
Paulius Micikevicius

MIXED PRECISION TRAINING:
THEORY AND PRACTICE

What is Mixed Precision Training?

• Reduced precision tensor math with FP32 accumulation, FP16 storage

• Successfully used to train a variety of:
• Well known public networks

• Variety of NVIDIA research networks

• Variety of NVIDIA automotive networks

(C) NVIDIA 2

Benefits of Mixed Precision Training

• Accelerates math
• TensorCores have 8x higher throughput than FP32

• 125 Tflops theory

• Reduces memory bandwidth pressure:
• FP16 halves the memory traffic compared to FP32

• Reduces memory consumption
• Halve the size of activation and gradient tensors

• Enables larger minibatches or larger input sizes

3(C) NVIDIA

Volta TensorCores

• https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

• Used by cuDNN and CUBLAS libraries

• Exposed in CUDA as WMMA
• http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma

• Accelerate convolutions and matrix multiplication
• A single instruction multiply-accumulates matrices
• Think: computes many dot-products in parallel

(C) NVIDIA 4

FP16

storage/input

Full precision

product

Convert to

FP32 result

F16

F16

× + F32

F32

more products

F16 accumulator is also available for inference

Sum with

FP32

accumulator

https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma

Training results with mixed precision

• Successfully applied to a wide variety of networks including :
• Imagenet CNNs

• Detection

• Language Translation

• Speech

• Text to Speech

• GAN

• Image enhancement (inpainting, upscaling, pix2pix, etc.)

• Wavenet

• More details later in this talk

(C) NVIDIA 5

Considerations for Mixed Precision Training

• Which precision to use for storage, for math?

• Instructive to walk through by DNN operation type:
• Weight update

• Point-wise

• Reduction

• Convolution, Matrix multiply

(C) NVIDIA 6

Guideline #1 for mixed precision: weight update

• FP16 mantissa is sufficient for some networks, some require FP32

• Sum of FP16 values whose ratio is greater than 211 is just the larger value
• FP16 has a 10-bit mantissa, binary points have to be aligned for addition

• Weight update: if w >> lr * dw then update doesn’t change w
• Examples: multiplying a value by 0.01 leads to ~27 ratio, 0.001 leads to ~210 ratio

• Conservative recommendation:
• FP32 update:

• Compute weight update in FP32

• Keep a master copy of weights in FP32, make an FP16 copy for fwd/bwd passes

• If FP32 storage is a burden, try FP16 – it does work for some nets
• ie convnets

(C) NVIDIA 7

Guideline #2 for mixed precision: pointwise

• FP16 is safe for most of these: ReLU, Sigmoid, Tanh, Scale, Add, …
• Inputs and outputs to these are value in a narrow range around 0
• FP16 storage saves bandwidth -> reduces time

• FP32 math and storage is recommended for:
• operations f where |f (x)| >> |x|

• Examples: Exp, Square, Log, Cross-entropy

• These typically occur as part of a normalization or loss layer that is unfused
• FP32 ensures high precision, no perf impact since bandwidth limited

• Conservative recommendation :
• Leave pointwise ops in FP32 (math and storage) unless they are known types
• Pointwise op fusion is a good next step for performance

• Use libraries for efficient fused pointwise ops for common layers (eg BatcNorm)

(C) NVIDIA 8

DNN Operation: Reductions

• Examples:
• Large sums of values: L1 norm, L2 norm, Softmax

• FP32 Math:
• Avoids overflows

• Does not affect speed – these operations are memory limited

• Storage:
• FP32 output

• Input can be FP16 if the preceding operation outputs FP16
• If your training frameworks supports different input and output types for an op

• Saves bandwidth -> some speedup

(C) NVIDIA 9

A Note on Normalization and Loss Layers

• Normalizations:
• Usually constructed from primitive ops (reductions, squares, exp, scale)

• Storage:
• Input and normalized output can be in FP16

• Intermediate results should be stored in FP32

• Ideally should be fused into a single op:
• Avoids round-trips to memory -> faster

• Avoids intermediate storage

• Loss, probability layers:
• Softmax, cross-entropy, attention modules

• FP32 math, FP32 output

(C) NVIDIA 10

DNN Operation: Convolution, Matrix Multiply

• Fundamentally these are collections of dot-products

• Math: Tensor Cores starting with Volta GPUs
• Training: use FP32 accumulation

• Inference: FP16 accumulation can be used

• Many frameworks have integrated libraries with TensorCore support
• http://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/

• FP16 Storage (input and output)

(C) NVIDIA 11

http://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/

Summary so far

• FP32 Master weights and update
• Math: FP32 and TensorCores
• Storage:

• Use FP16 for most layers
• Use FP32 for layers that output probabilities or large magnitude values

• Fuse to optimize speed and storage

• Example layer time breakdowns for FP32-only training:
• Resnet50 : ~73% convolutions, 27% other
• DS2: ~90% convolutions and matrix multiplies (LSTM), ~10% other

