
Building an Operating System for AI
How Microservices and Serverless Computing Enable

the Next Generation of Machine Intelligence

Diego Oppenheimer, CEO

diego@algorithmia.com

About Me

Diego Oppenheimer - Founder and CEO - Algorithmia

● Product developer, entrepreneur, extensive background in all things data.

● Microsoft: PowerPivot, PowerBI, Excel and SQL Server.

● Founder of algorithmic trading startup

● BS/MS Carnegie Mellon University

Make state-of-the-art algorithms

discoverable and accessible

to everyone.

4

Algorithmia.com
AI/ML scalable infrastructure on demand + marketplace

● Function-as-a-service for Machine & Deep Learning

● Discoverable, live inventory of AI

● Monetizable

● Composable

● Every developer on earth can make their app intelligent

“There’s an algorithm for that!”
70K+ DEVELOPERS 5K+ ALGORITHMS

6

How do we do it?

● ~5,000 algorithms (60k w/ different versions)

● Each algorithm: 1 to 1,000 calls a second, fluctuates, no devops

● ~15ms overhead latency

● Any runtime, any architecture

• Two distinct phases: training and inference

• Lots of processing power

• Heterogenous hardware (CPUs, GPUs, TPUs, etc.)

• Limited by compute rather than bandwidth

• “Tensorflow is open source, scaling it is not.” - Kenny Daniel

Characteristics of AI

8

TRAINING

Long compute cycle

Fixed load (Inelastic)

Stateful

OWNER: Data Scientists

Single user

9

Analogous to dev tool chain.

Building and iterating over a model

is similar to building an app.

TRAINING

Long compute cycle

Fixed load (Inelastic)

Stateful

OWNER: Data Scientists

Single user

Use Case
Jian Yang made an app to recognize food “SeeFood”. Fully trained. Works on his machine.

All rights reserved HBO

Use Case
He deployed his trained model to a GPU-enabled server

GPU-enabled

Server

?

Use Case
The app is a hit!

SeeFood
Productivity

All rights reserved HBO

?
?

Use Case
… and now his server is overloaded.

GPU-enabled

Server

?

xN

?

MICROSERVICES: the design of a system as

independently deployable, loosely coupled

services.

We’ll be talking about Microservices & Serverless Computing

ADVANTAGES

• Maintainability

• Scalability

• Rolling deployments

SERVERLESS: the encapsulation, starting, and

stopping of singular functions per request, with a

just-in-time-compute model.

ADVANTAGES

• Cost / Efficiency

• Concurrency built-in

• Speed of development

• Improved latency

15

INFERENCE

Short compute bursts

Elastic

Stateless

OWNER: DevOps

TRAINING

Long compute cycle

Fixed load (Inelastic)

Stateful

OWNER: Data Scientists

Multiple usersSingle user

Analogous to dev tool chain.

Building and iterating over a model

is similar to building an app.

16

Analogous to dev tool chain.

Building and iterating over a model

is similar to building an app.

Analogous to an OS.

Running concurrent models

requires task scheduling.

INFERENCE

Short compute bursts

Elastic

Stateless

OWNER: DevOps

TRAINING

Long compute cycle

Fixed load (Inelastic)

Stateful

OWNER: Data Scientists

Multiple usersSingle user

17

Metal or VM Containers

INFERENCE

Short compute bursts

Elastic

Stateless

OWNER: DevOps

TRAINING

Long compute cycle

Fixed load (Inelastic)

Stateful

OWNER: Data Scientists

Multiple usersSingle user

18

Metal or VM Containers Kubernetes

INFERENCE

Short compute bursts

Elastic

Stateless

OWNER: DevOps

TRAINING

Long compute cycle

Fixed load (Inelastic)

Stateful

OWNER: Data Scientists

Multiple usersSingle user

19

Metal or VM Containers Kubernetes

INFERENCE

Short compute bursts

Elastic

Stateless

Multiple users

OWNER: DevOps

TRAINING

Long compute cycle

Fixed load (Inelastic)

Stateful

Single user

OWNER: Data Scientists

20

+ +

● Elastic

● Scalable

● Software agnostic

● Hardware agnostic

=

Why Microservices?

21

● Cost / Efficiency

● Concurrency built-in

● Improved latency

Why Serverless?

