Adapting Minisweep, a Proxy Application, on Heterogeneous Systems Using OpenACC Directives

Sunita Chandrasekaran, Assistant Professor
Robert Searles, Ph.D. Student
University of Delaware, DE, USA
March 27, GTC 2018, Room 211B
schandra@udel.edu

In Collaboration with Oscar Hernandez, Wayne Joubert from ORNL
Application Overview

- Minisweep, a miniapp, represents 80-90% of Denovo S_n code
- Denovo S_n (discrete ordinate), part of DOE INCITE project, is used to model fusion reactor – CASL, ITER
 - **Impact:** By running Minisweep faster, experiments with more configurations can be performed directly impacting the determination of accuracy of radiation shielding
 - **Impact:** High-fidelity predictive capability for component and system performance
-Poses a six dimensional problem
 - 3D in space, 2D in angular particle direction and 1D in particle energy
- The parallel pattern observed is wavefront-based

schandra@udel.edu; S8848, GTC 2018
Overview of Sweep Algorithm

• 5 nested loops
 • X, Y, Z dimensions, (outer loops)
 • Energy Groups, Moments, Angles (in-grid cells)
 • Upstream data dependency

• Challenge to achieve high performance
 • sparse hyperbolic PDE solvers are generally limited to very low computational intensities

• Goal to expose as much as thread parallelism as possible, maximize locality of reference, reduce cost of data transfer
Parallelizing Sweep Algorithm
(Video/Image Credit – Evan Krape, UDEL)
Parallelizing Sweep Algorithm: KBA

- Koch-Baker-Alcouffe (KBA)

- Algorithm developed in 1992 at Los Alamos

- Parallel sweep algorithm that overcomes some of the dependencies using a wavefront.
Work somewhat similar to KBA

• Past work wasn’t accelerating across all problem dimensions (space, octant, angle, moment, energy groups)
• Sweep3D – Los Alamos National Laboratory (LANL) on GPUs
• Algorithm parallelized in space and vectorized in angle for the IBM Cell processor
Expressing wavefront via software abstractions – A Challenge

• Existing solutions involve manual rewrites, or compiler-based loop transformations

• CHiLL framework, a polyhedral compiler for transformation framework

• No solution in high-level languages like OpenMP/OpenACC

• No software abstractions
Using OpenACC to program KBA

- Spatial decomposition = outer layer (KBA)
 - No existing abstraction for this
- In-gridcell computations = inner layer
 - Application specific
- Upstream data dependencies
 - Slight variation between wavefront applications
Using OpenACC to program KBA

• Storing all previous wavefronts is unnecessary
 • How many neighbors and prior wavefronts are accessed?
• Face arrays make indexing easy
 • Smaller data footprint
• Limiting memory to the size of the largest wavefront is optimal, but not practical
Parallelization of the in-gridcell computations in Minisweep is value based off of the thread's value, which allows us to exploit parallelism across gridcells, while still forming for each energy group within each gridcell. We mark these values and the wavefront it is within the bounds of the wavefront being converted to angles, which corresponds to the energy groups and angles) and execute at the serial code if one were to simply remove all the directives.

This allows us to exploit parallelism across gridcells, while still forming for each energy group within each gridcell. We mark these values and the wavefront it is within the bounds of the wavefront being converted to angles, which corresponds to the energy groups and angles) and execute at the serial code if one were to simply remove all the directives.

Examined (denoted by the current wavefront iteration number).

