Deep Generative Modeling for Speech Synthesis and Sensor Data Augmentation

Deep Generative Neural Network

Text → Deep Generative Neural Network → Speech

Praveen Narayanan
Ford Motor Company
PROJECT DESCRIPTION

- Use of DNNs increasingly prevalent as a solution for many data intensive applications
- Key bottleneck – requires large amounts of data with rich feature sets

 => Can we produce synthetic, realistic data?

- This work aims to leverage state of the art DNN approaches to produce synthetic data that are real world representative

 - Deep Generative modeling:
 - A new research approach using DNN, came into vogue in the last three years
 - Examples: VAE, GAN, PixelRNN, Wavenet
 - VAE – Variational Autoencoder: Maximizing a variational objective bound + reparametrization
 - GAN – Generative Adversarial Nets: Adversarial learning with a discriminator

- Some application areas of generative models:
 - Data augmentation in missing data problems – e.g. when labels are missing or bad
 - Generating samples from high dimensional pdfs – e.g. producing rich feature sets
 - Synthetic data generation for simulation – e.g. reinforced learning in a simulated environment
TECHNICAL SCOPE

➢ Text to speech problem
 • Given text, convert to speech
 • Use to train ASR

➢ Produce speech from text with custom attributes
 Examples:
 Male vs female speech (voice conversion)
 Accented speech: English in different accents
 Multilanguage

➢ Sensor data augmentation
 • Effecting transformations on data
 – Rotations on point clouds
 – Generating data in adverse weather conditions

Hello

Do you speak Mandarin?

Nǐ huì shuō pǔtōnghuà ma

Mandarin

Parrot Accent
SCOPE OF THIS TALK

- Very brief introduction to generative models (GANs, VAEs, autoregressive models)
- Describe the text to speech problem (TTS)
- High level overview of “Tacotron” – a quasi end to end TTS system from Google
- Speech feature processing
 - Different types of features used in speech signal processing
- Describe the CBHG network and our implementation
 - Originally proposed in the context of NMT
 - Used in Tacotron
- Voice conversion using VAEs
- Conditional variational autoencoders to transform images
GENERATIVE MODELING “TOOLS”

- Generative Adversarial Networks (GANs)
- Variational Autoencoders (VAEs)
- Autoregressive models
 - RNNs
 - Vanilla RNNs
 - Gated: LSTM, GRU, possibly bidirectional
 - Seq2seq + attention
 - Dilated convolutions
 - Wavenet, Bytenet, PixelRNN, PixelCNN

[Goodfellow; Kingma and Welling; Rezende and Mohamed; Van den Oord et al]
VARIATIONAL AUTOENCODER RESOURCES

Vanilla VAE
- Kingma and Welling
- Rezende and Mohamed

Semi Supervised VAE (SSL+conditioning, etc.)
- Kingma et. al

Related
- DRAW (Gregor et al)
- IAF/Variational Normalizing flows (Kingma, Mohamed)

Blogs and helpers
- Tutorial on VAEs (Doersch)
- Brian Keng’s blog (http://bjlkeng.github.io/)
- Shakir Mohamed’s blog (http://blog.shakirm.com/)
- Ian Goodfellow’s book (http://www.deeplearningbook.org/)
TEXT TO SPEECH

- Given a text sequence, produce a speech sequence using DNNs

- Historical approach:
 - Concatenative TTS (concatenate speech segments)
 - Parametric TTS (Zen et al)
 - HMMs
 - DNNs

- Recent developments
 - Treat as seq2seq problem a la NMT

- Two current approaches
 - RNNs
 - Autoregressive CNNs (Wavenet/Bytenet/PixelRNN)
CURRENT BLEEDING EDGE LANDSCAPE

- Last 2 years (!)
 - Tacotron series (2017+)
 - DeepVoice, Tacotron are seq2seq models with text in => waveform out
 - Seq2seq + attention (Bahdanau style)
 - Wavenet series [not relevant, but very instructive]
 - Wavenet 1: fast training, slow generation
 - Wavenet 2: (a brilliancy) – two developments (100X over wavenet)
 1) Inverse Autoregressive Flow – fast inference
 2) Probability Density “Distillation” (as against estimation)
 - cooperative training during inference to match PDF of trained wavenet
DNN WORKFLOW
Deep Generative Neural Network

➢ Tacotron, Baidu Deepvoice
 • Seq2seq+attention RNN trained end to end
Earlier models

TEXT VS PHONEME FEATURES

hello → **RNN** → **h/eh/l/ow** → **RNN** → **Speech**

Text sequence → Phoneme sequence

Tacotron

hello → **RNN** → **Speech**

Text sequence → Speech frames

Phoneme (‘token’/segment) → text
Text→phoneme needs another DNN
Not totally “end-to-end”
SEQ2SEQ+ATTENTION

- Originally proposed in NMT context (Bahdanau, Cho et. al.)