Why Serverless - Cost Efficiency
C

a
lls

 p
e
r

S
e
c
o
n
d

Max calls/s

Avg calls/s

40

35

30

25

20

15

10

5

G
P

U
 S

e
rv

e
r

In
s
ta

n
c
e
s

12

AM

02

AM

04

AM

06

AM

08

AM

10

AM

12

PM

02

PM

04

PM

06

PM

08

PM

10

PM

160

140

120

100

80

60

40

20

Jian Yang’s “SeeFood” is most active during lunchtime.

Traditional Architecture - Design for Maximum
C

a
lls

 p
e
r

S
e
c
o
n
d

Max calls/s

Avg calls/s

40

35

30

25

20

15

10

5

12

AM

02

AM

04

AM

06

AM

08

AM

10

AM

12

PM

02

PM

04

PM

06

PM

08

PM

10

PM

40 machines 24 hours. $648 * 40 = $25,920 per month

G
P

U
 S

e
rv

e
r

In
s
ta

n
c
e
s

160

140

120

100

80

60

40

20

Autoscale Architecture - Design for Local Maximum
C

a
lls

 p
e
r

S
e
c
o
n
d

Max calls/s

Avg calls/s

40

35

30

25

20

15

10

5

12

AM

02

AM

04

AM

06

AM

08

AM

10

AM

12

PM

02

PM

04

PM

06

PM

08

PM

10

PM

19 machines 24 hours. $648 * 40 = $12,312 per month

G
P

U
 S

e
rv

e
r

In
s
ta

n
c
e
s

160

140

120

100

80

60

40

20

Serverless Architecture - Design for Minimum
C

a
lls

 p
e
r

S
e
c
o
n
d

Max calls/s

Avg calls/s

40

35

30

25

20

15

10

5

12

AM

02

AM

04

AM

06

AM

08

AM

10

AM

12

PM

02

PM

04

PM

06

PM

08

PM

10

PM

Avg. of 21 calls / sec, or equivalent of 6 machines. $648 * 6 = $3,888 per month

160

140

120

100

80

60

40

20

G
P

U
 S

e
rv

e
r

In
s
ta

n
c
e
s

?
?

Why Serverless - Concurrency

GPU-enabled

Servers

?

L
o
a
d
 B

a
la

n
c
e
r

Why Serverless - Improved Latency
Portability = Low Latency

28

+ +

ALSO:

GPU Memory Management, Job Scheduling, Cloud Abstraction, etc.

An Operating System for AI

30

Runtime Abstraction

Support any

programming language

or framework, including

interoperability between

mixed stacks.

Elastic Scale

Prioritize and

automatically optimize

execution of concurrent

short-lived jobs.

Cloud Abstraction

Provide portability to

algorithms, including

public clouds or private

clouds.

Discoverability, Authentication, Instrumentation, etc.

Shell & Services

Kernel

31

Kernel: Elastic Scale

User

Web Load Balancer

API Load Balancer

Web Servers

API Servers

Cloud Region #1

Worker xN

Docker(algorithm#1)

..

Docker(algorithm#n)

Cloud Region #2

Worker xN

Docker(algorithm#1)

..

Docker(algorithm#n)

32

Composability

Composability is critical for AI workflows because of data

processing pipelines and ensembles.

Fruit or Veggie

Classifier

Fruit

Classifier

Veggie

Classifier

33

Kernel: Elastic Scale + Intelligent Orchestration

CPU util, GPU util, Memory

util, IO util

FoodClassifier

CPU util, GPU util, Memory

util, IO util

FruitClassifier

CPU util, GPU util, Memory

util, IO util

VeggieClassifier

34

Kernel: Elastic Scale + Intelligent Orchestration

Knowing that:

● Algorithm A always calls Algorithm B

● Algorithm A consumes X CPU, X Memory, etc

● Algorithm B consumes X CPU, X Memory, etc

Therefore we can slot them in a way that:

● Reduce network latency

● Increase cluster utilization

● Build dependency graphs

CPU util, GPU util, Memory

util, IO util

FoodClassifier

CPU util, GPU util, Memory

util, IO util

FruitClassifier

CPU util, GPU util, Memory

util, IO util

VeggieClassifier

35

Kernel: Runtime Abstraction

FoodClassifier

FruitClassifier VeggieClassifier

36

Kernel: Cloud Abstraction - Storage

No storage abstraction

s3 = boto3.client("s3")

obj = s3.get_object(Bucket= "bucket - name" , Key= "records.csv")

data = obj["Body"].read()

With storage abstraction

data = Algorithmia().client.file(" blob://records.csv ").get()

s3://foo/bar

blob://foo/bar

hdfs://foo/bar

dropbox://foo/bar

etc.

