DATA CENTER GPU MANAGER
Brent Stolle and David Beer
March 2018
TOOLS FOR MANAGING GPUs

Out-of-Band

GPU Metrics and Monitoring via BMC (SMBPBI)

Provide metrics (thermals, power, etc.) without the NVIDIA driver

Typically used at public CSPs (i.e. multi-tenant environments)

In-Band

Tools use the NVIDIA driver to provide GPU and NVSwitch metrics

DCGM, NVML (smi) are in-band tools

Typically used at single tenant environments
NVIDIA IN-BAND TOOLS ECOSYSTEM

- Cluster managers, Job schedulers, TSDBs, Visualization tools
- Customers integrating DCGM; CSPs for system validation
- Customers building their own GPU metrics/monitoring stack using NVML
HOW SHOULD I MANAGE MY GPUs?

<table>
<thead>
<tr>
<th>NVML</th>
<th>DCGM</th>
<th>3<sup>rd</sup> PARTY TOOLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stateless queries. Can only query current data</td>
<td>Can query a few hours of metrics</td>
<td>Provide database, graphs, and a nice UI</td>
</tr>
<tr>
<td>Low overhead while running, high overhead to develop</td>
<td>Provides health checks and diagnostics</td>
<td>Need management node(s)</td>
</tr>
<tr>
<td>Low-level control of GPUs</td>
<td>Can batch queries/operations to groups of GPUs</td>
<td>Development already done. You just have to configure the tools.</td>
</tr>
<tr>
<td>Management app must run on same box as GPUs</td>
<td>Can be remote or local</td>
<td></td>
</tr>
</tbody>
</table>
DATA CENTER GPU MANAGER (DCGM)

ACTIVE HEALTH MONITORING
- Runtime Health Checks
- Prologue Checks
- Epilogue Checks

POLICY AND ALERTING
- Pre-configured Policies
- Job Level Statistics
- Stateful Configuration

GPU DIAGNOSTICS
- Software Deployment Tests
- Stress Tests
- Hardware Issues and Interface Tests (PCIe, NVLink)

CONFIGURATION MANAGEMENT
- Dynamic Power Capping
- Synchronous Clock Boost
- Fixed Clocks
DCGM OVERVIEW
GPU Management in the Accelerated Data Center

Supported NVIDIA Hardware

- Fully supported on Tesla GPUs (Kepler+)
- Supported on Quadro, GeForce, and Titan GPUs (Maxwell+)
- Supports NvSwitch and DGX-2
- Driver R384 or Later (Linux only)

SDK Installer Packages

- .deb and .rpm Packages
- Includes Binaries - CLI (dcgmi) and daemon (nv-hostengine)
- Libraries and Headers (includes NVML)
- C and Python Bindings and Code samples
- Documentation - User Guides and API docs

Latest Release: v1.3.3 (Jan 2018)
AVAILABLE NVIDIA MANAGEMENT TOOLS

Software Stack

- Data Center GPU Manager (DCGM)
 - Additional diagnostics (aka NVVS) and active health monitoring
 - Policy management and more

- NVIDIA Management Library (NVML)
 - Low level control of GPUs
 - Included as part of driver
 - Header is part of CUDA Toolkit / DCGM
ACTIVE HEALTH MONITORING & ANALYSIS

NON INVASIVE CHECKS

Real-time monitoring & aggregated health indicator

Checks health of all GPUs and NVSwitch subsystems

- PCIe, ECC, Inforom, Power Thermal, NVLink

Run Health Check : Healthy System

dcgmi health --check -g 1

Health Monitor Report

+------------------+---+
| Overall Health: Healthy |
+==================+===+

Run Health Check : System with problems

dcgmi health -g 1 -c

Health Monitor Report

+--+
| Group 1 | Overall Health: Warning |
+==================+===+
GPU ID: 0	Warning
	PCIe system: Warning - Detected more than 8 PCIe replays per minute for GPU 0: 13
	Warning
	InfoROM system: Warning - A corrupt InfoROM has been detected in GPU 1.
+------------------+---+
Demo: Health Checks
GPU DIAGNOSTICS (NVVS) - COVERAGE AREAS

