

AGENDA

Defect Inspection and its challenges

NGC Docker images

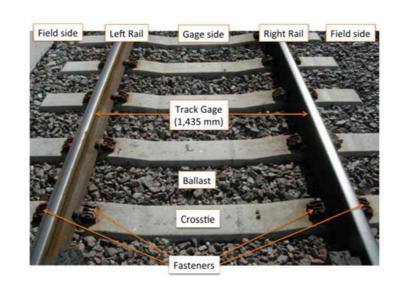
Model set up - Unet

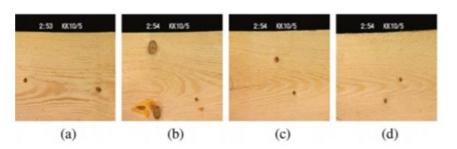
Data preparation - DAGM

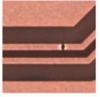
Production - Speed up with TensorRT

INDUSTRIAL DEFECT INSPECTION

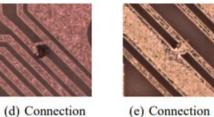
INDUSTRIAL DEFECT INSPECTION

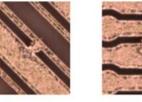






(a) Disconnection



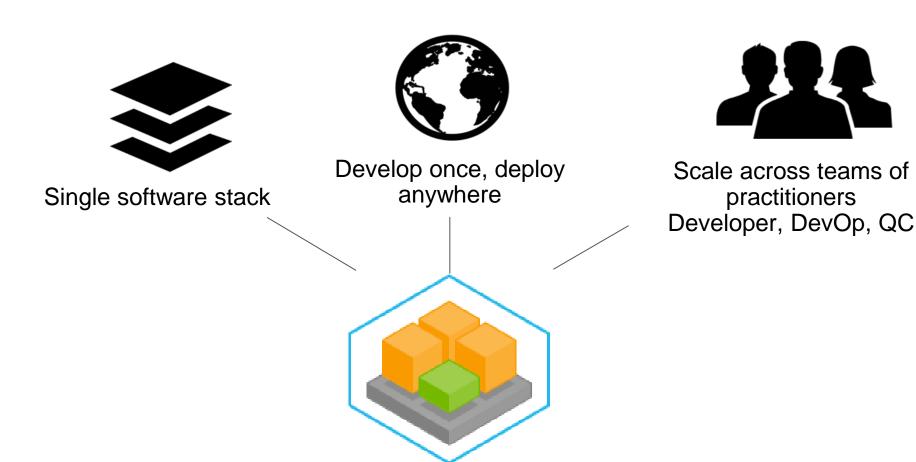


(f) Projection

NGC DOCKER IMAGES

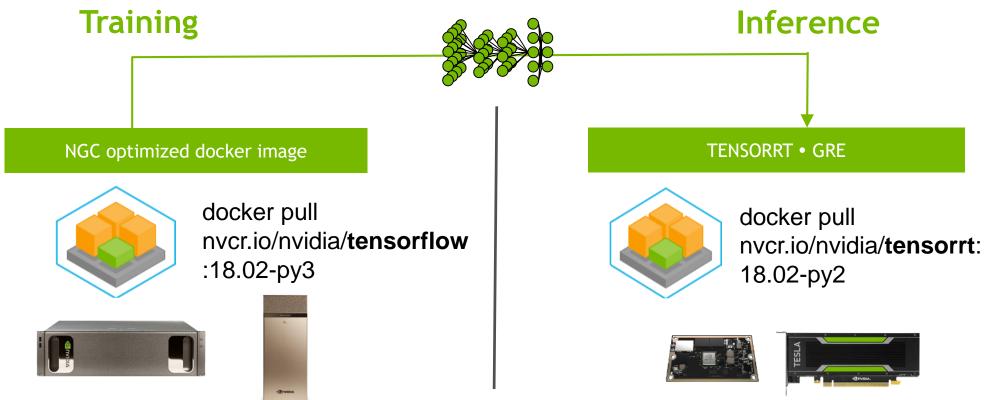
Benefits for Deep Learning Workflow

High Level Benefits and Feature Set



Defect inspection Workflow

from scratch to production within container