• One more mixed-precision consideration: Loss Scaling
• Scale the loss, unscale the weight gradients before update/clipping/etc.
• Preserves small gradient values

12(C) NVIDIA

Activations

Weights

Weight
Gradients

Activation
Gradients

13(C) NVIDIA

Activations

Weights

Weight
Gradients

Activation
Gradients

~40 powers of 2Range representable in FP16:

14(C) NVIDIA

Activations

Weights

Weight
Gradients

Activation
Gradients

Range representable in FP16:

Gradients are small, don’t use much of FP16 range

~15 powers of 2FP16 range not used by gradients:

15(C) NVIDIA

~40 powers of 2

Activations

Weights

Weight
Gradients

Activation
Gradients

Range representable in FP16: ~40 powers of 2

Loss Scaling:
multiply the loss by some constant s
by chain rule backprop scales gradients by s

preserves small gradient values
unscale the weight gradient before update

Gradients are small, don’t use much of FP16 range

~15 powers of 2FP16 range not used by gradients:

16(C) NVIDIA

Loss Scaling

• Algorithm
• Pick a scaling factor s
• for each training iteration

• Make an fp16 copy of weights
• Fwd prop (fp16 weights and activations)
• Scale the loss by s
• Bwd prop (fp16 weights, activations, and gradients)
• Scale dW by 1/s
• Update W

• For simplicity:
• Apply gradient clipping and similar operations on gradients after 1/s scaling

• Avoids the need to change hyperparameters to account for scaling

• For maximum performance: fuse unscaling and update
• Reduces memory accesses
• Avoids storing weight gradients in fp32

17(C) NVIDIA

Automatic Loss Scaling

• Frees users from choosing a scaling factor
• Too small a factor doesn’t retain enough small values
• Too large a factor causes overflows

• Algorithm
• Start with a large scaling factor s
• for each training iteration

• Make an fp16 copy of weights
• Fwd prop
• Scale the loss by s
• Bwd prop
• Update scaling factor s

• If dW contains Inf/NaN then reduce s, skip the update
• If no Inf/NaN were detected for N updates then increase s

• Scale dW by 1/s
• Update W

18(C) NVIDIA

The automatic part

Automatic Loss Scale Factor for a Translation Net

524,288

1,048,576

2,097,152

4,194,304

8,388,608

16,777,216

33,554,432

67,108,864

Lo
ss

 s
ca

le

Iteration

Smallest scaling factor = 220 -> max dW magnitude didn’t exceed 2-5

19(C) NVIDIA

Update Skipping

• Must skip updating:
• Weights

• Momenta

• Additional considerations:
• Iteration count:

• Always increment: may result in fewer updates than iterations

• Don’t increment when skipping:
• Ensures the same number of updates as without skipping enabled

• Ensures the same number of updates with a given learning rate

• Input minibatch: just “move on”

(C) NVIDIA 20

Automatic Loss Scaling Parameters

• Factor for increasing/decreasing loss-scaling
• In all our experiments we use 2

• Number of iterations without overflow
• In all our experiments we use N = 2,000

• Separate study showed that randomly skipping 0.1% of updates didn’t affect result

• N = 2,000 gives extra margin by skipping at most 0.05% of updates in steady state

• Iteration count:
• We did not observe model accuracy difference between incrementing and not

incrementing iteration count on skips

21(C) NVIDIA

ILSVRC12 Classification Networks, Top-1 Accuracy

FP32
Baseline

Mixed
Precision

AlexNet 56.8% 56.9%

VGG-D 65.4% 65.4%

GoogLeNet 68.3% 68.4%

Inception v2 70.0% 70.0%

Inception v3 73.9% 74.1%

Resnet 50 75.9% 76.0%

ResNeXt 50 77.3% 77.5%

A number of these train fine in mixed precision even without loss-scaling.
22(C) NVIDIA

Detection Networks, mAP

FP32
Baseline

Mixed
Precision

Faster R-CNN, VOC 07 data 69.1% 69.7%

Multibox SSD, VOC 07+12 data 76.9% 77.1%

NVIDIA’s proprietary automotive networks train with mixed-precision
matching FP32 baseline accuracy.

