Neural Networks

Fully connected layers

- neurons
Neural Networks

Fully connected layers

- neurons compute $\max\{0, \sum_j w_j a_{i,j}\}$
Monte Carlo Methods all over Neural Networks

Examples

- drop out
- drop connect
- stochastic binarization
- stochastic gradient descent
- fixed pseudo-random matrices for direct feedback alignment
- ...

NVIDIA Confidential
Monte Carlo Methods all over Neural Networks

Observations

- the brain
 - about 10^{11} nerve cells with to up to 10^4 connections to others
 - much more energy efficient than a GPU
Monte Carlo Methods all over Neural Networks

Observations

- the brain
 - about 10^{11} nerve cells with to up to 10^4 connections to others
 - much more energy efficient than a GPU

- artificial neural networks
 - rigid layer structure
 - expensive to scale in depth
 - partially trained fully connected
Monte Carlo Methods all over Neural Networks

Observations

- the brain
 - about 10^{11} nerve cells with up to 10^4 connections to others
 - much more energy efficient than a GPU

- artificial neural networks
 - rigid layer structure
 - expensive to scale in depth
 - partially trained fully connected

- goal: explore algorithms linear in time and space
Partition instead of Dropout
Partition instead of Dropout
Guaranteeing coverage of neural units

- so far: dropout neuron if threshold $t > \xi$
 - ξ by linear feedback register generator (for example)
Partition instead of Dropout
Guaranteeing coverage of neural units

- so far: dropout neuron if threshold $t > \xi$
 - ξ by linear feedback register generator (for example)

- now: assign neuron to partition $p = \lfloor \xi \cdot P \rfloor$ out of P
 - less random number generator calls
 - all neurons guaranteed to be considered
Partition instead of Dropout
Guaranteeing coverage of neural units

- so far: dropout neuron if threshold $t > \xi$
 - ξ by linear feedback register generator (for example)

- now: assign neuron to partition $p = \left\lfloor \xi \cdot P \right\rfloor$ out of P
 - less random number generator calls
 - all neurons guaranteed to be considered

<table>
<thead>
<tr>
<th>LeNet on MNIST</th>
<th>Average of $t = 1/2$ to $1/9$ dropout</th>
<th>Average of $P = 2$ to 9 partitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean accuracy</td>
<td>0.6062</td>
<td>0.6057</td>
</tr>
<tr>
<td>StdDev accuracy</td>
<td>0.0106</td>
<td>0.009</td>
</tr>
</tbody>
</table>
Partition instead of Dropout

Training accuracy with LeNet on MNIST

Accuracy vs. Epoch of Training

- 2 dropout partitions
- 1/2 dropout
Partition instead of Dropout

Training accuracy with LeNet on MNIST
Simulating Discrete Densities
Simulating Discrete Densities

Stochastic evaluation of scalar product

- discrete density approximation of the weights
Simulating Discrete Densities
Stochastic evaluation of scalar product

- discrete density approximation of the weights
Simulating Discrete Densities

Stochastic evaluation of scalar product

- discrete density approximation of the weights

- remember to flip sign accordingly
Simulating Discrete Densities

Stochastic evaluation of scalar product

- discrete density approximation of the weights

- remember to flip sign accordingly

- transform jittered equidistant samples using cumulative distribution function of absolute value of weights
Simulating Discrete Densities

Stochastic evaluation of scalar product

- partition of unit interval by sums $P_k := \sum_{j=1}^{k} |w_j|$ of normalized absolute weights

$$0 = P_0 < P_1 < \cdots < P_m = 1$$
Simulating Discrete Densities

Stochastic evaluation of scalar product

- partition of unit interval by sums $P_k := \sum_{j=1}^{k} |w_j|$ of normalized absolute weights

$$0 = P_0 < P_1 < \cdots < P_m = 1$$

- using a uniform random variable $\xi \in [0,1)$ we find

 select neuron $i \iff P_{i-1} \leq \xi < P_i$ satisfying $\text{Prob}(\{P_{i-1} \leq \xi < P_i\}) = |w_i|$
Simulating Discrete Densities

Stochastic evaluation of scalar product

- partition of unit interval by sums $P_k := \sum_{j=1}^{k} |w_j|$ of normalized absolute weights

$$0 = P_0 < P_1 < \cdots < P_m = 1$$

- using a uniform random variable $\xi \in [0, 1)$ we find

 select neuron $i \Leftrightarrow P_{i-1} \leq \xi < P_i$ satisfying

 $$\text{Prob}(\{P_{i-1} \leq \xi < P_i\}) = |w_i|$$

- transform jittered equidistant samples using cumulative distribution function of absolute value of weights
Simulating Discrete Densities

