Improving Commercial Fleet Safety and Performing High-Def Mapping At the Same Time
The Safety Challenge
Road Accidents are the leading cause of loss of life & property

- [Globally] est. 1.25M fatalities annually
 WHO
- [US] ~$800B financial loss due to road accidents in 2010
- 94% of accidents are due to driver related reasons

The Dynamic Mapping Challenge
L2+ to L5 autonomous vehicles leverage HD maps that need to be updated frequently.

- [US] ~$2B estimate to HD-Map the US once using existing approaches
 Raquel Urtasun, Uber ATG, NIPS Dec 2016
Netradyne Solution

• A Deep Learning AI driven IoT solution focused on improving commercial vehicle & driver safety

• And in the process continuously collect vast amounts of rich, vision based data

Leverage this data to create

• Dynamic HD Maps
Driveri™

Vision-Based IoT Driving Monitoring System

- **Quad HD Cameras**
 - 360 Degree, 120 dB HDR

- **NVIDIA TX1**
 - Deep Learning Processor

- **Inertial Sensors**
 - 9 Axis Accelerometer
 - Gyro
 - Magneto sensors

- **Communication Channels**
 - 4G LTE / Wi-Fi / BT / GPS
 - Integrated with CAN Bus (J1939/OBD II)

- **Storage**
 - Up to 50 Hours of Video on device

Driveri™ uses Edge Computing to analyze every second of driving
The most extensive collection of Rich, Vision Based Driving Data

Several million and growing ...

Ride Sharing

Commercial Fleets

22M US, 150M globally

In 2018:
100M miles/month

In 2020:
1B+ miles/month
Real-time edge-computing to fully analyze the visual scene.

Scene Examples
Netradyne US Miles Analyzed via IDMS
Netradyne Miles Analyzed – Urban Coverage

Netradyne Phoenix Coverage

Netradyne San Diego Coverage
Dynamic 3D HD Maps
Autonomous Driving with Dynamic HD Maps

- Autonomous cars (Level 2-5) use HD maps to understand the road environment
- Maps need to be updated dynamically to reflect changes in the road environment
- Sometimes the road geometry needs to be inferred
 - Inferred lanes when lanes are poorly marked
 - Stop location for stop signs, traffic lights
 - Intersections can be very challenging
Current Methods for Generating HD Maps

Test Vehicles with LiDAR

- Very expensive. Dynamic updates of hours/days/weeks impractical
- Not enough information to provide ‘inferred’ road geometry.

Crowdsourcing from autonomous cars

- It will be a very long time before there is sufficient penetration of autonomous cars to provide a comprehensive crowd-sourced map.
- No means to gather human driving patterns to aid in map-making
Netradyne Dynamic 3D HD Maps

- **Method:** Generate real-time, crowd sourced, “High Definition” maps using the commercially deployed Driveri devices.
 - 3D localization with target <10 cm relative accuracy

- **Dynamic Update:** Develop SLAM approaches to crowd source and quickly update for accidents, road construction, and other changes.

- **Inferred Drivable Surface:**
 - Use Deep Learning & crowd-sourcing to generate accurate ‘inferred’ lanes & road boundaries even when the lane markings are poor or absent.
 - Use crowd-sourced analysis of human driving patterns to aid in inferring the road geometry.

- **Edge Computing:** Real-time, edge computing. Small BW usage

First Person View of SLAM-based Mapping

Everyday objects & lanes become navigation landmarks
Detecting marked & inferred lanes

Visible / Inferred Lane
Road Boundary
Ego Left / Ego Right
Yellow
Carpool
Crowd-sourced Behavioral Models for HD Maps

- Learn the implicit ‘Rules of the road’ from human-drivers
- Co-exist with human drivers

‘Where to park?’

‘Where to stop?’

Probability of traffic light violation
Example Generated Map