DEPLOYMENT AND SOFTWARE ISSUES
- NVML library access and versioning
- CUDA library access and versioning
- Software conflicts

HARDWARE ISSUES AND DIAGNOSTICS
- PCIe and NVLink interface checks
- Framebuffer and memory checks
- Compute engine checks

STRESS CHECKS
- Power and thermal stress
- Throughput stress
- Constant relative system performance
- Maximum relative system performance

INTEGRATION ISSUES
- PCIe and NVLink replay counter checks
- Topological limitations
- Permissions, driver and cgroups checks
- Basic power and thermal constraint checks
COMPREHENSIVE DIAGNOSTICS

ACTIVE HEALTH CHECKS

Identification, recovery & isolation of failed GPUs and NVSwitches.

Diagnostics to root cause failures, Pre & post job GPU health checks

System sanity to stress performance, bandwidth, power and thermal characteristics

Multi-level diagnostic options from few seconds to minutes

```
dcgmi diag -r 3
```

<table>
<thead>
<tr>
<th>Diagnostic</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Blacklist</td>
<td>Pass</td>
</tr>
<tr>
<td>NVML Library</td>
<td>Pass</td>
</tr>
<tr>
<td>CUDA Main Library</td>
<td>Pass</td>
</tr>
<tr>
<td>CUDA Toolkit Library</td>
<td>Pass</td>
</tr>
<tr>
<td>Permissions and OS Blocks</td>
<td>Pass</td>
</tr>
<tr>
<td>Persistence Mode</td>
<td>Pass</td>
</tr>
<tr>
<td>Environment Variables</td>
<td>Pass</td>
</tr>
<tr>
<td>Page Retirement</td>
<td>Pass</td>
</tr>
<tr>
<td>Graphics Processes</td>
<td>Pass</td>
</tr>
<tr>
<td>Inforom</td>
<td>Pass</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>GPU Memory</td>
<td>Pass - All</td>
</tr>
<tr>
<td>Diagnostic</td>
<td>Pass - All</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>PCIe</td>
<td>Pass - All</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>SM Stress</td>
<td>Pass - All</td>
</tr>
<tr>
<td>Targeted Stress</td>
<td>Pass - All</td>
</tr>
<tr>
<td>Targeted Power</td>
<td>Warn - All</td>
</tr>
<tr>
<td>Memory Bandwidth</td>
<td>Pass - All</td>
</tr>
</tbody>
</table>
```
FLEXIBLE GPU GOVERNANCE POLICIES

**With Existing Tools**
- Continuous monitoring by the user
- Identify GPUs with double bit errors
- Manually perform GPU reset to correct problems

**Using DCGM**
- **Condition**: Watch for DBE
- **Action**: Page retirement, performs page retirement, and notifies the user
- **Notification**: Callback

Auto-detects double bit errors, performs page retirement, and notifies the user
Demo: Policy Alerting
Which GPUs did my job run on?

How much of the GPUs did my job use?

Any error or warning conditions during my job (ECC errors, clock throttling, etc)

Are the GPUs healthy and ready for the next job?
**JOB STATISTICS**