This spawns a number of permutations and other loop restructuring operations, loop blocking, etc. This provides a slightly higher abstraction level than the CUDA driver API, both cases require manual prefetching of data across the hierarchy and shown in Figure 1. The computations within these wavefronts can then map at either the gang or vector level. For Minisweep's present level parallelism across the inner two dimensions:

```c
#pragma acc loop independent gang, collapse(2)
for (iy = 0; iy < dim_y; ++iy)
for (ix = 0; ix < dim_x; ++ix)
{
  int iz = wavefront - (ix + iy);
  if (iz >= 0 && iz <= wavefront && iz < dim_z)
  {
    /* moments to angles */
    #pragma acc loop independent vector, collapse(3)
    for (ie = 0; ie < dim_ne; ++ie)
    for (iu = 0; iu < NU; ++iu)
    for (ia = 0; ia < dim_na; ++ia)
    {
      P_result = (P)0;
      #pragma acc loop seq
      for (im = 0; im < dim_nm; ++im)
      {
        /* solve */
        #pragma acc loop independent vector, collapse(2)
        for (ie = 0; ie < dim_ne; ++ie)
        for (ia = 0; ia < dim_na; ++ia)
        {
          /* solve calculation */
          /* angles to moments */
          #pragma acc loop independent vector, collapse(3)
          for (ie = 0; ie < dim_ne; ++ie)
          for (iu = 0; iu < NU; ++iu)
          for (im = 0; im < dim_nm; ++im)
          {
            P_result = (P)0;
            #pragma acc loop seq
            for (ia = 0; ia < dim_na; ++ia)
            {
              /* angles to moments conversion */
            }
          }
        }
      }
    } /* moments to angles */
  }
}
```
Create software abstractions for Wavefront

• Avoid manual loop restructuring

• Analyze flow of data and computation in wavefront codes

• Memory model abstraction

• Wavefront loop transformation algorithm

• Need to address multiple layers of parallelism (minisweep 5-levels)
Minisweep code status

- Github: https://github.com/wdj/minisweep
- Was ported to CUDA and OpenMP targeting Beacon and TITAN at ORNL
- Being currently used for SummitDev and Summit acceptance testing at ORNL
Experimental Setup

• **NVIDIA PSG Cluster**
 - CPU: Intel Xeon E5-2698 v3 (16-core)
 - GPU: NVIDIA Tesla P100, Tesla V100, and Tesla K40 (4 GPUs per node)

• **ORNL Titan**
 - CPU: AMD Opteron 6274 (16-core)
 - GPU: NVIDIA Tesla K20x

• **PGI OpenACC Compiler 17.10**
 - OpenMP – GCC 6.2.0 (we used Intel 17.0 compiler too but GCC performed better)
Input Parameters

• Scientifically (Rep. runs within Denovo)
 • X/Y/Z dimensions = 64 (you could have diff. values for the 3 dimensions)
 • # Energy Groups = 64
 • # Angles = 32

• Goal is to explore larger spatial dimensions
Results

Minisweep Speedups

Table 2: Specifications of the nodes in the systems we used to test different configurations of Minisweep.

<table>
<thead>
<tr>
<th>Machine</th>
<th>Cores</th>
<th>SMs</th>
<th>GF/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>K20x (Titan)</td>
<td>8</td>
<td>266</td>
<td>124.9</td>
</tr>
<tr>
<td>K40 (PSG)</td>
<td>64</td>
<td>32</td>
<td>4.69</td>
</tr>
<tr>
<td>P100 (PSG)</td>
<td>32</td>
<td>64</td>
<td>4.61</td>
</tr>
<tr>
<td>V100 (PSG)</td>
<td>64</td>
<td>32</td>
<td>4.26</td>
</tr>
<tr>
<td>NVIDIA Tesla K20X</td>
<td>64</td>
<td>266</td>
<td>55.9</td>
</tr>
<tr>
<td>NVIDIA Tesla K40</td>
<td>32</td>
<td>32</td>
<td>53.12</td>
</tr>
<tr>
<td>NVIDIA Tesla V100</td>
<td>64</td>
<td>32</td>
<td>13.11</td>
</tr>
<tr>
<td>ORNL Summitdev</td>
<td>64</td>
<td>56</td>
<td>55.9</td>
</tr>
<tr>
<td>ORNL Titan</td>
<td>32</td>
<td>14</td>
<td>55.9</td>
</tr>
<tr>
<td>IBM POWER8 (10 cores)</td>
<td>16</td>
<td>266</td>
<td>4.69</td>
</tr>
<tr>
<td>AMD Opteron 6274 (16 cores)</td>
<td>32</td>
<td>64</td>
<td>4.26</td>
</tr>
<tr>
<td>Intel KNL 7230 (64 cores)</td>
<td>64</td>
<td>32</td>
<td>4.61</td>
</tr>
<tr>
<td>Intel Xeon E5-2690 v2 (10 cores)</td>
<td>8</td>
<td>266</td>
<td>124.9</td>
</tr>
<tr>
<td>Intel Xeon E5-2698 v3 (16 cores)</td>
<td>16</td>
<td>32</td>
<td>4.69</td>
</tr>
</tbody>
</table>

