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About Me

Diego Oppenheimer - Founder and CEO - Algorithmia

● Product developer, entrepreneur, extensive background in all things data.

● Microsoft: PowerPivot, PowerBI, Excel and SQL Server.

● Founder of algorithmic trading startup

● BS/MS Carnegie Mellon University



Make state-of-the-art algorithms

discoverable and accessible

to everyone.
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Algorithmia.com
AI/ML scalable infrastructure on demand + marketplace

● Function-as-a-service for Machine & Deep Learning

● Discoverable, live inventory of AI 

● Monetizable

● Composable

● Every developer on earth can make their app intelligent



“There’s an algorithm for that!”
70K+ DEVELOPERS     5K+ ALGORITHMS
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How do we do it?

● ~5,000 algorithms   (60k w/ different versions)

● Each algorithm: 1 to 1,000 calls a second, fluctuates, no devops

● ~15ms overhead latency

● Any runtime, any architecture



• Two distinct phases: training and inference

• Lots of processing power

• Heterogenous hardware (CPUs, GPUs, TPUs, etc.)

• Limited by compute rather than bandwidth

• “Tensorflow is open source, scaling it is not.” - Kenny Daniel

Characteristics of AI
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TRAINING

Long compute cycle

Fixed load (Inelastic)

Stateful

OWNER: Data Scientists

Single user
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Analogous to dev tool chain.

Building and iterating over a model 

is similar to building an app.

TRAINING

Long compute cycle

Fixed load (Inelastic)

Stateful

OWNER: Data Scientists

Single user



Use Case
Jian Yang made an app to recognize food “SeeFood”. Fully trained. Works on his machine.

All rights reserved HBO



Use Case
He deployed his trained model to a GPU-enabled server

GPU-enabled 

Server

?



Use Case
The app is a hit!

SeeFood
Productivity

All rights reserved HBO



?
?

Use Case
… and now his server is overloaded.

GPU-enabled 

Server

?

xN

?



MICROSERVICES: the design of a system as 

independently deployable, loosely coupled 

services.

We’ll be talking about Microservices & Serverless Computing

ADVANTAGES

• Maintainability

• Scalability

• Rolling deployments

SERVERLESS: the encapsulation, starting, and 

stopping of singular functions per request, with a 

just-in-time-compute model.

ADVANTAGES

• Cost / Efficiency

• Concurrency built-in

• Speed of development

• Improved latency
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INFERENCE

Short compute bursts

Elastic

Stateless

OWNER: DevOps

TRAINING

Long compute cycle

Fixed load (Inelastic)

Stateful

OWNER: Data Scientists

Multiple usersSingle user

Analogous to dev tool chain.

Building and iterating over a model 

is similar to building an app.
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Analogous to dev tool chain.

Building and iterating over a model 

is similar to building an app.

Analogous to an OS. 

Running concurrent models 

requires task scheduling.

INFERENCE

Short compute bursts

Elastic

Stateless

OWNER: DevOps

TRAINING

Long compute cycle

Fixed load (Inelastic)

Stateful

OWNER: Data Scientists

Multiple usersSingle user
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Metal or VM Containers

INFERENCE

Short compute bursts

Elastic

Stateless

OWNER: DevOps

TRAINING

Long compute cycle

Fixed load (Inelastic)

Stateful

OWNER: Data Scientists

Multiple usersSingle user
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Metal or VM Containers Kubernetes

INFERENCE

Short compute bursts

Elastic

Stateless

OWNER: DevOps

TRAINING

Long compute cycle

Fixed load (Inelastic)

Stateful

OWNER: Data Scientists

Multiple usersSingle user
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Metal or VM Containers Kubernetes

INFERENCE

Short compute bursts

Elastic

Stateless

Multiple users

OWNER: DevOps

TRAINING

Long compute cycle

Fixed load (Inelastic)

Stateful

Single user

OWNER: Data Scientists
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+ +

● Elastic

● Scalable

● Software agnostic

● Hardware agnostic

=

Why Microservices?
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● Cost / Efficiency

● Concurrency built-in

● Improved latency

Why Serverless?



Why Serverless - Cost Efficiency
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Jian Yang’s “SeeFood” is most active during lunchtime.



Traditional Architecture - Design for Maximum
C
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Autoscale Architecture - Design for Local Maximum
C

a
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Serverless Architecture - Design for Minimum
C

a
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Why Serverless - Concurrency

GPU-enabled 

Servers
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Why Serverless - Improved Latency
Portability = Low Latency
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+ +

ALSO:

GPU Memory Management, Job Scheduling, Cloud Abstraction, etc.



An Operating System for AI
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Runtime Abstraction

Support any 

programming language 

or framework, including 

interoperability between 

mixed stacks.

Elastic Scale

Prioritize and 

automatically optimize 

execution of concurrent 

short-lived jobs.

Cloud Abstraction

Provide portability to 

algorithms, including 

public clouds or private 

clouds.

Discoverability, Authentication, Instrumentation, etc.

Shell & Services

Kernel
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Kernel: Elastic Scale

User

Web Load Balancer

API Load Balancer

Web Servers

API Servers

Cloud Region #1

Worker xN

Docker(algorithm#1)

..

Docker(algorithm#n)

Cloud Region #2

Worker xN

Docker(algorithm#1)

..

Docker(algorithm#n)
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Composability

Composability is critical for AI workflows because of data 

processing pipelines and ensembles.

