DATA CENTER GPU MANAGER

Brent Stolle and David Beer

March 2018

TOOLS FOR MANAGING GPUs

Out-of-Band

GPU Metrics and Monitoring via BMC (SMBPBI)

Provide metrics (thermals, power, etc.) without the NVIDIA driver

Typically used at public CSPs (i.e. multi-tenant environments)

In-Band

Tools use the NVIDIA driver to provide GPU and NVSwitch metrics

DCGM, NVML (smi) are in-band tools

Typically used at single tenant environments

NVIDIA IN-BAND TOOLS ECOSYSTEM

 Cluster managers, Job schedulers, TSDBs, Visualization tools

 Customers integrating DCGM; CSPs for system validation

 Customers building their own GPU metrics/monitoring stack using NVML

HOW SHOULD I MANAGE MY GPUS?

NVML	DCGM	3 RD PARTY TOOLS
Stateless queries. Can only query current data Low overhead while running, high overhead to develop Low-level control of GPUs Management app must run on same box as GPUs	Can query a few hours of metrics Provides health checks and diagnostics Can batch queries/operations to groups of GPUs Can be remote or local	Provide database, graphs, and a nice UI Need management node(s) Development already done. You just have to configure the tools.

DATA CENTER GPU MANAGER (DCGM)

DCGM OVERVIEW

GPU Management in the Accelerated Data Center

Supported NVIDIA Hardware

- Fully supported on Tesla GPUs (Kepler+)
- Supported on Quadro, GeForce, and Titan GPUs (Maxwell+)
- Supports NvSwitch and DGX-2
- Driver R384 or Later (Linux only)

SDK Installer Packages

- .deb and .rpm Packages
- Includes Binaries CLI (dcgmi) and daemon (nv-hostengine)
- Libraries and Headers (includes NVML)
- C and Python Bindings and Code samples
- Documentation User Guides and API docs

https://developer.nvidia.com/data-center-gpu-manager-dcgm

AVAILABLE NVIDIA MANAGEMENT TOOLS

Software Stack

Data Center GPU Manager (DCGM)

- Additional diagnostics (aka NVVS) and active health monitoring
- Policy management and more

NVIDIA Management Library (NVML)

- Low level control of GPUs
- Included as part of driver
- Header is part of CUDA Toolkit / DCGM

ACTIVE HEALTH MONITORING & ANALYSIS

NON INVASIVE CHECKS

Real-time monitoring & aggregated health indicator

Checks health of all GPUs and NVSwitch subsystems

• PCIe, ECC, Inforom, Power Thermal, NVLink

Run Health Check : Healthy System

dcgmi health --check -g 1

Health Monitor Report

Overall Health: Healthy

Run Health Check : System with problems

dcgmi health -g 1 -c Health Monitor Report	
Group 1 +	Overall Health: Warning
GPU ID: 0 	Warning PCIe system: Warning - Detected more than 8 PCIe replays per minute for GPU 0: 13
- GPU ID: 1 	Warning InfoROM system: Warning - A corrupt InfoROM has been detected in GPU 1.

Demo: Health Checks

GPU DIAGNOSTICS (NVVS) - COVERAGE AREAS

DEPLOYMENT AND SOFTWARE ISSUES	HARDWARE ISSUES AND DIAGNOSTICS
 NVML library access and versioning CUDA library access and versioning Software conflicts 	 PCIe and NVLink interface checks Framebuffer and memory checks Compute engine checks
STRESS CHECKS	INTEGRATION ISSUES
 Power and thermal stress Throughput stress Constant relative system performance Maximum relative system performance 	 PCIe and NVLink replay counter checks Topological limitations Permissions, driver and cgroups checks Basic power and thermal constraint

COMPREHENSIVE DIAGNOSTICS

ACTIVE HEALTH CHECKS

Identification, recovery & isolation of failed GPUs and NVSwitches.

Diagnostics to root cause failures, Pre & post job GPU health checks

System sanity to stress performance, bandwidth, power and thermal characteristics

Multi-level diagnostic options from few seconds to minutes

dcgmi diag -r 3	
Diagnostic	Result
<pre> Deployment Blacklist NVML Library CUDA Main Library CUDA Toolkit Library Permissions and OS Blocks Persistence Mode Environment Variables Page Retirement Graphics Processes</pre>	++ Pass Pass
Inforom	Pass
+ Hardware GPU Memory Diagnostic + Integration	++ Pass - All Pass - All ++ Pass - All
+ Stress SM Stress Targeted Stress Targeted Power Memory Bandwidth	++ Pass - All Pass - All Warn - All Pass - All

FLEXIBLE GPU GOVERNANCE POLICIES

With Existing Tools

Auto-detects double bit errors, performs page retirement, and notifies the user Condition: Watch for DBE Action: Page retirement Notification: Callback

Demo: Policy Alerting

MANAGING JOB LIFECYCLE

Which GPUs did my job run on?