```
dcgmi stats --job demojob -v -g 2
Successfully retrieved statistics for job: demojob.
```

| GPU ID: 0 |

| ----- Execution Stats ----------+-----------------------------------------|
Start Time	Wed Mar 7 10:02:34 2018
End Time	Wed Mar 7 10:10:00 2018
Total Execution Time (sec)	445.48
No. of Processes	1
Compute PID	23112

| ----- Performance Stats --------+-----------------------------------------|
Energy Consumed (Joules)	1437
Max GPU Memory Used (bytes)	120324096
SM Clock (MHz)	Avg: 998, Max: 1177, Min: 405
Memory Clock (MHz)	Avg: 2068, Max: 2505, Min: 324
SM Utilization (%)	Avg: 76, Max: 100, Min: 0
Memory Utilization (%)	Avg: 0, Max: 1, Min: 0
PCIe Rx Bandwidth (megabytes)	Avg: 0, Max: 0, Min: 0
PCIe Tx Bandwidth (megabytes)	Avg: 0, Max: 0, Min: 0

| ----- Event Stats --------------+-----------------------------------------|
Single Bit ECC Errors	5
Double Bit ECC Errors	0
PCIe Replay Warnings	0
Critical XID Errors	0

| ----- Slowdown Stats -----------+-----------------------------------------|
Due to - Power (%)	0
- Thermal (%)	Not Supported
- Reliability (%)	Not Supported
- Board Limit (%)	Not Supported
- Low Utilization (%)	Not Supported
- Sync Boost (%)	0

Detailed stats show utilization, performance and more...
WHY A DAEMON? STATEFULNESS

GPU Telemetry

5 New Single-Bit Error at 10:04
DCGM DAEMON INTERNALS

Telemetry APIs
GPU Config Management
Job/Process Stats
Health Checks
Policy Actions

Metric Cache

Cache Thread
Watch Table

NVIDIA Driver
procfs/sysfs
**GPU CONFIGURATION MANAGEMENT**

**MAINTAINS CONFIGURATION**

**Initialization:** Configure all GPUs (global group)

**Per-job basis:** Individual partitioned group settings

**Maintains** settings across driver restarts, GPU resets or at job start

Supports SET, GET and ENFORCE

---

**Disable ECC mode**

dcgmi config -g 1 --set -P 200

Configuration successfully set.

**Get Group config [Note DCGM performed reset]**

dcgmi config -g 1 --get

```
+--------------------------+------------------------+------------------------+
| all_gpu_group | | |
| Group of 2 GPUs | TARGET_CONFIGURATION | CURRENT_CONFIGURATION |
| Sync Boost | Not Specified | Disabled |
| SM Application Clock | Not Specified | 705 |
| Memory Application Clock | Not Specified | 2600 |
| ECC Mode | Disabled | Disabled |
| Power Limit | 200 | 225 |
| Compute Mode | Not Specified | E. Process |
+--------------------------+------------------------+------------------------+
```
ENHANCED POWER & CLOCK MGMT.

- **Dynamic Power Capping**
  - Drive better power density through dynamic power capping
  - Apply power capping to a single or a group of GPUs

- **Fixed Clocks**
  - Target conservative clock rate for fixed performance
  - Useful for profiling

- **Synchronous Clock Boost**
  - Predictable performance through group GPU clock boost in lockstep
  - Dynamically modulate multi-gpu clocks across multiple boards in unison based on target workload, power budgets or other criteria
DCGM MODES OF OPERATION

STANDALONE

Runs as daemon

Client libraries connect via TCP/IP

1 DCGM for several clients

EMBEDDED

Runs within client process

Even within python

1 DCGM per client process

No TCP/IP necessary
THIRD-PARTY INTEGRATIONS

Provide DcgmReader base python class for GPU / NvSwitch telemetry monitoring

Provide working examples for popular monitoring tools based on DcgmReader

DcgmReader

dcgm_prometheus
dcgm_collectd
EXAMPLE DEPLOYMENT: PROMETHEUS
Demo: DCGM + Prometheus + Grafana
Example Deployments
NVIDIA SATURNV CLUSTER
660 Compute Nodes
DCGM ROADMAP*

v1.3.3

Container Ecosystem Enablement
- DCGM enablement for non-Tesla GPUs (Maxwell+)
- Interactive Device Monitoring with ‘dmon’
- New Diagnostics to stress GPUs
- Deprecation of standalone NVVS

Jan 2018

v1.4

Improved User Experience
- Integration with 3rd party monitoring/metrics stacks (Prometheus, Grafana)
- Container orchestration (Kubernetes) support (cAdvisor metrics, health checks)
- Go Bindings
- Job Scheduler Hints
- Packages on compute/cuda repo

Apr 2018

vNext

Next Generation Systems
- DGX-2 and NVSwitch monitoring and diagnostics
- Container orchestration continued

Summer 2018

* Roadmap Subject to Change