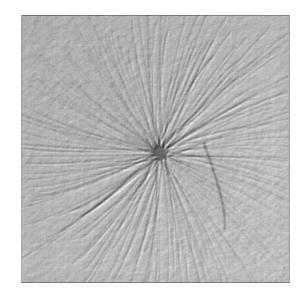


MODEL SET UP

WAYS FOR DEFECT INSPECTION

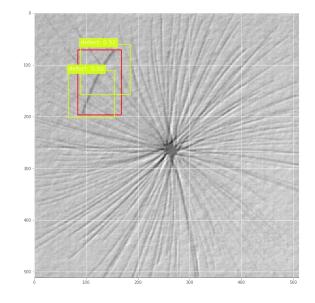
Depends on domain adaptation

Image Classification



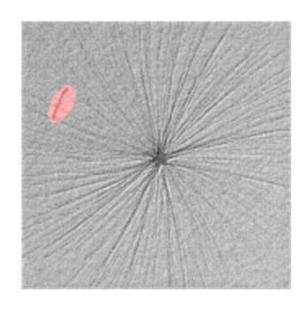
Label: 0 / 1 (Defect / Non Defect)

Object Detection



Label: Bounding-Box

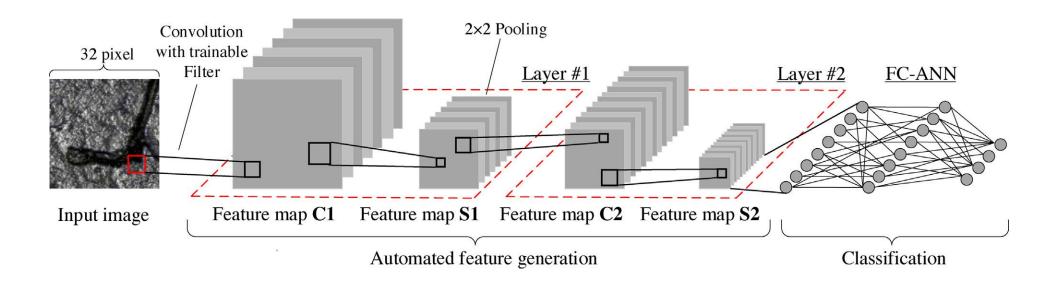
Image Segmentation



Label: Polygons Mask

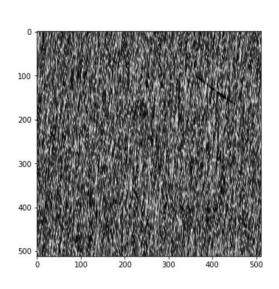
CNN STRUCTURE

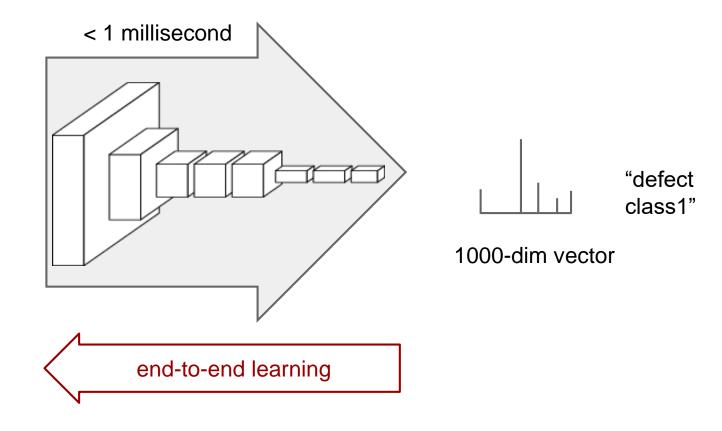
LeNet



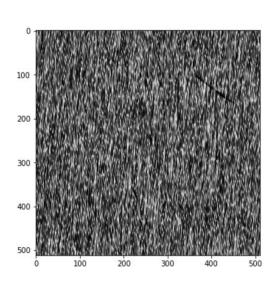
Source: Design of Deep Convolutional Neural Network Architectures for Automated Feature Extraction in Industrial Inspection, D. Weimer et al, 2016