Stochastic evaluation of scalar product

- partition of unit interval by sums $P_k := \sum_{j=1}^{k} |w_j|$ of normalized absolute weights

 $$0 = P_0 < P_1 < \cdots < P_m = 1$$

- using a uniform random variable $\xi \in [0, 1)$ we find

 select neuron $i \leftrightarrow P_{i-1} \leq \xi < P_i$ satisfying $\text{Prob}(\{P_{i-1} \leq \xi < P_i\}) = |w_i|$

- transform jittered equidistant samples using cumulative distribution function of absolute value of weights

- in fact derivation of quantization to weights in $\{-1, 0, +1\}$
 - integer weights if a neuron referenced more than once
 - explains why ternary and binary did not work in some articles
 - relation to drop connect and drop out, too
Simulating Discrete Densities

Test accuracy for two layer ReLU feedforward network on MNIST

- able to achieve 97% of accuracy of model by sampling most important 12% of weights!
Simulating Discrete Densities

Application to convolutional layers

- sample from distribution of filter (for example, $128 \times 5 \times 5 = 3200$)
 - less redundant than fully connected layers

- LeNet Architecture on CIFAR-10, best accuracy is 0.6912

- able to get 88% of accuracy of full model at 50% sampled
Simulating Discrete Densities

Test accuracy for LeNet on CIFAR-10

Test Accuracy vs Number of Samples per Filter
Neural Networks linear in Time and Space
Neural Networks linear in Time and Space

Number n of neural units

- for L fully connected layers

$$n = \sum_{i=1}^{L} n_i$$

where n_i is the number of neurons in layer i.
Neural Networks linear in Time and Space

Number n of neural units

- for L fully connected layers

$$n = \sum_{i=1}^{L} n_i$$

where n_i is the number of neurons in layer l

- number of weights

$$n_w = \sum_{i=1}^{L} n_{i-1} \cdot n_i$$
Neural Networks linear in Time and Space

Number n of neural units

- for L fully connected layers

\[n = \sum_{i=1}^{L} n_i \]

where n_i is the number of neurons in layer i

- number of weights

\[n_w = \sum_{i=1}^{L} n_{i-1} \cdot n_i \]

- choose number of weights per neuron such that n proportional to n_w
 - for example, constant number n_w of weights per neuron
Neural Networks linear in Time and Space

Results

![Graph showing test accuracy vs percent of FC layers sampled for LeNet on MNIST and LeNet on CIFAR-10. The graph depicts a nearly horizontal line for both datasets, indicating high accuracy with varying percentages of FC layers sampled.]
Neural Networks linear in Time and Space

Test accuracy for AlexNet on CIFAR-10

Test Accuracy vs. Percent of FC layers sampled
Neural Networks linear in Time and Space

Test accuracy for AlexNet on ILSVRC12

Percent of FC layers sampled vs. Test Accuracy

- Top-5 Accuracy
- Top-1 Accuracy

NVIDIA Confidential
Neural Networks linear in Time and Space

Sampling paths through networks

- complexity bounded by number of paths times depth
- strong indication of relation to Markov chains
- importance sampling by weights
Neural Networks linear in Time and Space
Sampling paths through networks

- sparse from scratch
Neural Networks linear in Time and Space
Sampling paths through networks

- sparse from scratch
Neural Networks linear in Time and Space
Sampling paths through networks

- sparse from scratch

- guaranteed connectivity
Neural Networks linear in Time and Space

Sampling paths through networks

- sparse from scratch

- guaranteed connectivity
Neural Networks linear in Time and Space
Sampling paths through networks

- sparse from scratch

- guaranteed connectivity
Neural Networks linear in Time and Space
Sampling paths through networks

- sparse from scratch

- guaranteed connectivity
Neural Networks linear in Time and Space

Test accuracy for 4 layer feedforward network (784/300/300/10)
Monte Carlo Methods and Neural Networks
Monte Carlo Methods and Neural Networks

Summary

- dropout partitions reduce variance
 - using much less random numbers
Monte Carlo Methods and Neural Networks

Summary

- dropout partitions reduce variance
 - using much less random numbers

- simulating discrete densities explains \{-1, 0, 1\} and integer weights
 - compression and quantization without retraining
Monte Carlo Methods and Neural Networks

Summary

- dropout partitions reduce variance
 - using much less random numbers

- simulating discrete densities explains \{-1, 0, 1\} and integer weights
 - compression and quantization without retraining

- neural networks with linear complexity for both inference and training
 - sparse from scratch
 - sampling paths through neural networks instead of drop connect and drop out