37

Compute EC2 CE VM Nova

Autoscaling Autoscaling Group Autoscaler Scale Set Heat Scaling Policy

Load Balancing
Elastic Load

Balancer
Load Balancer Load Balancer LBaaS

Remote Storage Elastic Block Store Persistent Disk File Storage Block Storage

Partial Source: Sam Ghods, KubeConf 2016

Kernel: Cloud Abstraction

38

Summary - What makes an OS for AI?

Stack-agnostic

Composable

Self-optimizing

Auto-scaling

Monitorable

Discoverability

iOS/Android
Built-in App Store

(Discoverability)

Punched Cards
1970s

Unix
Multi-tenancy, Composability

DOS
Hardware Abstraction

GUI (Win/Mac)
Accessibility

Punched Cards
1970s

AI is here

iOS/Android
Built-in App Store

(Discoverability)

Diego Oppenheimer

CEO

Thank you!

diego@algorithmia.com

@doppenhe

FREE STUFF:

Signup with code: NVIDIAGTC18
for $50 on us.

more slides

43Source: Jerry Chen, Greylock Ventures

The New Moats

Punched Cards
1970s

GitHub and Heroku
Today

init

client = Algorithmia.client()

get data (S3)

s3 = boto3.client("s3")

obj = s3.get_object(Bucket= "bucket - name" , Key= "records.csv")

data = obj["Body"].read()

remove seasonality

data = client.algo("ts/RemoveSeasonality").pipe(data).result

forecast time series

data = client.algo("ts/ForecastLSTM").pipe(data).result

45

Kernel: Cloud Abstraction - Storage

init

client = Algorithmia.client()

get data (anything)

data = client.file(" blob://records.csv ").get()

remove seasonality

data = client.algo("ts/RemoveSeasonality").pipe(data).result

forecast time series

data = client.algo("ts/ForecastLSTM").pipe(data).result

46

01 # MY_ALGORITHM.py

02

03 client = Algorithmia.client()

04 data = client.file("blob://records.csv").get()

05

06 # remove seasonality

07 data = client.algo("ts/RemoveSeasonality").pipe(data).result

08

09 # forecast time series

10 data = client.algo("ts/ForecastLSTM").pipe(data).result

47

Kernel: Elastic Scale + Intelligent Orchestration

MY_ALGORITHM.py

client = Algorithmia.client()

data = client.file("blob://records.csv").get()

remove seasonality

data = client.algo("ts/RemoveSeasonality").pipe(data).result

forecast time series

data = client.algo("ts/ForecastLSTM").pipe(data).result

CPU util, GPU util, Memory

util, IO util

MyAlgorithm

CPU util, GPU util, Memory

util, IO util

RemoveSeasonality

CPU util, GPU util, Memory

util, IO util

ForecastLSTM

48

Kernel: Elastic Scale + Intelligent Orchestration

Knowing that:

● Algorithm A always calls Algorithm B

● Algorithm A consumes X CPU, X Memory, etc

● Algorithm B consumes X CPU, X Memory, etc

Therefore we can slot them in a way that:

● Reduce network latency

● Increase cluster utilization

● Build dependency graphs

CPU util, GPU util, Memory

util, IO util

MyAlgorithm

CPU util, GPU util, Memory

util, IO util

RemoveSeasonality

CPU util, GPU util, Memory

util, IO util

ForecastLSTM

49

Kernel: Runtime Abstraction

MY_ALGORITHM.py

client = Algorithmia.client()

data = client.file("blob://records.csv").get()

remove seasonality

data = client.algo("ts/RemoveSeasonality").pipe(data).result

forecast time series

data = client.algo("ts/ForecastLSTM").pipe(data).result

MyAlgorithm

RemoveSeasonality ForecastLSTM

50

Challenges

● Machine learning

○ CPU/GPU/Specialized hardware

○ Multiple frameworks, languages, dependencies

○ Called from different devices/architectures

● “Snowflake” environments

○ Unique cloud hardware and services

● Uncharted territory

○ Not a lot of literature, errors messages sometimes cryptic (can’t just stackoverflow)