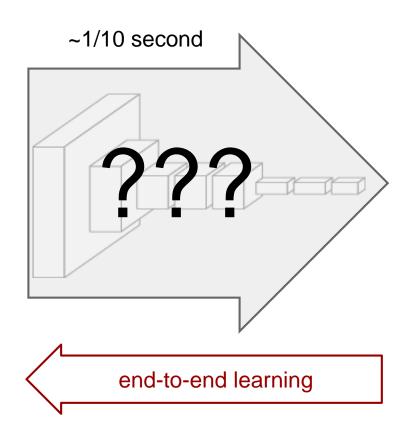
convnets perform classification

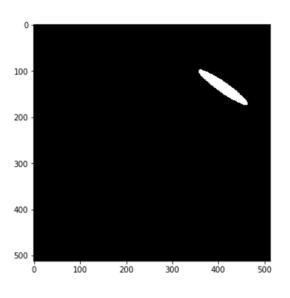




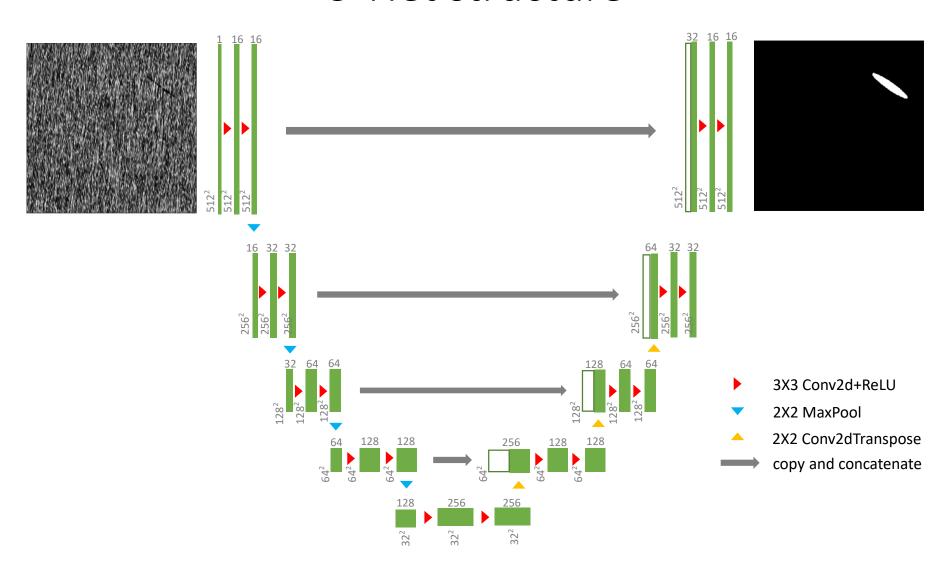
lots of pixels, little time?







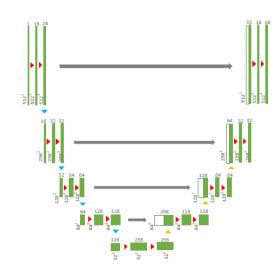
U-Net structure



KERAS IMPLEMENTATION

Convolution

```
inputs = Input((IMAGE HEIGHT, IMAGE WIDTH, IMAGE CHANNELS))
inputs_norm = Lambda(lambda x: x/127.5 - 1.)
conv1 = Conv2D(8, (3, 3), activation='relu', padding='same')(inputs)
conv1 = Conv2D(8, (3, 3), activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool size=(2, 2))(conv1)
conv2 = Conv2D(16, (3, 3), activation='relu', padding='same')(pool1)
conv2 = Conv2D(16, (3, 3), activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D(pool size=(2, 2))(conv2)
conv3 = Conv2D(32, (3, 3), activation='relu', padding='same')(pool2)
conv3 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(64, (3, 3), activation='relu', padding='same')(pool3)
conv4 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv4)
pool4 = MaxPooling2D(pool size=(2, 2))(conv4)
conv5 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool4)
conv5 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv5)
```