23(C) NVIDIA

Language Translation

• GNMT:
• https://github.com/tensorflow/nmt

• German -> English (train on WMT, test on newstest2015)

• 8 layer encoder, 8 layer decoder, 1024x LSTM cells, attention

• FP32 and Mixed Precision: ~29 BLEU using SGD
• Both equally lower with Adam, match the paper

• FairSeq:
• https://github.com/facebookresearch/fairseq

• Convolutional net for translation, English - French

• FP32 and Mixed Precision: ~40.5 BLEU after 12 epochs

24(C) NVIDIA

https://github.com/tensorflow/nmt
https://github.com/facebookresearch/fairseq

Speech

• Courtesy of Baidu
• 2 2D-conv layers, 3 GRU layers, 1D conv

• Baidu internal datasets

FP32
Baseline

Mixed
Precision

English 2.20 1.99

Mandarin 15.82 15.01

Character Error Rate (lower is better)

25(C) NVIDIA

Progressive Growing of GANs

• Generates 1024x1024 face images
• http://research.nvidia.com/publication/2017-10_Progressive-Growing-of

• No perceptible difference between FP32 and mixed-precision training

• Loss-scaling:
• Separate scaling factors for generator and discriminator (you are training 2 networks)

• Automatic loss scaling greatly simplified training – gradient stats shift drastically when
image resolution is increased

26(C) NVIDIA

http://research.nvidia.com/publication/2017-10_Progressive-Growing-of

Sentiment Analysis

• Multiplicative LSTM, based on https://arxiv.org/abs/1704.01444

(C) NVIDIA 27

Train BPC Val BPC SST acc IMDB acc

FP32 1.116 1.073 91.8 92.8

Mixed Precision 1.115 1.075 91.9 92.8

Amazon Reviews training BPC

Mixed PrecisionFP32

https://arxiv.org/abs/1704.01444

Image Inpainting

• Fill in arbitrary holes

• Network Architecture:

• U-Net with partial convolution

• VGG16 based Perceptual loss + Style loss

• Speedup: 3x, at 2x bigger batch size
• We can increase batch size only in mixed precision

(C) NVIDIA 28

Input Inpainted Result

Image Inpainting : result

(C) NVIDIA 29

Training Loss Curve

Testing Input

Mixed Precision Result FP32 Result

Using Tacotron 2

Shen et al, Natural TTS Synthesis by Conditioning Wavenet on Mel-Spectrogram Predictions,

https://arxiv.org/abs/1712.05884

Text to speech synthesis

Predicted Mel-Spectrograms

Predicted Alignments

Mixed Precision:
Pink

FP32:
Green

Mixed Precision FP32

Text to speech synthesis : results

Van den Oord et al. WaveNet: A Generative Model for Raw Audio, https://arxiv.org/pdf/1609.03499.pdf

● 12 Layers of dilated
convolutions

● Dilations reset every 6 layers

● 128 channels for dilated convs.
(64 per nonlinearity)

64 channels for residual convs.
256 channels for skip convs.

Wavenet

Results in FP16 (pink) and FP32 (green)

Mixed precision: Pink; FP32: Green

Wavenet : results

Speedups

• Memory limited ops: should see ~2x speedup

• Math limited ops: will vary based on arithmetic intensity

• Some examples, mixed precision vs FP32 on GV100:
• Resnet50: ~3.3x

• DeepSpeech2: ~4.5x

• FairSeq: ~4.0x

• Sentiment prediction: ~4.0x

• Speedups to increase further:
• libraries are continuously optimized

• TensorCore paths are being added to more operation varieties

34(C) NVIDIA

TensorCore Performance Guidance

• Requirements to trigger TensorCore operations:
• Convolutions:

• Number of input channels a multiple of 8
• Number of output channels a multiple of 8

• Matrix Multiplies:
• M, N, K sizes should be multiples of 8
• Larger K sizes make multiplications more efficient (amortize the write overhead)
• Makes wider recurrent cells more practical (K is input layer width)

• If you’re designing models
• Make sure to choose layer widths that are multiples of 8
• Pad input/output dictionaries to multiples of 8

• Speeds up embedding/projection operations

• If you’re developing new cells
• Concatenate cell matrix ops into a single call

(C) NVIDIA 35

Conclusions

• Mixed precision training benefits:
• Math, memory speedups
• Larger minibatches, larger inputs

• Automatic Loss Scaling simplifies mixed precision training

• Mixed precision matches FP32 training accuracy for a variety of:
• Tasks: classification, regression, generation
• Problem domains: images, language translation, language modeling, speech
• Network architectures: feed forward, recurrent
• Optimizers: SGD, Adagrad, Adam

• Note on inference:
• Can be purely FP16: storage and math (use library calls with FP16 accumulation)

• More details:
• S81012: Training Neural Newtorks with Mixed Precision: Real Examples (Thu, 9am)
• http://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/

36(C) NVIDIA

http://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/

We are hiring

• Deep Learning Compute Architect:
• Study DNN performance, accuracy, precision, etc.

• Propose improvements to future HW, see them through the HW cycle

• https://nvidia.wd5.myworkdayjobs.com/en-US/NVIDIAExternalCareerSite/job/US-
CA-Santa-Clara/Deep-Learning-Computer-Architect_JR1907859

(C) NVIDIA 37

https://nvidia.wd5.myworkdayjobs.com/en-US/NVIDIAExternalCareerSite/job/US-CA-Santa-Clara/Deep-Learning-Computer-Architect_JR1907859

