Result

Text to speech synthesis

Using Tacotron 2

Fig. 1. Block diagram of the Tacotron 2 system architecture.

Shen et al, Natural TTS Synthesis by Conditioning Wavenet on Mel-Spectrogram Predictions, https://arxiv.org/abs/1712.05884

Text to speech synthesis: results

50

Decoder timestep

100

50

Decoder timestep

Wavenet

- 12 Layers of dilated convolutions
- Dilations reset every 6 layers
- 128 channels for dilated convs.
 (64 per nonlinearity)
 64 channels for residual convs.
 256 channels for skip convs.

Wavenet: results

Mixed precision: Pink FP32: Green

Speedups

- Memory limited ops: should see ~2x speedup
- Math limited ops: will vary based on arithmetic intensity
- Some examples, mixed precision vs FP32 on GV100:
 - Resnet50: ~3.3x
 - DeepSpeech2: ~4.5x
 - FairSeq: ~4.0x
 - Sentiment prediction: ~4.0x
- Speedups to increase further:
 - libraries are continuously optimized
 - TensorCore paths are being added to more operation varieties

TensorCore Performance Guidance

Requirements to trigger TensorCore operations:

- Convolutions:
 - Number of input channels a multiple of 8
 - Number of output channels a multiple of 8
- Matrix Multiplies:
 - M, N, K sizes should be multiples of 8
 - Larger K sizes make multiplications more efficient (amortize the write overhead)
 - Makes wider recurrent cells more practical (K is input layer width)

If you're designing models

- Make sure to choose layer widths that are multiples of 8
- Pad input/output dictionaries to multiples of 8
 - Speeds up embedding/projection operations

If you're developing new cells

Concatenate cell matrix ops into a single call

Conclusions

Mixed precision training benefits:

- Math, memory speedups
- Larger minibatches, larger inputs
- Automatic Loss Scaling simplifies mixed precision training
- Mixed precision matches FP32 training accuracy for a variety of:
 - Tasks: classification, regression, generation
 - Problem domains: images, language translation, language modeling, speech
 - Network architectures: feed forward, recurrent
 - Optimizers: SGD, Adagrad, Adam

Note on inference:

Can be purely FP16: storage and math (use library calls with FP16 accumulation)

More details:

- S81012: Training Neural Newtorks with Mixed Precision: Real Examples (Thu, 9am)
- http://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/

We are hiring

Deep Learning Compute Architect:

- Study DNN performance, accuracy, precision, etc.
- Propose improvements to future HW, see them through the HW cycle
- https://nvidia.wd5.myworkdayjobs.com/en-US/NVIDIAExternalCareerSite/job/US-CA-Santa-Clara/Deep-Learning-Computer-Architect JR1907859