- Variable word length
- Word ordering different

I am not a small black cat

je ne suis pas un petit chat noir

Attention weights
Input and output words
TACOTRON: SEQ2SEQ+ATTENTION

Sophisticated architecture
Built on top of Bahdanau
Preprocessing of text
Postprocessing of output ‘mel’ frames

Training: <text/mel> pairs
Main theme: Synthesize voice using generative modeling (VAEs/GANs)
Sub-theme: Feature generation for audio critical for audio processing
Audio representations:
- Raw waveforms: uncompressed, 1D, amplitude vs time – 16 kHz
- Linear spectrograms: 2D, frequency bins vs time (1025 bins)
- Mel spectrograms: 2D, compressed log-scale representation (80 bins)
Compressed (mel) representations
- Easier to train neural network
- Lossy
- Need compression but also need to keep sufficient number of features
MOTIVATION

Text to Speech

Text → DNN → Speech Features → ? → Speech

Speech to transformed speech

Speech → STFT → Speech Features → DNN → Speech Features → ? → Speech

Power & mel spectrogram

Raw Audio
MEL FEATURES

- Order of magnitude compression beneficial to train DNNs
 - Linear spectrograms: 1025 bins
 - Mel: 80 bins
- Energy is mostly contained in a smaller set of bins in linear spectrogram
- Creating mel features
 - Low frequencies matter – closely spaced filters
 - Higher frequencies less important – larger spacing

\[M = 1125 \ln(1 + \frac{f}{700}) \]

Linearly spaced bins in mel scale
Bins closely spaced at lower frequencies

(Kishore Prahllad, CMU)
AUDIO PROCESSING WORKFLOW

Feature Generation

Audio -> Linear Spectrogram -> Mel Spectrogram

Training Speech data

Mel Spectrogram -> VAE Network -> Mel Spectrogram

Postprocessing To recover audio

Mel Spectrogram -> PostNet -> Linear Spectrogram -> Audio

80 1025
Mel Linear
POST PROCESSING TO RECOVER AUDIO

- Use of Griffin-Lim procedure to convert from linear spectrogram to waveform

Use of Conv FilterBank Highway to process 80 bins from the Mel spectrogram.

- BiLSTM processes the 80 bins frames.

- PostNet converts the processed frames to 1025 bins.

- Griffin Lim converts the linear 1025 bins back to audio waveform.

Need to use a postprocessing DNN to recover audio waveform.
CBHG/POSTNET

- Originally, in Tacotron (adapted from Lee et. al.)
- “Fully Character-Level Neural Machine Translation without Explicit Segmentation”
- Tacotron: text=>phoneme bypassed to allow text=>speech
- Used in 2 places:
 - Encoder: Text=>text features
 - Postprocessor net
 - Mel spectrogram => linear spectrogram (=>audio)
CBHG DESCRIPTION

- Conv+FilterBank+Highway+GRU
- Take convolutions of sizes (1, 3, 5, 7, etc.) to account for words of varying size
- Pad accordingly to create stacks of equal length
- Max pool to create segment embeddings

(Lee et al)
CBHG DESCRIPTION

- Send to highway layers (improves training deep nets – Srivastava)
- Bi-directional GRU or LSTM
Implements upon residual connections

Residual:

\[y = f(x) + x \]

Highway motivation: use fraction of input

\[y = c \cdot f(x) + (1 - c) \cdot x \]

Now make ‘c’ a learned metric

\[y = c(x) f(x) + (1 - c(x)) \cdot x \]

Make c(x) lie between 0 and 1 by passing through sigmoid unit

Finally, use a stack of highway layers. E.g. y1(x), y2(y1), y3(y2), y4(y3)
SPECTROGRAM RECONSTRUCTIONS

- Use filter sizes of 1, 3, 5 in CBHG
- Use bi-LSTM
- Highway layer stack of 4
- Input: 80 bin mel frames with seq length 44
- Output: 1025 bin linear frames with seq length 44
- PyTorch
- Librosa
SAMPLES

“ground truth”

“reconstructed”

![Power spectrogram](image)

![Power spectrogram](image)
GENERATIVE MODELING WITH VARIATIONAL AUTOENCODERS
DESIDERATA
GENERATIVE MODELING WITH VARIATIONAL AUTOENCODERS