DECODING

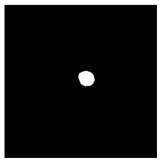
deconvolution

```
up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat',
conv6 = Conv2D(64, (3, 3), activation='relu', padding='same')(up6)
conv6 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv6)
up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat',
conv7 = Conv2D(32, (3, 3), activation='relu', padding='same')(up7)
conv7 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv7)
up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat',
conv8 = Conv2D(16, (3, 3), activation='relu', padding='same')(up8)
conv8 = Conv2D(16, (3, 3), activation='relu', padding='same')(conv8)
up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat axis=3)
conv9 = Conv2D(8, (3, 3), activation='relu', padding='same')(up9)
conv9 = Conv2D(8, (3, 3), activation='relu', padding='same')(conv9)
conv10 = Conv2D(1, (1, 1), activation='sigmoid')(conv9)
model = Model(inputs=inputs, outputs=conv10)
```

Image segmentation on medical images

Same process among various use cases

Data Science BOWL 2016

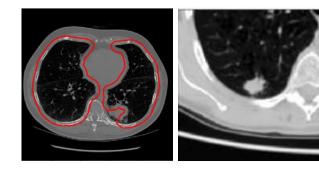


MRI image

Left ventricle

heart disease

Data Science BOWL 2017

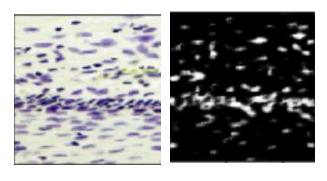


CT image