Fruit or Veggie

Classifier

Fruit

Classifier

Veggie

Classifier
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Kernel: Elastic Scale + Intelligent Orchestration

CPU util, GPU util, Memory 

util, IO util

FoodClassifier

CPU util, GPU util, Memory 

util, IO util

FruitClassifier

CPU util, GPU util, Memory 

util, IO util

VeggieClassifier
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Kernel: Elastic Scale + Intelligent Orchestration

Knowing that:

● Algorithm A always calls Algorithm B

● Algorithm A consumes X CPU, X Memory, etc

● Algorithm B consumes X CPU, X Memory, etc

Therefore we can slot them in a way that:

● Reduce network latency

● Increase cluster utilization

● Build dependency graphs

CPU util, GPU util, Memory 

util, IO util

FoodClassifier

CPU util, GPU util, Memory 

util, IO util

FruitClassifier

CPU util, GPU util, Memory 

util, IO util

VeggieClassifier
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Kernel: Runtime Abstraction

FoodClassifier

FruitClassifier VeggieClassifier
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Kernel: Cloud Abstraction - Storage

# No storage abstraction

s3    = boto3.client( "s3" )

obj   = s3.get_object(Bucket= "bucket - name" , Key= "records.csv" )

data  = obj[ "Body" ].read()

# With storage abstraction

data   = Algorithmia().client.file( " blob://records.csv " ).get()

s3://foo/bar

blob://foo/bar

hdfs://foo/bar

dropbox://foo/bar

etc.
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Compute EC2 CE VM Nova

Autoscaling Autoscaling Group Autoscaler Scale Set Heat Scaling Policy

Load Balancing
Elastic Load 

Balancer
Load Balancer Load Balancer LBaaS

Remote Storage Elastic Block Store Persistent Disk File Storage Block Storage

Partial Source: Sam Ghods, KubeConf 2016

Kernel: Cloud Abstraction
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Summary - What makes an OS for AI?

Stack-agnostic

Composable

Self-optimizing

Auto-scaling

Monitorable

Discoverability



iOS/Android
Built-in App Store

(Discoverability)

Punched Cards
1970s

Unix
Multi-tenancy, Composability

DOS
Hardware Abstraction

GUI (Win/Mac)
Accessibility



Punched Cards
1970s

AI is here

iOS/Android
Built-in App Store

(Discoverability)



Diego Oppenheimer 

CEO

Thank you!

diego@algorithmia.com

@doppenhe

FREE STUFF:

Signup with code: NVIDIAGTC18
for $50 on us. 



more slides



43Source: Jerry Chen, Greylock Ventures

The New Moats



Punched Cards
1970s

GitHub and Heroku
Today



# init

client  = Algorithmia.client()

# get data (S3)

s3    = boto3.client( "s3" )

obj   = s3.get_object(Bucket= "bucket - name" , Key= "records.csv" )

data  = obj[ "Body" ].read()

# remove seasonality

data = client.algo( "ts/RemoveSeasonality" ).pipe(data).result

# forecast time series

data = client.algo( "ts/ForecastLSTM" ).pipe(data).result
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Kernel: Cloud Abstraction - Storage

# init

client  = Algorithmia.client()

# get data (anything)

data    = client.file( " blob://records.csv " ).get()

# remove seasonality

data = client.algo( "ts/RemoveSeasonality" ).pipe(data).result

# forecast time series

data = client.algo( "ts/ForecastLSTM" ).pipe(data).result
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01   # MY_ALGORITHM.py

02

03   client  = Algorithmia.client()

04   data    = client.file( "blob://records.csv" ).get()

05

06   # remove seasonality

07 data = client.algo( "ts/RemoveSeasonality" ).pipe(data).result

08

09   # forecast time series

10 data = client.algo( "ts/ForecastLSTM" ).pipe(data).result
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Kernel: Elastic Scale + Intelligent Orchestration

# MY_ALGORITHM.py

client  = Algorithmia.client()

data    = client.file( "blob://records.csv" ).get()

# remove seasonality

data = client.algo( "ts/RemoveSeasonality" ).pipe(data).result

# forecast time series

data = client.algo( "ts/ForecastLSTM" ).pipe(data).result

CPU util, GPU util, Memory 

util, IO util

MyAlgorithm

CPU util, GPU util, Memory 

util, IO util

RemoveSeasonality

CPU util, GPU util, Memory 

util, IO util

ForecastLSTM
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Kernel: Elastic Scale + Intelligent Orchestration

Knowing that:

● Algorithm A always calls Algorithm B

● Algorithm A consumes X CPU, X Memory, etc

● Algorithm B consumes X CPU, X Memory, etc

Therefore we can slot them in a way that:

● Reduce network latency

● Increase cluster utilization

● Build dependency graphs

CPU util, GPU util, Memory 

util, IO util

MyAlgorithm

CPU util, GPU util, Memory 

util, IO util

RemoveSeasonality

CPU util, GPU util, Memory 

util, IO util

ForecastLSTM
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Kernel: Runtime Abstraction

# MY_ALGORITHM.py

client  = Algorithmia.client()

data    = client.file( "blob://records.csv" ).get()

# remove seasonality

data = client.algo( "ts/RemoveSeasonality" ).pipe(data).result

# forecast time series

data = client.algo( "ts/ForecastLSTM" ).pipe(data).result

MyAlgorithm

RemoveSeasonality ForecastLSTM
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Challenges

● Machine learning

○ CPU/GPU/Specialized hardware

○ Multiple frameworks, languages, dependencies

○ Called from different devices/architectures

● “Snowflake” environments

○ Unique cloud hardware and services

● Uncharted territory

○ Not a lot of literature, errors messages sometimes cryptic (can’t just stackoverflow)