How much of the GPUs did my job use?

Any error or warning conditions during my job (ECC errors, clock throttling, etc)

Are the GPUs healthy and ready for the next job?

JOB STATISTICS

dcgmi stats --job demojob -v -g 2 Successfully retrieved statistics for job: demojob.

GPU ID: 0	-+=====================================
Execution Stats	:+=====================================
Start Time	Wed Mar 7 10:02:34 2018
End Time	Wed Mar 7 10:10:00 2018
Total Execution Time (sec)	445.48
No. of Processes	1
Compute PID	23112
Performance Stats	•+
Energy Consumed (Joules)	1437
Max GPU Memory Used (bytes)	120324096
SM Clock (MHz)	Avg: 998, Max: 1177, Min: 405
Memory Clock (MHz)	Avg: 2068, Max: 2505, Min: 324
SM Utilization (%)	Avg: 76, Max: 100, Min: 0
Memory Utilization (%)	Avg: 0, Max: 1, Min: 0
PCIe Rx Bandwidth (megabytes)	Avg: 0, Max: 0, Min: 0
PCIe Tx Bandwidth (megabytes)	Avg: 0, Max: 0, Min: 0
Event Stats	•+
Single Bit ECC Errors	5
Double Bit ECC Errors	
PCIe Replay Warnings	
Critical XID Errors	0
Slowdown Stats	.+
Due to - Power (%)	
- Thermal (%)	Not Supported
- Reliability (%)	Not Supported
- Board Limit (%)	Not Supported
- Low Utilization (%)	Not Supported

Detailed stats show utilization, performance and more...

WHY A DAEMON? STATEFULNESS

GPU Telemetry

DCGM DAEMON INTERNALS

GPU CONFIGURATION MANAGEMENT

MAINTAINS CONFIGURATION

Initialization: Configure all GPUs (global group)

Per-job basis: Individual partitioned group settings

Maintains settings across driver restarts, GPU resets or at job start

Supports SET, GET and ENFORCE

Disable ECC mode

dcgmi config -g 1 --set -P 200 Configuration successfully set.

Get Group config [Note DCGM performed reset]

all_gpu_group Group of 2 GPUs	TARGET CONFIGURATION	 CURRENT CONFIGURATION
Sync Boost	+=====================================	=+====================================
SM Application Clock	Not Specified	705
Memory Application Clock	Not Specified	2600
ECC Mode	Disabled	Disabled
Power Limit	200	225
Compute Mode	Not Specified	E. Process

ENHANCED POWER & CLOCK MGMT.

Dynamic Power Capping

- Drive better power density through dynamic power capping
- Apply power capping to a single or a group of GPUs

Fixed Clocks

- Target conservative clock rate for fixed performance
- Useful for profiling

Synchronous Clock Boost

- Predictable performance through group GPU clock boost in lockstep
- Dynamically modulate mutli-gpu clocks across multiple boards in unison based on target workload, power budgets or other criteria

DCGM MODES OF OPERATION

STANDALONE	EMBEDDED
Runs as daemon	Runs within client process
Client libraries connect via TCP/IP 1 DCGM for several clients	Even within python 1 DCGM per client process
User Process DCGM Daemon	No TCP/IP necessary User Process DCGM + Client Lib

THIRD-PARTY INTEGRATIONS

EXAMPLE DEPLOYMENT: PROMETHEUS

Demo: DCGM + Prometheus + Grafana

Example Deployments

NVIDIA SATURNV CLUSTER

660 Compute Nodes

DCGM ROADMAP*

v1.3.3

v1.4

vNext

Container Ecosystem Enablement	Improved User Experience	Next Generation Systems
 DCGM enablement for non-Tesla GPUs (Maxwell+) Interactive Device Monitoring with 'dmon' New Diagnostics to stress GPUs Deprecation of standalone NVVS 	 Integration with 3rd party monitoring/metrics stacks (Prometheus, Grafana) Container orchestration (Kubernetes) support (cAdvisor metrics, health checks) Go Bindings Job Scheduler Hints Packages on compute/cuda repo 	 DGX-2 and NVSwitch monitoring and diagnostics Container orchestration continued

Jan 2018

Apr 2018

Summer 2018

* Roadmap Subject to Change