Nodule

Lung cancer

Data Science BOWL 2018



Image

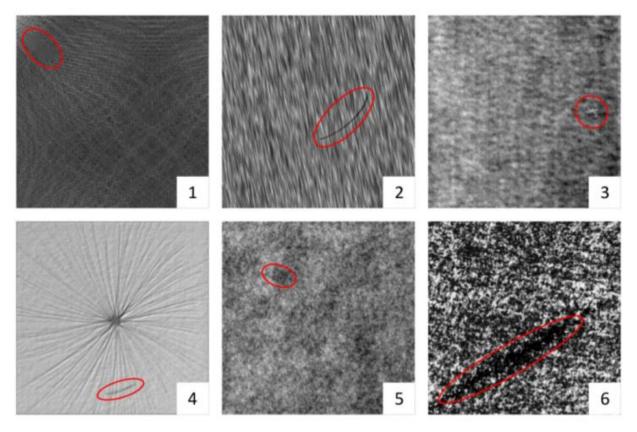
Nuclei

Drug discovery

DATA PREPARATION

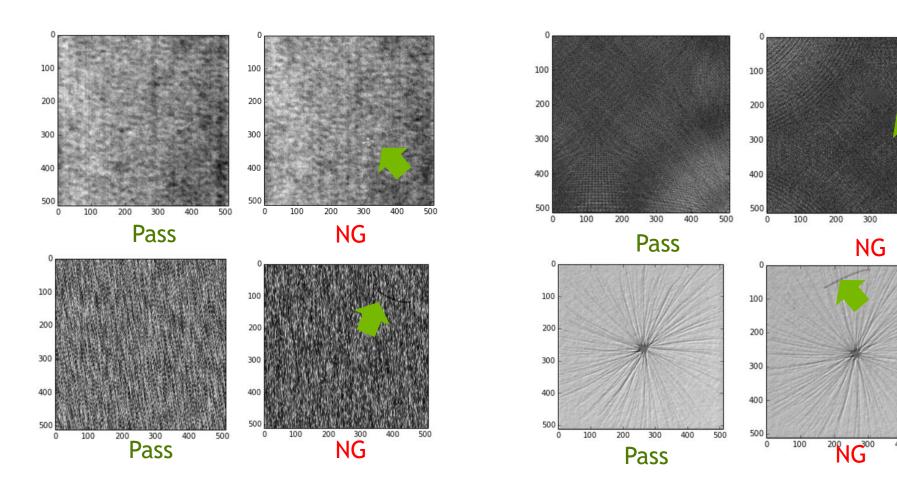
INDUSTRIAL OPTICAL INSPECTION

German Association for Pattern Recognition



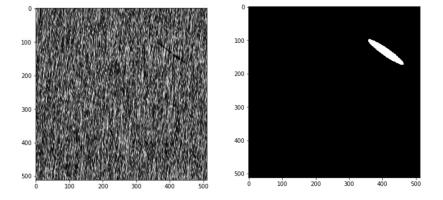
INDUSTRIAL OPTICAL INSPECTION

German Association for Pattern Recognition



DATA DETAILS

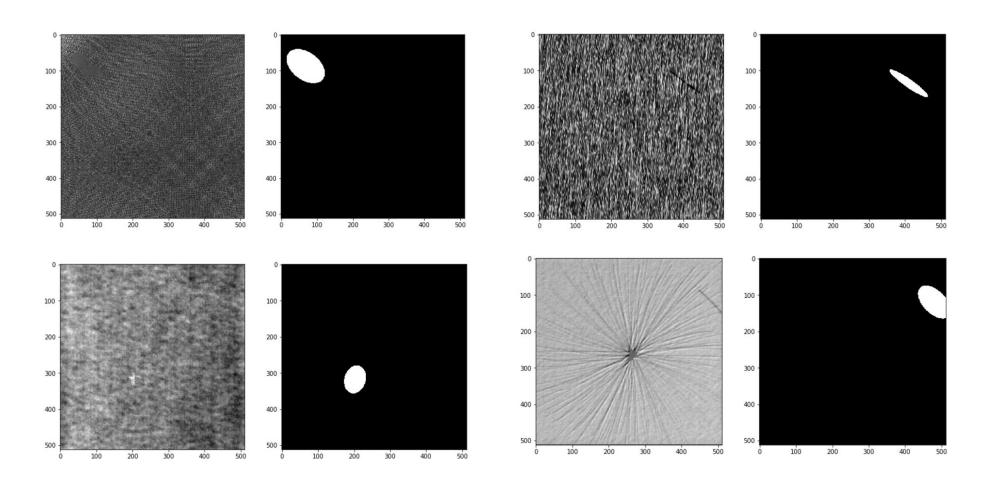
- Original images are 512 x 512 grayscale format
- Output is a tensor of size 512 x 512 x 1
 - Each pixel belongs to one of two classes



Training set consist of 100 images

Validation set consist of 50 images

MORE EXAMPLES

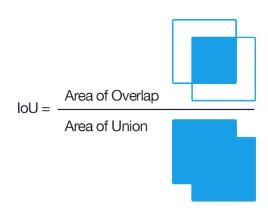


IMBALANCE DATA

Dice Metric (IOU)

Metric to compare the similarity of two samples:

$$\frac{2A_{nl}}{A_n + A_l}$$



- Where:
 - A_n is the area of the contour predicted by the network
 - A₁ is the area of the contour from the label
 - A_{nl} is the intersection of the two
 - The area of the contour that is predicted correctly by the network
 - 1.0 means perfect score.
- More accurately compute how well we're predicting the contour against the label
- We can just count pixels to give us the respective areas