- Variational Inference fashioned into DNN (Kingma and Welling; Rezende and Mohamed)
PROPERTIES OF VAE

- Feed input data and encode representations in reduced dimensional space
- **Reconstruct** input data from reduced dimensional representation
 - Compression
- **Generate** new data by sampling from latent space

\[
\log P(X) - D_{KL}[Q(z|X)\|P(z|X)] = E[\log P(X|z)] - D_{KL}[Q(z|X)\|P(z)]
\]
RECONSTRUCTIONS

Original Image: 560 pixels
Reconstructed from 20 latent variables
28X image compression advantage
GENERATION

Faces and poses that did not exist!
APPLICATIONS

SPEECH ENCODINGS
SPEECH ENCODINGS USING VAES

- Encode utterances from several speakers
- Store encodings
- Generate synthetic speech by sampling from VAE
- Tried with simple utterances “hello”, “cat”, “stop” from speech commands dataset
- Samples to be used in ASR to train speech commands
WORKFLOW

- **Input:** Spectrogram
- **Convert audio signals to spectrogram**
- **Output:** spectrogram, converted to audio by Griffin Lim reconstruction
- **Librosa used to manipulate audio**
NETWORK ARCHITECTURE

- Input spectrogram: 1025x44 image (NxF)
- Audio signals invariant only in time axis
 - Take full connections in y axis
 - First layer: take 1xF convolutions
NETWORK ARCHITECTURE

- Encoder/Decoder: Convolution/Deconvolution
- Use strides for downsampling
- Multiple channels for filterbanks
- Filter sizes dx1 operating on Nx1 inputs (times \#filter banks=n)

Spectrogram $\times \times 1$
Encoder
Decoder
\[Z = \mu + \epsilon \sigma \]
Utterance: “Cat”
CVAE – ROTATED IMAGES WITH POSE AS LABEL

- Give input image + label
- Produce rotated image
- Label==angle
- One hot encoding
RECONSTRUCTIONS

Ground Truth Rotations

Reconstructed Rotations
TEST ROTATIONS

Need larger Training set

Images produced By data not in Training set
CONCLUSIONS

- **Speech features:**
 - Tacotron’s CBHG network is a necessary prelude to other operations

- **Speech transformations**
 - Custom convolutional VAE architecture
 - Improving samples and architecture ongoing

- **LIDAR**
 - Conditional VAEs/GANs for point cloud transformations
UNFINISHED WORK

- VAE: seq2seq implementations
 - Replace encoder/decoder with recurrent forms
 - Conditioning to produce custom attributes
- Can we do speech transformations with real TTS applications?
- What about voice to voice conversion applications?
- GAN formulations for losses
 - Investigate scenarios where GAN losses would be beneficial
- MSE loss used in VAE

- $L = (x_{data} - x_{recon})^2$

- Replace with GAN

- $L = L_{GAN}$

- Autoencoding Beyond Pixels

- BProp
EXAMPLES

Truth

GAN loss recon

VAE (MSE) loss recon
(Ground truth not shown)
So far, we have used L1 or L2 losses
We find that L2 losses reconstruct poorly
Can we use GANs as loss functions?
SEQ2SEQ VAE

- Improving upon vanilla vae with recurrent model

LSTM Encoder → Z → LSTM Decoder

Mel in → Reconstruction Mel out

Sketch-RNN
SEQ2SEQ VAE

Ground Truth

Reconstruction

Simple network (LSTM)
FIGURE 1

80 bins -> Conv FilterBank Highway -> 80 bins -> Processed frames -> BiLSTM -> 1025 bins

80 bins -> Audio

Griffin Lim

Linear

CBHG
FIGURE 2: EXISTING FRAMEWORK FOR LOSSES

Backprop

Mel (real) → CBHG → Linear (fake) → fake, real
L1 or L2 loss
FIGURE 3: PROPOSED FRAMEWORK WITH GAN LOSSES

Backprop

Learned GAN loss
FIGURE 5: GAN DISCRIMINATOR DESIGN

- Linear Spectrogram
 - FC in Y direction
 - Reduced Linear Spectrogram
 - Channels in Y direction
 - Conv output
 - Channels in Y direction
- Reduced Linear Spectrogram
 - 1D conv in X direction
 - Channels in Y direction
FIGURE 4: OVERVIEW OF SYSTEM ARCHITECTURE WITH GAN LOSSES

Real (mel) → CBHG → Fake (linear) → GAN Discriminator → False

Real (mel) → GAN Discriminator → True

Backprop Discriminator