Table 3: Comparative performance on several platforms.

<table>
<thead>
<tr>
<th>Machine</th>
<th>Cores</th>
<th>SMs</th>
<th>GF/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>K20x (Titan)</td>
<td>8</td>
<td>266</td>
<td>124.9</td>
</tr>
<tr>
<td>K40 (PSG)</td>
<td>64</td>
<td>32</td>
<td>4.69</td>
</tr>
<tr>
<td>P100 (PSG)</td>
<td>32</td>
<td>64</td>
<td>4.61</td>
</tr>
<tr>
<td>V100 (PSG)</td>
<td>64</td>
<td>32</td>
<td>4.26</td>
</tr>
<tr>
<td>NVIDIA Tesla K20X</td>
<td>64</td>
<td>266</td>
<td>55.9</td>
</tr>
<tr>
<td>NVIDIA Tesla K40</td>
<td>32</td>
<td>32</td>
<td>53.12</td>
</tr>
<tr>
<td>NVIDIA Tesla V100</td>
<td>64</td>
<td>32</td>
<td>13.11</td>
</tr>
<tr>
<td>ORNL Summitdev</td>
<td>64</td>
<td>56</td>
<td>55.9</td>
</tr>
<tr>
<td>ORNL Titan</td>
<td>32</td>
<td>14</td>
<td>55.9</td>
</tr>
<tr>
<td>IBM POWER8 (10 cores)</td>
<td>16</td>
<td>266</td>
<td>4.69</td>
</tr>
<tr>
<td>AMD Opteron 6274 (16 cores)</td>
<td>32</td>
<td>64</td>
<td>4.26</td>
</tr>
<tr>
<td>Intel KNL 7230 (64 cores)</td>
<td>64</td>
<td>32</td>
<td>4.61</td>
</tr>
<tr>
<td>Intel Xeon E5-2690 v2 (10 cores)</td>
<td>8</td>
<td>266</td>
<td>124.9</td>
</tr>
<tr>
<td>Intel Xeon E5-2698 v3 (16 cores)</td>
<td>16</td>
<td>32</td>
<td>4.69</td>
</tr>
</tbody>
</table>
Results, On-going work

• Parallelized the in-grid cell computations,
• Also the spatial decomposition utilizing the KBA parallel sweep algorithm to resolve data dependencies
• Maintained a single code base for CPUs, GPUs
• OpenACC implementation on Volta GPU shows 85.06x over 83.72x using CUDA
• On-going work - multidirectional-sweep
Takeaway(s)

• Application of directives to a code is not magical !!
• It takes several iterative steps to get it right and get comparable speedup
• Time taken for development can vary depending on programmers’ expertise
• Provide feedback to the “user-driven” OpenACC standard committee about need for directives/software abstractions - this is a KEY step for standard’s progress.
• Let’s talk if you have a code that demonstrates need for a directive, which currently does not exist in the standard – Contact me schandra@udel.edu

• ACK: Mat Colgrove (PGI), Pat Brooks (PGI) OpenACC Standard Committee
• Many thanks to NVIDIA for giving us access to their PSG cluster!

schandra@udel.edu; S8848, GTC 2018