LOSS FUNCTION WITH KERAS

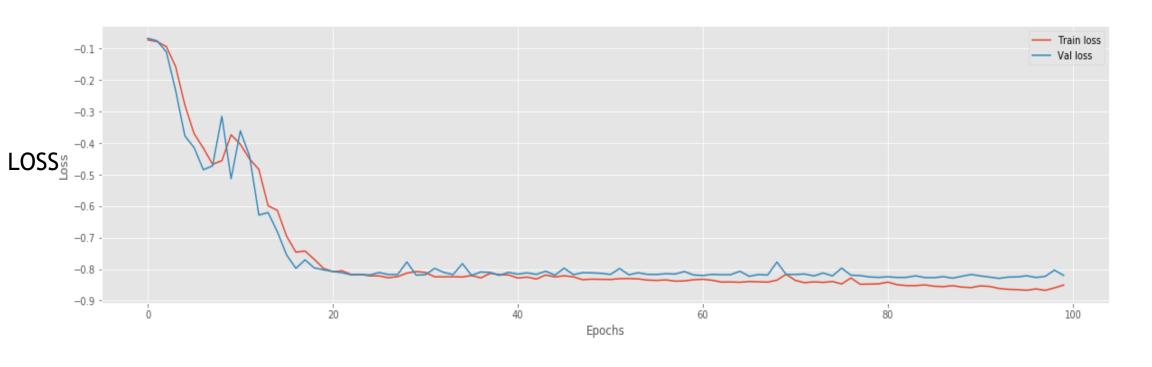
```
def IOU_calc(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    intersection = K.sum(y_true_f * y_pred_f)

    return 2*(intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)

def IOU_calc_loss(y_true, y_pred):
    return -IOU_calc(y_true, y_pred)
```

model.compile(optimizer=Adam(lr=1e-4), loss=IOU_calc_loss, metrics=[IOU_calc])

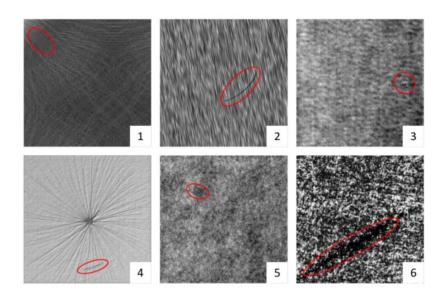
LEARNING CURVES

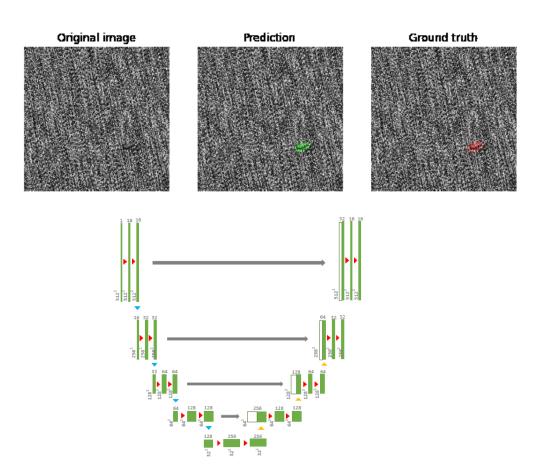


APPLICATION: INDUSTRIAL INSPECTION

NVIDIA

- 1000 defect-free, 150 defect images
- Challenges: Not all deviations from the texture are necessarily defects.

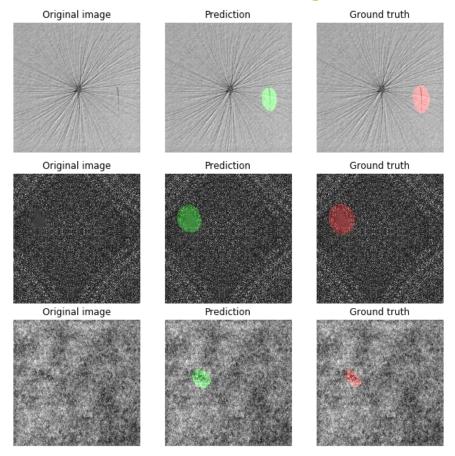




PRODUCTION

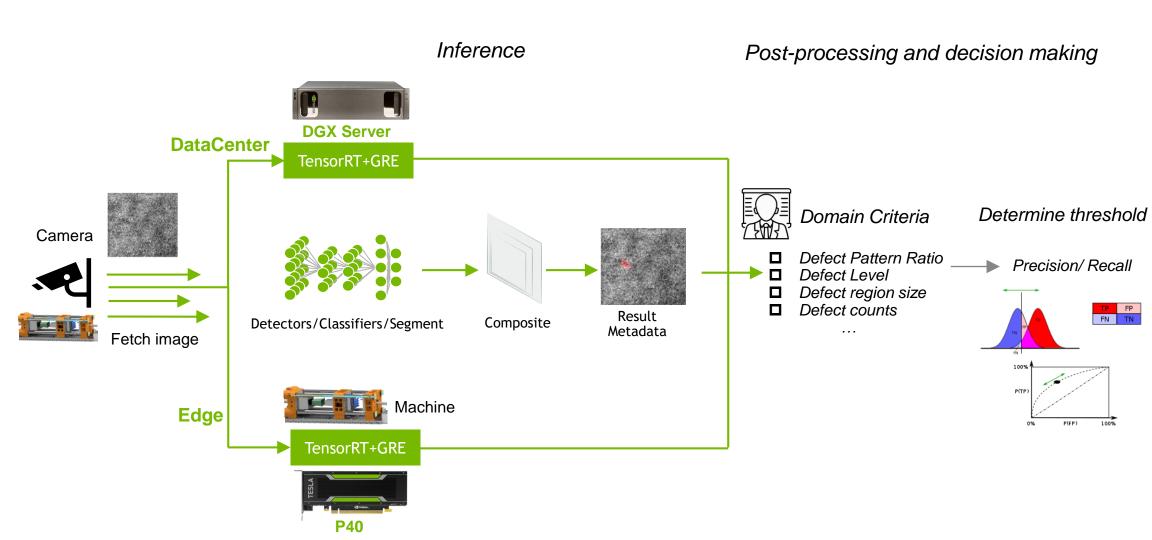
FINAL DECISION

Plus Human Logic



Size, Position, ... etc

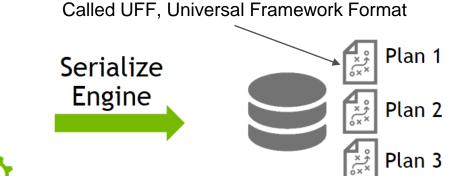
INFERENCE PIPELINE



Caffe Python/C++ API Python/C++ API Model Importer ONNX Import Model Trained Neural

Network

Development flow

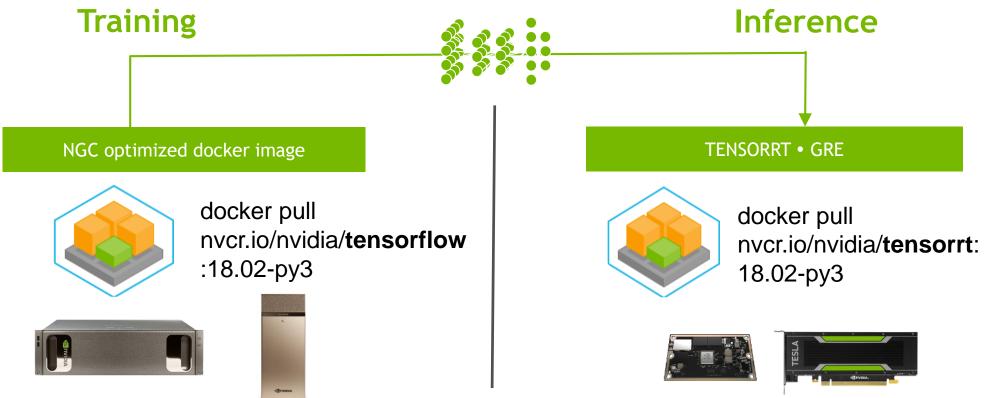


TensorRT Optimizer

Optimized Plans

Defect inspection Workflow

from scratch to production within container



SUMMARY

Challenges	Delivers
Training, inference environment is hard to build, maintain, share.	Using NGC Docker images.
Model optimizations and speed up throughput.	TensorRT + GRE SDK
So many deep learning model out there, how to choose the right model?	If your dataset, demand requirement fit the scenario like we do. U-Net model is great choice for segmentation task.

Thank You